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Non-small cell lung cancer (NSCLC) is one of the main causes of cancer-related
death worldwide, with a serious impact on human health and life. The
identification of NSCLC at an early stage is a formidable task that frequently
culminates in a belated diagnosis. LncRNA is a kind of noncoding RNA with limited
protein-coding capacity, and its expression is out of balance in many cancers,
especially NSCLC. A large number of studies have reported that lncRNA acts a vital
role in regulating angiogenesis, invasion, metastasis, and the proliferation and
apoptosis of tumor cells, affecting the occurrence and development of NSCLC.
Abundant evidence demonstrates that lncRNAsmay serve as potential biomarkers
for NSCLC diagnosis and prognosis. In this review, we summarize the latest
progress in characterizing the functional mechanism of lncRNAs involved in
the development of NSCLC and further discuss the role of lncRNAs in NSCLC
therapy and chemotherapy resistance.We also discuss the advantages, limitations,
and challenges of using lncRNAs as diagnostic or prognostic biomarkers in the
management of NSCLC.
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1 Introduction

Lung cancer has the second-highest cancer incidence and accounts for the majority of
cancer deaths worldwide (1,800,000 deaths per year) based on the Global Cancer
Observatory in 2020 (Sung et al., 2021). According to histopathology, lung cancer is
composed of two different types: small cell lung cancer (SCLC) and non-small cell lung
cancer (NSCLC). Non-small cell lung cancer accounts for about 85% of the total number of
lung cancers, mainly including adenocarcinoma (AC), squamous cell carcinoma (SCC) and
large cell carcinoma (Wang C. et al., 2020). Most patients with NSCLC are diagnosed at a late
stage since there are no specific clinical symptoms in the early stages (Tsiouda et al., 2020).
Surgery, chemotherapy and targeted therapy are currently useful treatments, but the 5 years
survival rate in NSCLC patients remains below 15% (Huang W. et al., 2020). Thus, patients’
survival and outcome depend on the early detection of NSCLC. Low-dose CT (LDCT)
screening is the primary means of early diagnosis. However, LDCT has two disadvantages: 1)
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the false-positive rate is high, which can easily lead to overdiagnosis
(Aberle et al., 2011), and 2) accumulated radiation from screening
and follow-up causes an increased risk of cancer (McCunney and Li,
2014). The progression of NSCLC is a biological process regulated by
various factors. Therefore, there is a demand to further illustrate the
mechanisms of NSCLC occurrence and seek more reliable
diagnostic biomarkers.

Long noncoding RNAs (lncRNAs) are a type of RNA with more
than 200 nucleotides (Quinn and Chang, 2016). Due to the lack of
long protein-coding open reading frames, lncRNAs are widely
recognized as not having the ability to encode proteins (Zhang
et al., 2023b). Emerging evidence suggests that some lncRNAs do
contain small open reading frames that can be translated by ribosomes
to encode peptides (Zhang et al., 2023c; Pei et al., 2023). In
transcription, lncRNA is a by-product produced by RNA
polymerase II, which is initially considered as a junk fragment
(Entezari et al., 2022). In 1991, Borsani et al. (1991) confirmed
that lncRNA XIST is correlated with the inactivation of the x
chromosome. Since then, more and more studies have shown that
lncRNA is essential for biological function. The abnormal expression
of lncRNA usually causes various diseases, particularly malignancy
(Beermann et al., 2016). LncRNA expression is differential between
carcinoma and para-carcinoma tissues, suggesting its relevance to
cancer occurrence and progression. For example, the expression of a
novel lncRNA MCM3AP-AS1 in hepatocellular carcinoma tissues is
significantly higher than that in normal liver tissues (Wang Y. et al.,
2019). LncRNA-CDC6 expression increases in breast cancer tissue
and its expression is closely associated with the progression of breast
cancer (Kong et al., 2019).

Research on lncRNAs in recent years has shown that lncRNAs
regulate target genes through epigenetics, transcriptional regulation,
and post-transcriptional regulation (Zhang et al., 2021b; Du et al.,
2021). Diverse biological processes can be regulated by lncRNAs,
including cell proliferation, apoptosis, invasion, metastasis and drug
resistance (Lin and Yang, 2018). In addition, some lncRNAs, such as
HOTAIR, NEAT1, MALAT1 and MEG3, have been shown to play
positive or negative regulatory roles during malignant tumor
progression (Kim et al., 2018; Esposito et al., 2019). In various
human body fluids, such as plasma (Lin et al., 2022), sputum (Gupta
et al., 2019), saliva (Shieh et al., 2021) and urine (Huang et al., 2021),
lncRNA can be detected easily and stably, and its expression varies
with disease progression. Therefore, detecting lncRNA expression
can be used as a new strategy for the early diagnosis and prognosis
prediction of NSCLC.

In this review, we briefly describe the classification and
biological functions of lncRNA and outline the roles of lncRNA
in lung cancer, particularly NSCLC. We further summarize the
diagnosis and limitations of lncRNAs in NSCLC. Finally, we
summarize the role of lncRNAs as therapeutic targets and
prognostic predictive markers in NSCLC and detail the possible
challenges in this field.

2 Classification and molecular
biological functions of lncRNA

Protein-coding genes make up only 2% of the human genome,
while the remaining 98% do not encode proteins (Qian et al., 2019).

