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Introduction: Hepatocellular carcinoma (HCC) is the most common primary liver
cancer, characterized by high mortality rate. In clinical practice, several makers of
liver cancer, such as VEGFR1, FGFR1 and PDGFRα, were identified and their
potentials as a therapeutic target were explored. However, the unsatisfied
treatment results emphasized the needs of new therapeutic targets.

Methods: 112 HCC patients samples were obtained to evaluate the expression of
LRRC41, SOX9, CD44, and EPCAM in HCC, combined with prognosis analysis. A
DEN-induced HCC rat model was constructed to verify the expression of LRRC41
and SOX9 in HCC and lung metastasis tissues. Immune score evaluation was
analysized by bioinformatics methods. Network pharmacology was performed to
explored the potential FDA-approved drugs targeting LRRC41.

Results: Through analysis of the Timer database and tissue micro-array, we
confirmed that LRRC41 was over-expressed in HCC and exhibited a significant
positive correlation with recurrence and metastasis. Immunohistochemistry
staining of human HCC tissue samples revealed significant upregulation of
LRRC41, SOX9, CD44, and EPCAM, with LRRC41 showing a positive correlation
with SOX9, CD44, and EPCAM expression. UALCAN database analysis indicated
that LRRC41 and SOX9 contribute to poor prognosis whereas CD44 and EPCAM
did not demonstrate the same significance. Furthermore, analysis of a DEN-
induced HCC rat model confirmed the significantly elevated expression of
LRRC41 and SOX9 in HCC and lung metastasis tissues. Drug sensitivity analysis
and molecular docking targeting LRRC41 identified several FDA-approved drugs,
which may have potential antitumor effects on HCC by targeting LRRC41.

Conclusion: Our findings highlight the role of LRRC41 overexpression in
promoting HCC progression and its association with a poor prognosis. Drug
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sensitivity analysis and molecular docking shows several FDA-approved drugs may
be potential therapeutic targets for HCC. Targeting LRRC41 may hold promise as a
potential therapeutic strategy for HCC.
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1 Introduction

Primary liver cancer ranks as the sixth most prevalent and the
second most fatal type of cancer (van Meer et al., 2013; Wei et al.,
2017; Llovet et al., 2018; Sung et al., 2021). Hepatocellular carcinoma
(HCC) and intrahepatic cholangiocarcinoma are different types of
primary liver cancer, and HCC accounts for the majority of the
cases. The management of HCC involves intricate medical decision-
making processes, because of which delayed diagnosis and treatment
contribute to high mortality (Llovet et al., 2022). A novel diagnosis
and prognostic indicator that could improve clinical outcomes
remains elusive (Shi et al., 2021; Dai et al., 2022). Hence, there is
a crucial need to explore pathophysiology-related genes in HCC, as
they may serve as potential biomarkers for early diagnosis and
prognostic prediction.

The leucine-rich repeat containing 41 (LRRC41), a protein-coding
gene (Schenkova et al., 2012), is widely expressed across various tissues,
such as the thyroid and ovary tissues (The Human Protein Atlas),
characterized by two sub-structural domains. Schenkova K et al. have
indicated an association between the degradation of LRRC41 protein
and the Rho-related BTB (RhoBTB) structural domain-containing
protein (Schenkova et al., 2012). However, the function of
LRRC41 in HCC progression remains unknown.

Several stemness and progenitor hepatic cell markers have been
proven valuable in isolating HCC cells with stem-like properties
from hepatocytes (Yamashita and Wang, 2013). These HCC cells
with stem-like properties possess the ability for self-renewal,
differentiation, and genesis (Liu et al., 2020). Notably, various
surface markers have been identified for HCC stem cell
subpopulations, including EpCAM, CD133, CD44, CD13, CD90,
OV-6, and CD47 (Liu et al., 2020). Additionally, SOX9 has been
found essential in the second step of hepatocarcinogenesis in mice
(Liu et al., 2022). Furthermore, CD73 upregulates the expression of
SOX9 and enhances its stability, thereby playing a crucial role in
maintaining stemness and promoting HCC progression (Wang
et al., 2020). Specific surface markers like CD44 indicate HCC
stem cells (Zarebska et al., 2021), while EpCAM overexpression
is associated with poor differentiation and elevated AFP levels in
HCC cases (Zhou and Zhu, 2018). Consequently, targeting cancer
stem cell markers could offer a promising therapeutic approach
(Pang and Poon, 2012). In this study, we established a DEN-induced
HCC rat model and found that LRRC41 was significantly
upregulated in both HCC and lung metastatic tissues.
immunohistochemistry (IHC) staining revealed a significant
positive correlation between LRRC41 and SOX9, CD44, and
EpCAM. Overexpression of LRRC41 was associated with adverse
clinical and pathological manifestations, indicating a potential
correlation with SOX9, CD44, and EpCAM. Collectively, these
findings emphasized the importance of LRRC41 in providing
novel insights for the treatment of HCC.

