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Objectives: This study aims to identify the key senescence genes and potential
regulatory mechanisms that contribute to the etiology of intervertebral disc
degeneration (IDD).

Method: We analyzed GSE34095 and GSE70362 datasets, identifying key
senescence-related differentially expressed genes (DEGs) in IDD using lasso
regression. Risk scores classified patients into high- and low-risk groups. We
compared pathways, functions, and immune infiltration between these groups.
Diagnostic ability was assessed using ROC curves and a nomogram predicted IDD
incidence. In single-cell dataset GSE165722, we evaluated expression of key
senescence-related DEGs.

Results: We identified 12 key senescence-related DEGs distinguishing high- and
low-risk IDD patients. Enrichment analysis revealed cellular stress response,
apoptotic signaling pathway, and protein kinase activation differences. Immune
cell analysis showed elevated eosinophils in low-risk group and increased effector
memory CD8 T, central memory CD4 T, myeloid-derived suppressor, natural
killer, monocyte, Type 1 T helper, plasmacytoid dendritic, and natural killer T cells
in high-risk group. A nomogram using AUC >0.75 genes (CXCL8, MAP4K4, MINK1,
and TNIK) predicted IDD incidence with good diagnostic power. High senescence
scores were observed in neutrophils.

Conclusion: Our diagnostic model, based on key senescence-related DEGs and
immune cell infiltration, offers new insights into IDD pathogenesis and
immunotherapy strategies.
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1 Introduction

Lower back pain is one of the most common health problems,
affecting up to 80% of people throughout their lives, causing severe
disability worldwide, and resulting in significant medical costs
(Qaseem et al., 2017). Intervertebral disc degeneration (IDD) is
the leading cause of lower back pain (Cheng et al., 2018). Current
treatments include medication, physical therapy, or surgical
interventions that can partially relieve symptoms in the lower
back and legs (Xin et al., 2022). They do not focus on replacing
nucleus pulposus loss and restoring disc structure. This can lead to
unsatisfactory results such as degeneration or recurrence of adjacent
motion segments. Early diagnosis and timely treatment of IDD can
effectively delay disease progression and significantly reduce the
incidence of disability. Therefore, screening for diagnostic genes
associated with IDD and elucidating their underlying pathogenesis
could significantly prevent and treat IDD and may provide new
avenues for the clinical treatment of IDD.

Senescence is a natural process, and there is a substantial link
between senescence and IDD, which has been identified as a key
factor in IDD (Cheng et al., 2022; Wu et al., 2022). Senescence leads
to structural, metabolic, and biomechanical changes in the
intervertebral disc that ultimately affect its function (Le Maitre
et al., 2007). The senescent cells have several key features, such
as sustained growth arrest, expression of anti-proliferative molecules
(e.g., p16, INK4a) and activation of damage sensing signaling
pathways (e.g., p38 MAPK and NF-kB) (He and Sharpless, 2017;
Patil et al., 2019; Zhang et al., 2021). This in turn leads to the release
of cytokines, chemokines, and other secreted phenotypic proteins
associated with senescence, ultimately leading to inflammation and
tissue degradation (Muñoz-Espín and Serrano, 2014). The
senescence process is accompanied by changes in the immune
microenvironment (Lanna et al., 2022). Studies have shown that
immune dysregulation, including abnormal macrophage
polarization, abnormal T-cell differentiation, abnormal expression
of B cells, and improper T-cell differentiation are significantly
associated with IDD (Song et al., 2022). Although both
senescence and immune dysregulation are present in the IDD
process, it is unclear if or how the two phenomena are linked.
Therefore, identifying the molecular mechanisms of IDD senescence
and further investigating the potential link between nucleus
pulposus cell senescence and the immune microenvironment will
provide new therapeutic concepts and alternative options for
reversing the disease to provide better clinical treatment guidance.