Functional RNA that does not encode proteins is called non-coding
RNA (ncRNA) (Zhang et al., 2020). Depending on the length,
ncRNA is classified into small noncoding RNA and lncRNA (Li
L. et al., 2021). LncRNA is transcribed by RNA polymerase II. After
transcription, similar to mRNA, lncRNA is usually capped by 7-
methyl guanosine (m7G) at its 5′ ends and polyadenylated at its 3′
ends (Statello et al., 2021). However, compared with mRNA, the
length of lncRNA is shorter, the exons are fewer, and the primary
sequence is less conservative (Lagarde et al., 2017). There are several
methods used for classifying lncRNAs, one of which categorizes
lncRNAs based on their location relative to protein-coding genes
(Figure 1): 1) sense lncRNA; 2) antisense lncRNA; 3) intronic
lncRNA; 4) bidirectional lncRNA; and 5) intergenic lncRNA
(Yousefi et al., 2020).

In some studies, the function of lncRNAs is determined by their
structure. Among them, secondary structures play a crucial role in
lncRNAs (Derrien et al., 2012). Base complementary pairing forms
the secondary structure of lncRNAs, which includes bulges,
junctions, hairpin loops, stem loops, inner loops, helices,
subdomains, and pseudoknots (Cruz and Westhof, 2009). Studies
have shown that these secondary structures increase the stability of
lncRNAs and affect their functional interactions with proteins, DNA
and other RNAs (Pidíková and Herichová, 2021). For instance,
MALAT1, which contains uracil-rich regions, forms a triple helix to
increase stability (Zhang Y. et al., 2019). The lncRNAGAS5 signals a
negative regulatory effector and has an A-type double helix
structure. Its double helix structure interacts with the DNA-
binding domain of the steroid receptor to repress steroid-
mediated transcription (Hudson et al., 2014). These demonstrate
that there is an important role for the secondary structure of
lncRNAs in biological functions.

There are three main ways in which lncRNAs regulate genes:
epigenetic regulation, transcriptional and post-transcriptional
regulation, and their biological function depends on their
location in the cell (Jia et al., 2022). In the nucleus, some
lncRNAs can become histone modifiers through methylation or
demethylation, thereby regulating the chromatin state and
ultimately promoting or repressing gene transcription (Herman
et al., 2022). LncRNA HOTAIR interacts with polycomb
repressive complex 2 (PRC2) and promotes trimethylation of
histone H3 Lys 27, thereby suppressing gene expression by
epigenetic mechanisms (Balas et al., 2021). Moreover, the
regulation of protein-coding genes by lncRNAs has also been
proven through both cis-acting or trans-acting mechanisms in
transcription (Ponting et al., 2009; Le Beguec et al., 2018).
LncRNAs can modulate gene expression through three different
regulatory mechanisms in cis-regulation: 1) lncRNA transcripts
recruit specific transcription factors that regulate gene regulation.
2) LncRNAs directly regulate the expression of adjacent genes. 3)
DNA sequences within a lncRNA locus can activate or repress the
expression of genes in its vicinity (Merry et al., 2015). For example,
XIST can silence genes present on the X chromosome by recruiting
specific silencing factors (Markaki et al., 2021). In the cytoplasm,
LncRNA can act as a molecular sponge for miRNA to regulate gene
expression, thus reducing the targeting effect of miRNA on mRNA.
This process is called endogenous competitive RNA (ceRNA)
mechanism (Karreth and Pandolfi, 2013). Further, LncRNA
forms a specific lncRNA protein complex (lncRNPs) with RNA
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binding proteins, which leads to changes in mRNA splicing and
transcription and regulates signal pathways in some biological
environments (Jonas et al., 2020; Cao et al., 2023). The lncRNA
PTTG3P forms an RNA-protein complex with ILF3, which increases
the stability of MAP2K6 and E2F1 mRNAs, thereby promoting
NSCLC progression (Wang et al., 2023).

3 LncRNA and the occurrence and
progression of NSCLC

The occurrence and progression of NSCLC are caused by
dysregulated gene expression, usually involving oncogene
activation and tumor suppressor gene inhibition. LncRNA can
act as a key regulator to affect tumor cell proliferation and
apoptosis, tumor angiogenesis, and tumor invasion and
metastasis (Figure 2). Table 1 shows the mechanism of lncRNAs
in the progression of NSCLC.

3.1 LncRNAs regulate the proliferation and
apoptosis of NSCLC

The infinite proliferation of cells is one of the ten attributes of
tumors (Hanahan, 2022). Several researchers verified that lncRNAs
can affect NSCLC proliferation by interacting with miRNAs. For
instance, an increase in lncRNA small nucleolar RNA host gene 20
(SNHG20) expression in NSCLC is associated with an unfavorable
prognosis. The upregulation of SNHG20 can improve proliferation
and inhibit apoptosis. Mechanistically, SNHG20 increases the
expression of ZEB2 and RUNX2 through sponging miR-154 to
ultimately promote NSCLC progression (Lingling et al., 2019).
Metadherin (MTDH) enables cancer cells to adhere tightly to
blood vessels and consequently reach other distant organs. High
expression of lncRNA prostate cancer non-coding RNA 1
(PRNCR1) leads to significant overexpression of MTDH through
sponging miR-126-5p to promote the proliferation of cancer cells.
Conversely, the knockdown of PNCR1 promotes apoptosis and

FIGURE 1
Classification diagram of lncRNAs. Intergenic lncRNA: also known as lincRNA, located between two protein-coding genes and capable of
independent transcription. Intronic lncRNA: A transcript that is located in the intronic region of a protein-coding gene and has no overlap with its exon.
Sense lncRNA: Transcribed from the justice chain of a protein-coding gene, overlappingwith at least one exon of the protein-coding gene located on the
same chain and transcribed in the same direction. Antisense lncRNA: Transcription byDNA strands complementary to protein-coding genes that are
transcribed in opposite directions and overlap at least one exon of the forward gene. Bidirectional lncRNA: Shares promoters with protein-coding genes,
but transcribes in the opposite direction to protein-coding genes.
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hinders proliferation in NSCLC cells. The use of miR-126-5p
inhibitors eliminates this effect, suggesting that PNCR1 is able to
regulate NSCLC proliferation and metastasis by sponging miR-126-
5p (Guo et al., 2020). The proliferation rate of tumor cells can be

boosted by the KLF12 protein. By inhibiting miR-188-5p, lncRNA
DARS-AS1 can upregulate the concentration of KLF12 in cells,
thereby promoting the proliferation and invasion of lung
adenocarcinoma (LUAD) (Liu et al., 2021).