2 Materials and methods

2.1 Patient data

A total of 112 HCC samples were obtained from Shanghai
Tongren Hospital, and informed consent was obtained from all
patients. Supplementary Table S1 provides the baseline information
for the clinical samples.

2.2 H&E staining & immunohistochemical
staining

Hematoxylin and eosin (H&E) staining was conducted to detect
pathological changes in liver and HCC tissues. HCC tissue samples were
fixed with 4% paraformaldehyde and embedded in paraffin, and
immunohistochemical staining was performed as previously described
(Jiang et al., 2022). The following antibodies were used:
LRRC41 antibody (1:100, bs-8362R, Bioss), SOX9 antibody (1:100,
ab185966, Abcam), CD44 antibody (1:100, bsm-51065M, Bioss), and
EpCAM antibody (1:100, bsm-52417R, Bioss). The slides were stained
with diaminobenzidine tetrahydrochloride (DAB), counterstained with
hematoxylin, and images were captured using a Leica microscope.

2.3 DEN-induced HCC rat model

Seven week old pathogen-free male Sprague–Dawley rats
(weighing 160–180 g, Charles River Laboratories, Beijing) were
used in our experiments. All animals were administered
diethylnitrosamine (N0756, Sigma) intraperitoneally (70 mg/kg,
dissolved in saline) once a week for 10 weeks and sacrificed at
22 weeks (Zhang et al., 2012; Qin et al., 2018).

2.4 Immune score evaluation

The RNA sequencing expression profiles (level 3) of HCC and
corresponding clinical information were downloaded from the TCGA
dataset (https://portal.gdc.com). To evaluate the immune scores reliably
of LRRC41 inHCC, we used an R software package that integrates EPIC.
Then, Spearman’s correlation analysis of microsatellite instability (MSI)
and LRRC41 gene expression was performed. As for the forest plot, the
p-value, risk coefficient (HR), and univariate analysis of the prognostic
characteristics from the single-factor Cox analysis of LRRC41 in tumors
were performed. The R software GSVA package was used to analyze the
data, employing the “ssGSEA” method (Hanzelmann et al., 2013).
Spearman’s correlation analysis was performed to assess the
correlations between LRRC41, SOX9, and pathway scores. Univariate
Cox regression analyses and forest plots were generated using the
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“forestplot” R package to present the p-value, hazard ratio (HR), and
95% confidence interval (CI) for each variable. All analyses were
conducted using R version 4.0.3, and statistical significance was set at
p-value < 0.05.

2.5 Drug sensitivity analysis

Drug sensitivity data were downloaded from the CellMiner
website (https://discover.nci.nih.gov/cellminer/home.do). Pearson’s
correlation analysis was conducted to investigate the correlation
between LRRC41 gene expression and cell sensitivity data of FDA-
approved drugs.

2.6 Molecular docking analysis

We employed the “query” tool of CMap (https://clue.io/) [20]
to screen for chemical compounds with anti-LRRC41 activity.

A heatmap was generated to display the top 30 compounds against
the LRRC41-related differentially expressed gene signature and
their mechanisms of action. For protein–compound interactions,
homology modeling of the LRRC41 protein was performed using
AlphaFold2 software (Mirdita et al., 2022). The rank1 unrelaxed
protein structure was estimated on SAVES v6.0 (SAVES v6.0-
Structure Validation Server (ucla.edu)) and used for molecular
docking via Discovery Studio software (version 4.5). Auto
preparation was applied to prepare LRRC41 and the ligand
preparations of compounds. Binding sites and compound
conformations were identified, and docking was performed
using LibDock. The interaction site, highest LibDockScore,
binding pocket 3D view, and intermolecular force distance 2D
view were determined. Interaction modes between AZD-5363,
temsirolimus, and the top 10 FDA-approved drugs with the
LRRC41 catalytic site were visualized using the Discovery
Studio Visualizer tool. Molecular dynamics simulations were
carried out to investigate the stability of the docking poses of
the most potent LRRC41 inhibitor.