Although previous study has provided preliminary evidence for
the regulatory role of senescence-related genes in the development of
IDD (Xu et al., 2023), they primarily focused on the biological
functions of these genes in peripheral blood. The diagnostic value of
these genes in nucleus pulposus tissue and their relationship with
immune cells remain unclear. Thorough and comprehensive
research on senescence-related genes in the nucleus pulposus
tissue can enhance our understanding of IDD. Unlike previous
publications that relied on experimental data generation, our
research primarily focuses on meta-data analysis. We have
extensively explored senescence-related biomarkers by publicly
available datasets, including bulk and single-cell RNA sequencing
data, through machine learning. In addition, we collected nucleus
pulposus tissue samples for experimental verification of the analysis

results to improve their accuracy and reliability. This approach
allows us to assess a larger cohort and explore potential associations
across various datasets, providing a broader perspective on
IDD research.

2 Materials and methods

2.1 Bulk RNA data download

We downloaded two bulk RNA datasets (GSE34095 and
GSE70362) from the GEO database (https://www.ncbi.nlm.nih.
gov/geo) via the GEOquery package (Davis and Meltzer, 2007).
The GSE34095 dataset is from Homo sapiens, and the data platform
is GPL96, which contains six samples, including three control and
three disease samples (He et al., 2015). The GSE70362 dataset is
from H. sapiens, and the data platform is GPL17810, containing
48 samples, including 16 control and 32 disease samples (Kazezian
et al., 2015). The two datasets were standardized by limma package
(Ritchie et al., 2015), and the entire samples of both datasets were de-
batched using the sva package (Leek et al., 2012) after integrating the
two datasets. The integrated data set consisted of 54 samples,
19 control and 35 IDD samples, and were included in this study.

2.2 Single cell data pre-processing
and analysis

We downloaded single cell dataset GSE165722 from the GEO
database, which contains eight samples, namely, S1 and S2 (Grade
II), S3 and S4 (Grade III), S5 and S6 (Grade IV), and S7 and S8
(Grade V). Using the Seurat package (Hao et al., 2021), the
expression matrix of the GSE165722 dataset was created as a
Seurat object. We filtered the cells with >20% mitochondrial gene
content as well as cells with features <200 or >4,000. We normalized
the dataset’s sequencing depth using “SCTransform” to remove
mitochondrial and cell cycle effects, identifying 3,000 highly
variable genes. Principal Component Analysis (PCA) (David and
Jacobs, 2014) was applied to identify significant principal
components and visualize p-value distribution using the
Elbowplot function. 15 principal components (PCs) were selected
for t-SNE analysis to reduce dimensionality. We constructed
K-nearest neighbors based on distances in PCA space using
default parameters from the “FindNeighbors” function and
15 PC dimensions. Calling the “FindClusters” function divided
cells into 17 clusters with a resolution of 0.5. Additionally, the
“RunTSNE” function enabled dimensionality reduction for dataset
visualization and exploration in cell annotation. Finally,
AddModuleScore calculated scores for each cellular senescence.

2.3 Differential expression analysis

Differential analysis of genes in different groups was performed
using the limma package. p < 0.05 was set as the threshold for DEGs.
Where log2FC > 0 and log2FC < 0 mean they are upregulated or
downregulated in the disease, respectively. The results of the
difference analysis were presented by plotting heat maps with the
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pheatmap package (Kolde and Kolde, 2015) and volcano maps with
ggplot2 (Wickham, 2009).

2.4 Senescence-related dataset acquisition

The senescence-related dataset REACTOME CELLULAR
SENESCENCE v2023.1 was obtained from the MSigDB database
(Liberzon et al., 2015) containing 198 genes and intersected with the
DEGs obtained by differential analysis for subsequent analytical studies.