FIGURE 2
Function of lncRNA in NSCLC progression. There is growing evidence that lncRNA act as a series of novel regulators of tumorigenesis, including cell
proliferation, apoptosis, angiogenesis, migration, and invasion.

TABLE 1 The regulatory mechanism of lncRNA in NSCLC.

LncRNA Expression Model Molecular mechanism Function References

HOTAIR Up in vitro Sponges miR-149-5p to upregulate
HNRNPA1

Proliferation (+) Li et al. (2020)

GMDS-AS1 Down in vivo and in vitro Sponges miR-96-5p to upregulate CYLD Apoptosis (+) Zhao et al. (2020)

HIF1A-As2 Up in vivo and in vitro Promotes the expression of MYC Proliferation (+) Yang et al. (2023a)

BC009639 Up in vitro Regulates EMT by modulating IMPAD1 Migration (+) Chen et al. (2023a)

H19 Up in vitro Regulates EMT Migration (+); invasion (+) Liao et al. (2019)

SLCO4A1-
AS1

Down in vitro Sequesters the TOX4-NTSR1 signaling axis Migration (−) Chen et al. (2023c)

LUADT1 Up in vitro Sponges miR-15a-3p to upregulate Twist1 Migration (+); invasion (+) Wang et al. (2019a)

Mir100hg Up in vitro and in vivo Targets miR-15a-5p and miR-31-5p Migration (+); invasion (+) Shi et al. (2023)

LINC02159 Up in vitro Activates ALYREF/YAP1 signaling Migration (+); invasion (+) Yang et al. (2023b)

LETS1 Up in vitro and in vivo Promotes TGF-β-induced EMT Migration (+) Fan et al. (2023a)

TILR Up in vitro Represses the expression of p53 Apoptosis (−) Iwai et al. (2023)

MLETA1 Up in vitro and in vivo Sponges miR-186-5p and miR-497-5p Migration (+); invasion (+) Hsu et al. (2023)

CALML3-AS1 Up in vitro and in vivo Represses the expression of BTNL9 Migration (+) Zhang et al. (2023a)

HHIP-AS1 Down in vitro Regulates HHIP mRNA Migration (−); proliferation (−) Hu et al. (2023)

LINC00115 Up in vitro and in vivo Sponges miR-154-3p to modulate Sp3 Proliferation (+); migration (+); invasion (+) Sun et al. (2023)

AP000695.2 Up in vitro and in vivo Regulates the miR-335-3p/TEAD1 axis Glycolysis (+) Xu et al. (2023)
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On the other hand, lncRNA regulates the proliferation and
apoptosis of tumor cells by affecting cell cycle. Cyclin D1, as a
key regulator of the cell cycle, is primarily responsible for promoting
cell proliferation (Liu et al., 2018). According to some studies, the
expression of lncRNA MIR503HG is downregulated in NSCLC.
Using overexpression experiments, overexpression of MIR503HG
inhibits cyclin D1 expression and prevents cell division in the
G1 cycle, resulting in a decrease in cell proliferation (Xu S. et al.,
2020). LncRNA ARAP1-AS1 is upregulated in NSCLC. A knockout
of lncRNA ARAP1-AS1 can inhibit the expression of cyclin D1,
thereby arresting the cell cycle at G0/G1, which significantly inhibits
cell proliferation (Tao X. et al., 2020). Additionally, according to the
reports of Chen et al., there is a positive relevance between the
expression of the lncRNA MINCR and the proliferation of lung
cancer cells, which indicates that silencing of MINCR reduces cell
proliferation in PC9 cells via reducing the expression levels of cell
cycle protein A, cell cycle protein D, CD4 and CDK2 (Chen et al.,
2019). The overexpression of lncRNA GAN1 can induce cell
apoptosis and inhibit tumor growth by arresting cells in the G0/
G1 phase. In addition, GAN1 can act as a miR26a-5p sponge and
upregulate the PTEN level, thus inhibiting cell proliferation and
inducing apoptosis in NSCLC (Wang et al., 2021).

Abnormal proliferation of tumors is connected with abnormal
energy metabolism. Under aerobic conditions, cancer cells prefer
glycolysis for energy metabolism, which is less efficient in ATP and
energy production compared to oxidative phosphorylation. This
process of energy metabolism is called theWarburg effect (Warburg,
1956). Glycolysis is essential for cancer cell proliferation (Liberti and
Locasale, 2016). The lncRNA can target miRNAs to control the
glycolysis of cancer cells. The study showed that
LINC00857 activates SPAG5 expression in lung tumor cells by
reducing miRNA-149 expression, resulting in glycolysis and cell
proliferation (Wang L. et al., 2020). In another experiment, the effect
of lncRNA LINC00243 in the regulation of glycolysis is studied.
Glycolysis is stimulated by the overexpression of LINC00243,
enhancing lung tumor progression. By downregulating miR-507,
LINC00243 positively regulates PDK4 to promote glycolysis and
proliferation in NSCLC cells (Feng and Yang, 2020). In addition,
lncRNA HOXA11-AS promotes PKM3 expression by binding to
miR-2b-148p, thereby promoting LUAD proliferation and glycolysis
(Chen W. et al., 2023).