FIGURE 1
LRRC41 variant, localization, expression profile under physiological conditions, and expression in pan-cancer. (A) Protein topology displaying the
membrane localization of LRRC41; (B) subcellular distribution of LRRC41 from the HPA database; (C) overexpression of LRRC41 in hepatocellular
carcinoma.
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FIGURE 2
(A) Expression of LRRC41 in HCC; (B) immunohistochemical scores of LRRC41 in tumor tissues; (C) positive correlation between LRRC41 and SOX9,
CD44, and EpCAM; (D) high expression levels of LRRC41, SOX9, CD44, and EpCAM in HCC tissues; (E–F) expression of LRRC41, SOX9, CD44, and EpCAM
in HCC samples and their prognostic value on UALCAN(uab.edu).
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2.7 Statistical analysis

The relationship between LRRC41 expression and
clinicopathological parameters (e.g., age, tumor size, lymph node
metastasis, and pathological grading) was tested using the X2 test.
The SPSS software package version 19.0 was used for the X2 test
(Wang et al., 2019), with statistical significance set at p < 0.05.

3 Results

3.1 LRRC41 variants, intracellular
localization, single-cell variations, and
expression profiles under physiological
conditions

The intracellular membrane localization of LRRC41 was
determined and depicted in Figure 1A from Protter—interactive
protein feature visualization (ethz.ch). In order to characterize the
specific intracellular localization of LRRC41, using the HPA
database (Search: LRRC41—The Human Protein Atlas), we were
able to obtain immunofluorescence staining images of LRRC41 to
examine its distribution within the endoplasmic reticulum (ER) and
microtubules of HeLa, PC-3, and U2OS cells. LRRC41 exhibited
colocalization with the nuclear marker in HeLa, PC-3, and U2OS
cells, suggesting its subcellular localization in the nuclei. Conversely,
no colocalization was observed between LRRC41 and the ER or
microtubules in these cell lines (Figure 1B). To validate the
expression of LRRC41 in HCC, its expression was investigated in
pan-cancer samples obtained from the TIMER2.0 (cistrome.org)
database. The results indicated that LRRC41 was overexpressed in
HCC (Figure 1C).

3.2 High expression of LRRC41 in HCC and
positive correlation with SOX9, CD44, and
EpCAM

To explore the relationship between LRRC41 and stemness
marker genes, such as SOX9, CD44, and EpCAM in HCC
progression, we performed a comprehensive analysis. The TIMER
database confirmed the overexpression of LRRC41 in HCC, as shown
in Figure 1C, which was further supported by tissue microarray IHC
staining using HCC patients’ samples (Figure 2A). Additionally, IHC
scores revealed higher levels of LRRC41 in tumor tissues (Figure 2B)
(Table 1 and Table 2). Subsequent single-gene correlation analysis
results from the TIMER2.0 (cistrome.org) database demonstrated a
significant positive correlation between LRRC41 and SOX9, CD44,
and EpCAM (Figure 2C). IHC staining results further confirmed the

significant upregulation of LRRC41, SOX9, CD44, and EpCAM in
HCC samples (Figure 2D). Moreover, the UALCAN (uab.edu)
database analysis results demonstrated the significantly high
expression levels of LRRC41, SOX9, and CD44 in HCC samples
(Figure 2E), with only LRRC41 and SOX9 showing a prognostic value
(Figure 2F).

3.3 LRRC41 and SOX9 were found
significantly overexpressed in HCC and lung
metastasis tissues by using the DEN-induced
HCC rat model

To investigate the role of LRRC41 and SOX9 in the progression
of HCC, H&E staining was performed to analyze liver
histopathological changes in primary HCC at weeks 5, 10, and
20, as well as lung metastatic foci at week 22. IHC staining was
conducted to assess the expression of LRRC41 and SOX9. The
results showed that LRRC41 was significantly upregulated in the
late stage of the model (Week 20) and hepatocellular lungmetastases
(Week 22) compared to the early stages of the model (Week 5 and
Week 10) (Figure 3A). In addition, the IHC scores of LRRC41 and
SOX9 were notably higher at weeks 10, 20, and 22 compared to week
5 of model construction (Figures 3B, C). Collectively, these findings
suggest that LRRC41 and SOX9 promote HCC progression.