Currently, most of the studies of lncRNA on NSCLC
proliferation and apoptosis are still in vitro experiments.
However, the mechanisms by which lncRNAs affect proliferation
and apoptosis are more complex due to the tumor
microenvironment, so more in vivo experiments are needed to
validate the results of in vitro experiments.

3.2 LncRNAs regulate angiogenesis in
NSCLC

When the tumor grows to a certain size, nutrition is also
provided to the tumor cells through tumor vascular production
to ensure the further growth of the tumor. Tumor
neovascularization features high-passage, irregular vascularization,
intravascular infiltration, and immature vascularization (Matsunaga
and Tomita, 2020). As a result of pathological hyperplasia blood

vessel abnormalities, tumor neovascularization is frequently
associated with lung cancer development and occurrence.
Generally, tumor angiogenesis is an intricate mechanism
regulated by several angiogenic factors and signaling pathways
(Nakhjavani et al., 2021), such as vascular endothelial growth
factor (VEGF) (Wang et al., 2018) and the angiopoietin (Ang)/
Tie2 signaling pathways. VEGF is the primary regulator that
promotes the proliferation of vascular endothelial cells and can
directly promote the proliferation and metastasis of tumors (Goel
and Mercurio, 2013; Frezzetti et al., 2017). It has been well
documented that the expression of LINC00173.v1 is upregulated
in SCC and negatively connected with patient survival.
Overexpression of LINC00173.v1 stimulates the proliferation of
vascular endothelial cells and promotes vascular neogenesis and
metastasis of SCC. Mechanistically, LINC00173.v1 promotes
VEGFA expression by sponging miR-511-5p, and VEGFA acts
directly on vascular endothelial cells to promote angiogenesis
(Chen J. et al., 2020). During vascular remodeling, increased
expression of Ang2 activates Tie2 receptors, leading to signal
transduction and thereby promoting endothelial cell proliferation
(Bupathi et al., 2014). Overexpression of lncRNA EPIC1 increases
the density of new blood vessels in a study. Furthermore, in NSCLC,
EPIC1 stimulates vascular endothelial cell proliferation via the
Ang2/Tie2 axis, resulting in angiogenesis and channel formation
(Hou et al., 2021).

Vasculogenic mimicry (VM) was first proposed in aggressive
human melanoma by Maniotis et al. In tumor tissue, it boosts the
growth, invasion, and metastasis of tumors through the rapid
generation of new blood vessels (Maniotis et al., 1999; Jiang X.
et al., 2020). VM was questioned by some researchers when it was
first proposed in 1999, but after intensive research, the role of VM in
tumor angiogenesis has been demonstrated. For example, It was
found that LINC00312 is overexpressed in lung adenocarcinoma
and positively affects tumor invasion and metastasis.
LINC00312 can directly bind to the transcription factor Y-Box
binding protein 1 (YBX1) to increase the average density of VM
in lung adenocarcinoma tissue, thereby causing tumor
neovascularization (Peng et al., 2018). Moreover, there is a gene-
binding site for estrogen receptor beta (ERβ) on lncRNA MALAT1,
and ERβ positively regulates MALAT1 through complementary
pairing with the estrogen response element (ERE) on the
MALAT1 promoter. Overexpressed MALAT1 targets miR-145-
5p, increased the expression of neural precursor cells expressed
developmentally downregulated 9 (NEDD9), and promoted VM
formation and cell invasion in NSCLC (Yu et al., 2019).

To summarize, when NSCLC grows to a certain stage, it
metastasizes either locally or at a distant location, and tumor
angiogenesis provides suitable conditions for invasion and
metastasis. Therefore, lncRNAs not only regulate tumor
angiogenesis but also affect the metastasis of NSCLC.

3.3 LncRNAs regulate the invasion and
metastasis of NSCLC

Tumor angiogenesis provides suitable conditions for tumor
metastasis and invasion. Tumor invasion and metastasis caused
by epithelial mesenchymal transition (EMT) can increase patient
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mortality (Li S. et al., 2019). EMT, first proposed by Greenberg in
1982, is a key process in cancer cell metastasis (Ashrafizadeh et al.,
2020). In this procedure, epithelial cell markers are absent, such as
E-cadherin. Expression of mesenchymal cell markers, such as
N-cadherin, vimentin and fibronectin, is upregulated. This causes
reorganization of the cytoskeleton and enhances their migratory
capacity and adhesion to neighboring cells (Dongre and Weinberg,
2019). It has been demonstrated that lncRNA can influence the
process of EMT. For example, according to a previous study, the
levels of lncRNA XIST and ZEB2 mRNA increase in NSCLC tissues.
LncRNA XIST is involved in the progression of tumors as an
oncogene and may affect TGF-β-induced EMT via raising the
level of ZEB2, thereby speeding up the invasion and migration of
NSCLC. In addition, lncRNA XIST acts as a miRNA sponge to
inhibit miR-367 and miR-141 expression. Nevertheless,
overexpression of miR-141 and miR-367 block TGF-β-induced
EMT, and thus the invasion and metastasis efficiency of NSCLC
are reduced (Li et al., 2018). Among NSCLC tissues, Linc00460 is
overexpressed, and hindering Linc00460 expression affects the
expression of EMT-related proteins, thereby inhibiting cancer cell
invasion and metastasis (Yue and Zhang, 2018). LncRNA
CRYBG3 can directly bind to eEF1A1, promote its entry into the
nucleus, and thus strengthen the transcription of MDM2.
Overexpressed MDM2 binds to MDM2-binding protein (MTBP),
which reduces the binding between MTBP and ACTN4, thus
increasing ACTN4-mediated cell migration (Wu et al., 2021).

Abnormally expressed lncRNA takes part in the invasion and
metastasis of NSCLC by regulating the expression of signaling
pathway genes, such as phosphoinositide 3-kinase (PI3K) (Jiang
W. et al., 2020), mitogen-activated protein kinase (MAPK)
(Zhang et al., 2018), Wnt/β-catenin signaling (Liu S. et al.,
2020), TGF-β/SMAD signaling (Fan et al., 2023b), and Hippo
(Zeng et al., 2021). For example, there is a strong correlation
between the PI3K/AKT pathway and the proliferation,
differentiation, and metastasis of cells (Yu and Cui, 2016).
According to some research, Fer-1-like protein 4 (FER1L4) can
decrease cell proliferation and metastasis in NSCLC by hindering
PI3K/Akt signaling (Gao et al., 2019). The lncRNA NEAT1 is
upregulated in NSCLC tissues and cells. NEAT1 overexpression
triggers invasion and migration through aiming the has-miR-
376b-3p/SULF1 axis. Moreover, by participating in the
phosphorylation of MAPK and Akt, NEAT1 also regulates
NSCLC progression, introducing a new avenue for cancer
pathogenesis (Chen L. M. et al., 2020). As a result of the
sponge action of lncRNA JPX, miRNA-33a-5p expression is
decreased, bringing about an increase in Twist1 expression and
aiding the EMT process by activating the Wnt/β-catenin pathway.
This accelerates the malignant process of NSCLC (Pan et al.,
2020). Mitochondrial RNA Processing Endoribonuclease (RMRP)
can recruit YBX1 to the promoter region of TGFBR1, leading to
activation of the TGFBR1/SMAD2/SMAD3 pathway, which
increases NSCLC cell invasion and migration (Yin et al., 2023).
The lncRNA non-small cell LCAT1 (NSCLCAT1) reportedly
increases the invasion and migration of cells in NSCLC by
interacting with CDH1 to regulate the Hippo signaling
pathway (Zhao et al., 2019).

In conclusion, invasion and metastasis are multi-step malignant
processes, of which lncRNA may be one of the regulatory factors.

Investigating blockers targeting lncRNA may reduce metastasis in
NSCLC, thereby improving clinical treatment and patient prognosis.

4 LncRNAs as diagnostic markers in
NSCLC

NSCLC is most commonly diagnosed at a late stage, which
results in a very low survival rate for patients. The early detection
and intervention of NSCLC can limit tumor advancement and
improve the overall survival rate of patients. Imaging
examination can be used for the early screening of NSCLC, but
due to its high false-positive rate, it cannot differentiate NSCLC
from benign lung lesions. Conventional tumor markers have low
specificity and cannot accurately diagnose NSCLC. For example,
carcinoembryonic antigen (CEA) is elevated not only in NSCLC but
also in digestive tract tumors (Gao et al., 2018; Jiao et al., 2021). As a
result, there is an urgent need for more specific and reliable
biomarkers for the diagnosis of NSCLC. The study found that
lncRNA not only exists stably in peripheral blood but also suits
quantitative detection, so it may be utilized as a new molecular
marker for the diagnosis of NSCLC.

Area Under Curve (AUC) is defined as the area under the ROC
curve, with a value between 0 and 1. AUC provides a visual
evaluation of the authenticity of the test method, and a higher
AUC value indicates a higher accuracy of the test (Mandrekar,
2010). Some benign lung diseases and NSCLC have similar
symptoms, such as cough and hemoptysis. Imaging features on
CT are not effective in distinguishing between them, which will
affect the doctor’s judgment and treatment measures. Fortunately,
some lncRNAs have high value in diagnosing lung cancer and
distinguishing benign lung lesions. For example, patients with
NSCLC have notably upper concentrations of circulating lncRNA
XLOC_009167 in their whole blood samples. Compared with
healthy controls, lncRNA XLOC_009167 has an AUC value of
0.7398 for the diagnosis of lung cancer, with a sensitivity of
78.7% and a specificity of 61.8%. This suggests that lung cancer
can be diagnosed by XLOC_009167. Moreover, the AUC value of
XLOC_009167 in distinguishing lung cancer and pneumonia is
0.7005, the sensitivity is 90.1%, and the specificity is 50.0%. The
results show that XLOC_009167 may be useful in distinguishing
lung cancer from pneumonia (Jiang et al., 2018). In NSCLC patients,
lncRNA ADAMTS9-AS2 is remarkably lower than in benign lung
lesions or normal controls (p < 0.001). According to the ROC curve
analysis of ADAMTS9-AS2, the AUC value of plasma ADAMTS9-
AS2 for diagnosing NSCLC is 0.957, and the sensitivity (95%) and
specificity (99.1%) of plasma ADAMTS9-AS2 for diagnosing
NSCLC are higher than those of CYFRA 21-1 (61.3% sensitivity
and 60% specificity). Additionally, ADAMTS9-AS2 expression
decreases with tumor stage progression. This suggests that
ADAMTS9-AS2 may be a molecular marker for early NSCLC
detection (Abdul-Maksoud et al., 2021). Therefore, the discovery
of lncRNA in plasma will open a new door for the early diagnosis of
NSCLC.