3.4 Establishment and estimation of the
prognostic signature

To evaluate the immune scores of LRRC41 in HCC, an R software
package was used to integrate EPIC and the prognostic signature. The
RNA sequencing expression profiles (level 3) of HCC and
corresponding clinical information were downloaded from the
TCGA dataset (https://portal.gdc.com). A heatmap of EPIC immune
scores revealed a negative correlation between LRRC41 and
macrophages, endothelial cells, and CD8T cells (Figure 4A).
Furthermore, Spearman’s analysis confirmed a positive correlation
between LRRC41 and MSI (Figure 4B). Univariate Cox regression
analyses and forest plots were generated using the “forestplot” R
package to present the p-value, HR, and 95% CI for each variable.
Prognostic characteristics were determined through single-factor Cox
regression analysis, demonstrating that LRRC41 had a prognostic value
inHCC (Figure 4C). Then, the risk score of every patient was calculated,
among which we used the “survminer” R package to obtain the median
cut-off point and divided the patients into the high-risk group (n = 185)
and low-risk group (n = 185) (Figure 4D). Figure 4E shows the survival
status of all patients in the training group, and Figure 4F presents the
heatmap of EpCAM, CD44, SOX9, and LRRC41 prognostic genes. The

TABLE 1 Expression of LRRC41 in HCC and paracancerous tissues.

Expression of LRRC41 protein in HCC tissues and paracancerous tissues

Tissue Low expression of LRRC41 High expression of LRRC41 p-value

HCC 54 58 0.00003

Paracancerous 92 20
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KM survival curves showed that the high-risk group had worse OS than
the low-risk group (Figure 4G). Moreover, the EpCAM, CD44, SOX9,
and LRRC41 gene prognostic signatures showed larger AUC values in a
time-dependent ROC analysis (Figure 4H).

The above evidence indicates that LRRC41 promotes
clinicopathological progression in HCC patients, leading to a
poorer prognosis.

3.5 Drug sensitivity analysis and molecular
docking of LRRC41

Drug sensitivity data were downloaded from the CellMiner
website, and our comprehensive analysis of the drug set data
unveiled a significant positive correlation between
LRRC41 expression and the activity Z-scores of AZD-5363
(Figure 5A) and temsirolimus (Figure 5B). In order to validate
these findings, we performed meticulous molecular docking
simulations to assess the binding affinity of LRRC41 with AZD-
5363 and temsirolimus. The outcomes of our docking studies
demonstrated that LRRC41 exhibited an exceptional geometric
and energetic matching pattern with AZD-5363 (Figure 5C) and
temsirolimus (Figure 5D), thereby implying the potential efficacy of
both drugs in impeding the progression of HCC.

3.6 Molecular docking of FDA-approved
drugs with LRRC41

In order to identify whether those drugs can target LRRC41 or
not for HCC treatment, we performed molecular docking studies
using the FDA-approved DrugBank. Initially, we assessed all FDA-
approved small-molecule drugs based on their topology and selected
300 drugs with energies above 140 kcal/mol for further analysis.
Subsequently, 1,800 isomers were identified by analyzing these
300 small-molecule drugs. The LibDock method was employed to
analyze the binding affinity between these 1,800 isomers and
LRRC41, resulting in the identification of ten drugs with the
lowest C-binding energy. Remarkably, LRRC41 exhibited
favorable binding with nine out of ten selected small-molecule
drugs. Figure 6 shows the 2D and 3D structures of molecular
docking; highlighting the aromatic, H-bonds, interpolated charge,
hydrophobicity, ionizability, and solvent accessible surface (SAS)
properties (Figure 7). These findings suggest that drugs such as
oxiglutathione, thymopentin, deferoxamine mesylate, dermorphin,
pralmorelin acetate, tetragastrin, ritonavir, leucovorin calcium
pentahydrate, and pralatrexate may have potential antitumor
effects on HCC by targeting LRRC41, which opens up new
possibilities for repurposing existing drugs for the treatment
of HCC.

TABLE 2 Patient baseline data sheet: statistical analysis of LRRC41.

HCC tissue

Characteristic Low expression of LRRC41 High expression of LRRC41 p-value

n 58 54 —

Age, n (%) — 0 —

≥55 25 (%) 20 (%) 0.6444

<55 33 (%) 34 (%) —

Sex, n (%) — — 0.6723

Male 50 (%) 44 (%) —

Women 8 (%) 10 (%) —

TRF, n (%) — — 0.0189

Metastasis 10 (%) 21 (%) —

No metastasis 48 (%) 33 (%) —

RR, n (%) — — 0.000001

Recurrence 55 (%) 28 (%) —

No recurrence 3 (%) 26 (%) —

OS, n (%) — — —

Dead 55 (%) 54 (%) 0.2677

Alive 3 (%) 0 (%) —

TTR, n (%) — — 0.51927

YES 38 (%) 27 (%) —

NO 28 (%) 27 (%) —
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4 Discussion