However, some lncRNAs, when used as single diagnostic
markers, are not sensitive to diagnosing NSCLC. Combining
lncRNAs with conventional tumor markers is a feasible way to
improve the efficiency of NSCLC diagnosis. A study found that
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GAS5 expression is lower in the serum of NSCLC patients (p <
0.001). Through ROC curve analysis, GAS5 has a higher AUC value
(0.857) than CEA (0.758) in distinguishing NSCLC patients from
healthy controls. Further research found that by combining
GAS5 with CEA, the AUC of the combined group is 0.929,
indicating that GAS5 combined with CEA can improve the
positive rate of diagnosis in NSCLC patients (Li et al., 2019). In
another study, the expression levels of lncRNA TBILA (p < 0.001)
and AGAP2-AS1 (p < 0.001) in the serum of NSCLC patients are
notably more than those of healthy controls. In addition,
postoperative serum TBILA and AGAP2-AS1 levels are
significantly lower compared with preoperative treatment.
Through the ROC curve analysis of TBILA and AGAP2-AS1, the
results show that in the diagnosis of NSCLC, TBILA has an AUC
value of 0.775, AGAP2-AS1 has an AUC value of 0.734, and the
AUC value of the combined serum marker Cyfra21-1 is 0.853,
indicating that this combination can increase the diagnostic
ability of NSCLC (Tao et al., 2020). The lncRNAs SOX2OT and
ANRIL are overexpressed in NSCLC. In addition, two long
noncoding RNAs and three tumor markers (CEA, CYFRA21-1,
and SCCA) are used to establish an NSCLC diagnostic panel; the
AUC of this combination is 0.853, the sensitivity is 77.1%, and the
specificity is 79.2%. The results show that the combination has a
significantly greater power of diagnosis for NSCLC than lncRNA
alone (Xie et al., 2018).

There is evidence that combinations of lncRNAs are more
accurate than individual lncRNAs in diagnosing NSCLC. For
example, the AUC value of the combined application of
GAS5 and SOX2OT is 0.902, and the sensitivity and specificity
reach 83.8% and 81.4%, which are more than those of GAS5 and
SOX2OT alone (Kamel et al., 2019). NSCLC patients express more
SNHG1 and RMRP in plasma than the control group (both p ≤
0.05), and among the development cohort, compared with either
gene alone, these two genes together have a diagnostic sensitivity of
84.13% for NSCLC, thereby improving the rate of diagnosis of
NSCLC (Lin et al., 2018). Four lncRNAs (RMRP, NEAT1, TUG1,
and MALAT1) are screened using qRT-PCR in 265 plasma samples
(including 148 NSCLC and 117 controls) with differential
expression levels between NSCLC and controls. A combination of
four lncRNAs is established, and an ROC analysis is conducted to
evaluate the diagnostic performance of the established four-lncRNA
panel. The AUC of the combination for diagnosing NSCLC is 0.86,
and this AUC value is significantly higher than the AUC value of an
individual lncRNA. Further research found that the four-lncRNA
panel also provides the ability to differentiate between certain benign
diseases, including COPD, tuberculosis, and inflammation of the
lung (Yuan et al., 2020).

As mentioned earlier, lncRNAs (Table 2) have high diagnostic
efficiency and are promising markers for the diagnosis of NSCLC.
However, these studies also have certain limitations. First, the
number of samples used is not sufficient. In future experiments,
it will be necessary to expand the sample size, conduct further multi-
center cohort studies, and use an independent database for external
validation. Second, the mechanism of the dysregulated expression of
lncRNAs is still unclear, and exploring this mechanism will help to
establish new diagnostic markers. Finally, lncRNA expression levels
must be examined in other cancers to screen for the most specific
lncRNAs in NSCLC diagnosis. The new model of combining

lncRNA with chest CT and traditional tumor markers may be
further used in the future for the diagnosis of NSCLC.

5 LncRNAs as prognosis markers in
NSCLC

The prognosis of patients is closely related to TNM staging and
the treatment of NSCLC. The overall survival rate of NSCLC
patients is low because of drug resistance. At present, there is no
accurate method to evaluate the prognosis of NSCLC. It has been
found that lncRNAs can predict lymph node metastasis and TNM
staging. Therefore, lncRNAs can be used as potential prognostic
markers for NSCLC. Researchers revealed that lncRNA
AC099850.3 is greatly upregulated in LUAD. Through Cox
multivariate regression analysis, the results show that lncRNA
AC099850.3 is an independent prognostic indicator that is
associated with overall survival (OS), disease-free survival (DSS),
and progress-free survival (PFS) among patients with LUAD (Chen
et al., 2022b). LncRNA DPP10-AS1 expression is higher in 94 lung
cancer tissues compared with normal tissues. DPP10-AS1 promotes
the proliferation of lung cancer cells, which leads to a poor prognosis
in patients. It is possible to use DPP 10-AS1 as an independent
prognostic predictor and to determine a patient’s prognosis (Tian
et al., 2021). Recently, lncRNA has been increasingly proven to have
the potential for tumor prognosis. The level of lncRNAKTN1-AS1 is
correlated with TNM stage (p = 0.0029), histological grade (p =
0.012) and lymph node metastasis (p = 0.020), and the high
expression of KTN1-AS1 can reduce the OS of NSCLC patients
(Liu et al., 2020). There is a shorter overall survival for NSCLC
patients with high expression of the lncRNA PTTG3P. Moreover,
the total survival of the high-expression group of PTTG3P in females
and males with NSCLC is shorter than the low-expression group,
and there is also a correlation between PTTG3P and DFS (Huang
et al., 2020).

These results reveal that lncRNAs can serve as a prognostic
predictor of tumors, and their expression level in tumors can be used
to evaluate the clinicopathological features and overall survival of
patients. Table 3 summarizes lncRNAs that affect the prognosis of
NSCLC.

6 LncRNA and the treatment of NSCLC

Despite the rapid progression of chemotherapy and targeted
therapies in the treatment of NSCLC, the appearance of drug
resistance is inevitable. Emerging evidence suggests that
dysregulation of lncRNAs plays a crucial role in the development
of drug resistance in NSCLC cells. Therefore, targeting dysregulated
lncRNAs may provide a novel therapeutic strategy for NSCLC.

6.1 LncRNAs regulate drug resistance of
NSCLC

Cisplatin (DDP) is one of the basic chemotherapy drugs for the
treatment of NSCLC due to its broad and strong anti-cancer effect
(Zhou et al., 2018; Arbour and Riely, 2019). However, cisplatin-
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based chemotherapy still faces significant challenges owing to
acquired drug resistance (Huang et al., 2019). Hence, it is vital to
learn the mechanisms of cisplatin resistance to improve the efficacy
of clinical treatment. Several studies have revealed that lncRNAs are
key regulators of resistance to chemotherapy drugs. For example,
lncRNA LINC01116 has a high expression in patients with lung
adenocarcinoma, and the dysregulated expression of lncRNA

LINC01116 leads to the resistance of lung adenocarcinoma to
cisplatin through the EMT process. Conversely,
LINC01116 knockdown may enhance sensitivity to cisplatin by
regulating apoptosis and blocking the cell cycle (Wang et al.,
2020). As lncRNA ZXF1 activates the MAPK signaling cascades
of ERK, JNK and p38, it promotes cisplatin resistance and cancer
progression, leading to treatment failure and tumor recurrence (Yu

TABLE 2 LncRNAs as diagnostic markers in NSCLC.

LncRNA Expression Sample Method AUC Sensitivity (%) Specificity (%) References

DLX6-AS1 Up Serum qRT-PCR 0.806 77.5 85.9 Zhang et al. (2019a)

MAGI2AS3 and ZFAS1 Down Plasma qRT-PCR 0.902 N/A N/A Luo et al. (2018)

RP5-977B1 Up Serum qRT-PCR 0.8899 82.86 84.93 Min et al. (2022)

LINC-PINT Down Serum qRT-PCR 0.873 90.9 75.8 Zhang et al. (2021a)

HEIH Up Peripheral blood qRT-PCR 0.860 72.86 95.71 He et al. (2022)

LINC00313 Up Serum qRT-PCR 0.916 78.91 90.63 Wang et al. (2022b)

LINC00173 Up Serum qRT-PCR 0.809 62.96 89.01 Yang et al. (2020)

RP11-438N5.3 Down Plasma qRT-PCR 0.814 N/A N/A Chen et al. (2020c)

TABLE 3 LncRNAs as prognostic markers in NSCLC.

LncRNA Expression The HR of lncRNA expression Prognosis (if lncRNA is
upregulated)

Function References

Univariate
analysis

Multivariate
analysis

SLC16A1-AS1 Down 3.858 3.351 Good Proliferation (−) Liu et al. (2020b)

RFPL3S Up N/A N/A Poor Malignant progression (+) Liu et al. (2020d)

LINC00504 Up 3.261 2.895 Poor Malignant progression (+) Ma et al. (2020)

ZEB2-AS1 Up N/A N/A Poor Migration (+); invasion (+) Xu et al. (2020a)

LINC00847 Up N/A 2.896 Poor Migration (+) Li et al. (2021a)

CCDC144NL-
AS1

Up N/A 2.577 Poor Proliferation (+);
migration (+)

Zhang et al.
(2021c)

AL139385 1 Up 1.317 1.254 Poor Proliferation (+);
migration (+)

Chen et al.
(2022a)

AC020978 Up 2.066 1.763 Poor Migration (+); invasion (+) Xu et al. (2021)

LINC00342 Up N/A N/A Poor Proliferation (+) Tang et al. (2019)

KCNQ1OT1 Up N/A N/A Good Proliferation (−) Sun et al. (2018)

LCAT1 Up N/A N/A Poor Proliferation (+); migration
(+); invasion (+)

Yang et al. (2019)

SNHG16 Up N/A 0.154 Poor Migration (+); invasion (+) Han et al. (2019)

MNX1-AS1 Up N/A N/A Poor Migration (+) Liu et al. (2019)

CASC15 Up 2.039 1.901 Poor Migration (+) Li et al. (2019b)

EGFR-AS1 Up N/A 1.218 Poor Proliferation (+) Xu et al. (2019)

TBULC Up N/A N/A Poor Migration (+); invasion (+) Zheng et al.
(2019)

FAM138B Down N/A 3.077 Good Proliferation (−);
migration (−)

Gao et al. (2023)
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et al., 2020). According to another study, LINC01224 may compete
with miR-2467, promoting tumor progression and increasing DDP
resistance in NSCLC (Xiao et al., 2021).

In recent years, molecular targeted therapy has emerged as a
significant approach to treat NSCIC. However, the emergence of
resistance to targeted therapies in NSCLC is inevitable. lncRNAs can
affect the formation of drug resistance mechanisms for targeted
therapy. Increasing lncRNA UCA1 expression can make NSCLC
cells more resistant to gefitinib, and the mechanism of occurrence is
that lncRNA UCA1 upregulates the expression of FOSL2 by acting
as a molecular sponge of miR-143, thus resulting in enhanced
resistance to gefitinib in NSCLC cells (Chen et al., 2020). In
addition, the lncRNA CCAT1 can reduce the expression level of
miR-218, further upregulating HOXA1 expression and
correspondingly promoting gefitinib resistance in NSCLC (Jin
et al., 2020). Drug resistance in NSCLC is correlated with EZH2,
which is the core subunit of polycomb repressive complex 2 (PRC2)
(Zhan et al., 2019). By binding to EZH2, the lncRNACASC9 inhibits
the expression of DUSP1 in gefitinib-resistant PC9/GR cells, thus
increasing the drug resistance to gefitinib (Chen et al., 2020).
LncRNA LINC00969 inhibits the activation of the NLRP3/
caspase-1/GSDMD-associated cellular pyroptosis signaling
pathway, thereby promoting gefitinib resistance in NSCLC cells
(Dai et al., 2023).