HCC is one of the most common malignancies and a leading
cause of cancer-related death worldwide (He et al., 2023). Treatment
modalities, such as immune checkpoint therapy (Sprinzl and Galle,
2017; Rotte et al., 2018) and heterogeneous and individualized
treatment (Burrell et al., 2013) for liver cancer, are now available,
but primary liver cancer, mostly hepatocellular carcinoma, remains a
difficult-to-treat problem (Liu et al., 2015). The pathogenesis and
precise molecular mechanisms of HCC remain unknown
(Facciorusso et al., 2016). In the early stages of HCC, there is no
obvious positive sign, delaying the initiation of the treatment
(Friedrich and Zustin, 2010). Once HCC cells metastasize,
secondary liver cancer (metastatic hepatocellular carcinoma) is
likely to occur. Therefore, it is necessary to find out new
diagnostic biomarkers and therapeutic targets for HCC. In this
study, we observed significant overexpression of LRRC41 in HCC
based on databases, tissue samples, tissue microarrays, and an HCC
rat model. There was a significantly positive correlation between
LRRC41 and stemness genes such as SOX9, CD44, and EpCAM.

Ho et al. identified a CD24/CD44-enriched cell subpopulation within
EpCAM cells through single-cell transcriptomics, indicating a novel
stemness-related cell subclone in HCC (Ho et al., 2019). Deletion of
CD44 significantly inhibited metastasis formation of HCC in Nf2-
mutant mice (Gerardo-Ramirez et al., 2023). Furthermore, the
importance of SOX9 in HCC prognosis has been verified in
several studies. Xu et al. explored the prognostic and diagnostic
value of SOX9 in cirrhotic hepatocellular carcinoma HCC (CHCC)
and non-cirrhotic hepatocellular carcinoma (NCHCC). They found
that high SOX9 expression may aid prognostic evaluation in NCHCC
(Xu et al., 2021). Ruzinova et al. demonstrated that high
SOX9 expression is superior to that of K19 and EpCAM in
predicting prognosis in hepatocellular carcinoma (Ruzinova et al.,
2023). It was reported that LRRC41 could serve as a predictor of
overall survival in patients with oligodendroglioma (Kamura et al.,
2001). However, there have been no further reports on LRRC41 in
HCC progression (Schenkova et al., 2012). In our study, LRRC41 and
SOX9 showed poor prognosis in HCC. We investigated the potential
mechanisms by which LRRC41 promotes HCC progression, revealing
a negative correlation between LRRC41 andmacrophages, endothelial

FIGURE 3
Diethylnitrosamine-induced Sprague–Dawley rat HCCmodel: (A) hematoxylin and eosin staining and IHC staining of LRRC41 and SOX9 in HCC and
lung metastasis; (B,C) IHC scores of LRRC41 and SOX9 in the DEN-induced SD rat HCC model.
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cells, and CD8T cells, and found that LRRC41 was positively
correlated with the classical pathways of HCC progression. This
suggests that high LRRC41 expression indicates poor prognosis in

HCC patients. In conclusion, our study revealed a significant
upregulation of LRRC41 in hepatocellular carcinoma, suggesting its
potential role in driving the clinicopathological progression of HCC.

FIGURE 4
Results of (A) heatmap of EPIC immune score; (B) microsatellite instability: Spearman’s correlation analysis between MSI and LRRC41 expression;
(C,D) risk score curves; (E) survival status of the patients, with increase in the number of dead patients corresponding to the higher risk score; (F) heatmap
of the expression profiles of EpCAM, CD44, SOX9, and LRRC41 in the low- and high-risk groups; (G) Kaplan–Meier survival curves for the above four-gene
signature; (H) time-dependent ROC analysis of the four above genes. ROC: receiver operating characteristic.
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To explore LRRC41 as a viable target for drug development, we
conducted drug sensitivity analysis and molecular docking experiments.
Targeting LRRC41 with AZD-5363, temsirolimus, oxiglutathione,
thymopentin, deferoxamine mesylate, dermorphin, pralmorelin
acetate, tetragastrin, ritonavir, leucovorin calcium pentahydrate, or
pralatrexate demonstrated an antitumor effect on HCC. Our findings
may provide a new horizon on the LRRC41-related therapeutic way of
treating HCC.