Overall, lncRNAs play a key role in drug resistance in NSCLC,
but the mechanism of drug resistance is more complex. Knockdown
or enhancement of lncRNA expression may promote drug
sensitivity in cancer cells, thus lncRNAs are promising
therapeutic targets.

6.2 LncRNAs as therapeutic target in NSCLC

A number of lncRNAs have increased or decreased expression in
NSCLC tissues. Therefore, inhibition of oncogenic lncRNAs or
promotion of anticancer lncRNAs can be one of the means of
treatment for NSCLC. Overexpression of the lncRNA
SNHG18 can stimulate NSCLC proliferation and invasion. In a
mouse model, when SNHG18-knockdown NSCLC cells are
transplanted into nude mice, tumor weight and metastatic
potential are lower than in the control group (Fan et al., 2021).
LncRNA HOXC-AS3 is connected to the occurrence of various
cancers; there is evidence that HOXC-AS3 expression is up in
NSCLC tissues and cells. Knockdown of HOXC-AS3 inhibits
tumor progression and reduces the proliferation rate of cancer
cells, and in vivo in the nude mice xenograft model, HOXC-AS3
knockdown consistently reduces tumor volume and weight
compared to controls (Su et al., 2022). In addition, Wang et al.
reported that overexpression of lncRNA ZNRD1-AS1 diminishes
the proliferation of H1299 cells, and ZNRD1-AS1 overexpressing
mice has lower tumor weights compared to the blank group, which is
the same as the results of in vitro cellular studies (Wang et al.,
2022a).

Tumor drug resistance is one of the difficulties in the therapeutic
process. Knockdown or overexpression of lncRNAs can recover the
sensitivity of cancer cells to drugs, thus improving drug efficacy. For
example, linc00665 expression is upregulated in NSCLC tissues.
When linc00665 is knocked down, the number of H1975 and

H1299 cells is greatly reduced by the same concentration of
DDP. In a mouse model, the knockdown of linc00665 also
increases the sensitivity of H1299 cells to DDP (Yang et al.,
2021). Furthermore, the lncRNA APCDD1L-AS1 expression in
Icotinib-resistant cells is also significantly elevated. Knocking
down the expression of APCDD1L-AS1 in Icotinib-resistant cells
induces a marked reduction in the protein and phosphorylation
levels of EGFR and significantly increases the reaction of lung
adenocarcinoma cells to Icotinib (Xie et al., 2021). Thus,
lncRNAs can be emerging therapeutic targets for NSCLC.

7 Conclusion

There is a high mortality rate associated with NSCLC, which is a
highly malignant tumor. The survival rate of malignant tumor
patients can be improved by early screening and diagnosis.
However, there are no effective screening methods for NSCLC at
an early stage. Researchers detected dysregulation of lncRNA
expression in NSCLC tissues. This article reviews the role of
lncRNA in regulating the progression of NSCLC and its
influence on the diagnosis, treatment, and prognosis of NSCLC.
First, lncRNAs regulate cells’ proliferation and apoptosis in three
different ways: 1) lncRNAs can act as ceRNAs and then regulate the
expression of related proteins; 2) lncRNAs cause cell division arrest
in the G1 phase, thereby affecting cell proliferation and apoptosis;
and 3) lncRNAs regulate the glycolytic pathway. As the tumor
grows, lncRNA expression abnormally contributes to the
proliferation of vascular endothelial cells by affecting the
secretion of angiogenic factors by tumor cells and regulating the
signaling of Ang/Tie2, which affects the growth and progress of
NSCLC. In addition, tumor angiogenesis is also influenced by VM.
Secondly, the metastasis and invasion of lung tumor cells are
regulated by lncRNAs, which can induce EMT and enhance the
metastasis and invasion of NSCLC. lncRNAs can also promote or
inhibit EMT by regulating the transduction of various signal
pathways. Finally, compared with the paracancerous tissue, there
is a significant upregulation or downregulation of many lncRNAs
found in tumor tissues, and their expression differences make
lncRNAs potential diagnostic markers of NSCLC. Although some
lncRNAs are effective at diagnosing NSCLC, clinical diagnosis
generally relies on a joint approach. Combining lncRNAs with
conventional tumor markers can improve diagnostic
performance. LncRNAs can make lung tumor cells resistant to
cisplatin, gefitinib, etc. Restoration of dysregulated lncRNA
expression improves cancer cell responses to chemotherapy. Gene
therapy targeting lncRNAs is a new strategy. Some lncRNAs have a
correlation with lymph node metastasis and TNM stage, suggesting
that lncRNAs can also be used as prognostic indicators. In summary,
lncRNA is linked to the onset and development of NSCLC and may
be taken as an indicator of diagnosis and prognosis.

8 Challenges and prospects

LncRNAs can exist stably in human body fluids and show
specific expression profiles in various types of NSCLC, which
provides a potential choice for the diagnosis of NSCLC. Some
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lncRNAs are expressed at opposite levels in tissue and serum, which
may be related to the sample type (tissues and serum), the
demographic feature of the study population (race, region, etc.),
and the detection methods used. It was found that the same lncRNA
is expressed to opposite degrees in different cancers, which indicates
that the potential molecular mechanism of lncRNAs in cancer
progression is more complicated. There are always differences
between the results of some in vitro experiments and clinical
phenomena because in vitro experiments cannot completely
simulate anti-tumor immunity in the human body. Therefore,
higher-quality studies are needed in the future to explore the
mechanisms of lncRNAs in NSCLC development, create
combinations of lncRNAs with higher specificity and conduct
comprehensive validation in large-scale studies. In the future,
some lncRNA-related clinical trials will be conducted to validate
the results of in vitro experiments and animal models.
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