As we know, the PI3K/Akt/mTOR pathway plays a critical role in
regulating cell proliferation and survival (Luo et al., 2021). HCCpatients
with mTOR pathway mutations demonstrated a trend toward shorter
time to progression and overall survival (Kelley et al., 2021). AZD-5363,
a kt inhibitor that binds to and inhibits all Akt isoforms, which showed
favorable binding with LRRC41 in our study, were tested in a phase-I
trial in advanced solid tumors, including HCC(Dean et al., 2018),
showing acceptable safety and tolerability profiles. Moreover, the

FIGURE 5
CellMiner analysis of the relationship between LRRC41 and two different compounds: (A) AZD-5363 and (B) temsirolimus. Molecular docking was
performed between LRRC41 and these two compounds, as shown in (C) AZD-5363 and (D) temsirolimus.

Frontiers in Molecular Biosciences frontiersin.org09

Li et al. 10.3389/fmolb.2023.1300294

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1300294


combination of AZD-5363 with FH5363 enhanced autophagy-
associated death by inhibiting both Akt and β-catenin pathways in
HCC. Similarly, temsirolimus has been widely explored in combination
therapy as an mTOR inhibitor (Zhou et al., 2012; Kang et al., 2017;
Kelley et al., 2021). Knox, et al. conducted a phase-II trial of
bevacizumab/temsirolimus doublet in advanced HCC (Knox et al.,
2015). Their results showed an encouraging overall response rate of 19%
and median overall survival of 14 months in patients enrolled. Those
results suggest a possible correlation between LRRC41 and PI3K/Akt/
mTOR pathways in HCC. Figuring out this relationship in HCC may

lay a solid theoretical foundation for related drug efficacy and widen
their application scenario.

The collapsed balance of high oxidative stress and low
antioxidant capacities is one of the important causes of the
development and progression of HCC. Oxiglutathione, showing
favorable binding with LRRC41 in our study, and its related
enzymes, plays an important role in the endogenous antioxidant
system in the human body (Han et al., 2023). Although there is no
clear conclusion of GSH variation in HCC patients (Sanabria et al.,
2016; Shimomura et al., 2017), GSH and its related enzymes seem to

FIGURE 6
Molecular docking of the top 10 FDA-approved drugs with LRRC4. (A) Three-dimensional structure of LRRC41, along with the 3D and 2D structures
of docking with (B) oxiglutathione, (C) thymopentin, (D) deferoxamine mesylate, (E) dermorphin, (F) pralmorelin acetate, (G) tetragastrin, (H) ritonavir, (I)
leucovorin calcium pentahydrate, and (J) pralatrexate.
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FIGURE 7
Molecular docking, displaying the binding pocket in a 3D view and the distance of intermolecular forces between LRRC41 and the top 10 FDA-
approved drugs. The following features were analyzed for each compound (A–I): aromatic interactions, H-bonds, interpolated charge, hydrophobicity,
ionizability, and solvent accessible surface of oxiglutathione, thymopentin, deferoxamine mesylate, dermorphin, pralmorelin acetate, tetragastrin,
ritonavir, leucovorin calcium pentahydrate, and pralatrexate.

Frontiers in Molecular Biosciences frontiersin.org11

Li et al. 10.3389/fmolb.2023.1300294

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1300294


play important roles in protecting against HCC progression.
According to a report by Hsiao et al., HCC patients who had a
lower plasma glutathione peroxidase and glutathione reductase
activity before tumor resection had a higher HCC recurrence rate
(Hsiao et al., 2021). In addition, they observed a higher oxidized
glutathione/oxiglutathione ratio at the pre-resection in recurrent
patients compared to non-recurrent patients, suggesting the
potential role of glutathione in HCC prognosis. Our result
predicted the interaction between LRRC41 and oxiglutathione,
which provides a novel perspective for predicting HCC prognosis.

In summary, although LRRC41 holds promise as a prognostic
biomarker and therapeutic target for HCC, further investigations are
warranted to elucidate the underlying molecular mechanisms
regulating LRRC41-mediated HCC progression. Additionally,
experimental validation is necessary to explore the potential
repurposing of existing drugs for HCC treatment.

5 Conclusion

LRRC41 exhibits significant overexpression in HCC, thereby
contributing to the clinicopathological progression of the disease
and resulting in a poor prognosis for patients. Additionally,
LRRC41 has been identified as a potential co-contributor in the
progression of HCC, along with the stemness gene SOX9.
Furthermore, it is worth noting that FDA-approved drugs hold
promise as targeted therapies against LRRC41, presenting a
potential avenue for effective treatment of HCC.
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