2.5 Model construction

Least absolute shrinkage and selection operator (LASSO)
regression is a machine learning algorithm commonly used to
build models today, using regularization to address the
occurrence of overfitting during curve fitting and improve the
accuracy of the model. We used the glmnet package (Simon
et al., 2011) with integrated GSE34095 and GSE70362 for model
construction with parameters set.seed 1) and family = “binomial” to
further screen for variables associated with IDD based on key
senescence-related DEGs. Finally, the risk score equation was
calculated by optimizing the expression values of the genes and
the associated regression coefficients:

Riskscore � ∑
n

i�1
coefi* exp i

The genes obtained by the LASSO algorithm were defined as key
senescence-related DEGs.

2.6 Gene Ontology and Kyoto Encyclopedia
of Genes and Genomes

The integrated GSE34095 and GSE70362 disease samples were
divided into a high-risk score group and a low-risk score
group. Differential analysis of genes in different groups was
performed using limma. p < 0.05 was set as the threshold for
DEGs. Gene Ontology (GO) analysis is a common approach for
large-scale functional enrichment studies, including biological
process (BP), molecular function (MF) and cellular component
(CC). The Kyoto Encyclopedia of Genes and Genomes (KEGG)
is a widely used database that stores information about genomes,
biological pathways, diseases, and drugs. GO analysis and KEGG
enrichment analysis of DEGs were performed using the
clusterProfiler package (Yu et al., 2012), and results with p <
0.05 were considered statistically significant.

2.7 Gene set enrichment analysis and gene
set variation analysis

To investigate the differences in biological processes between different
subgroups, based on the integrated GSE34095 and GSE70362 disease
samples, we used gene set enrichment analysis (GSEA). GSEA is an
algorithm used to evaluate the trend of distribution of genes of a
predefined gene set in a table of genes ordered by their phenotypic

correlation and thus determine their contribution to the phenotype
(Subramanian et al., 2005). Gene set variation analysis (GSVA) is a
non-parametric unsupervised analysis method that evaluates the
enrichment of gene sets in the microarray nuclear transcriptome by
converting the expression matrix of genes between samples into the
expression matrix of gene sets between samples (Hänzelmann et al.,
2013). This is used to assess whether different pathways are enriched
across samples.We downloaded the c2.all.v7.2.symbols.gmt gene set from
theMSigDB database for GSEA and GSVA analysis, and results with p <
0.05 was considered significantly enriched.

2.8 Nomogram construction

We screened genes with area under curve (AUC) > 0.7 by ROC
curves, and based on the results of multifactorial analysis, multiple
predictors were integrated and assigned according to certain
proportions to visualize the interrelationship between each
variable on outcome prediction in the form of a graph. We used
multifactorial logistic regression to predict the incidence of IDD
based on these senescence-related genes and plotted the Nomogram.

2.9 Immune cell infiltration analysis

We performed ssGSEA analysis (Supplementary Table S1) on
IDD samples based on immune cell markers by GSVA package,
estimated the composition and abundance of 28 immune cells, and
compared the differences in immune cells between high- and low-
risk groups for IDD. The Spearman algorithm was used to assess the
infiltration abundance of significant immune cells for correlation
analysis with the risk score.

2.10 MiRNA/TF-gene network construction

Networkanalyst is an online visual analysis platform for gene
expression analysis and meta-analysis (Zhou et al., 2019). We used
Networkanalyst to analyze key senescence-related DEGs associated
transcription factors (TFs) based on the JASPAR database. Key
senescence-related DEGs associated miRNAs were analyzed by the
multiMiR package (Ru et al., 2014). Based on the above results, the
correlation network was plotted using Cytoscape software (Shannon
et al., 2003).

2.11 Patient samples

Human degenerative nucleus pulposus tissues were obtained from
6 patients (4 females and 2males; age 60.33 ± 4.76 years; Grade IV) with
degenerative disc disease undergoing surgery. The control samples were
taken from 6 patients (3 females and 3 males; age 30.17 ± 7.61 years;
Grade Ⅱ) undergoing surgery due to scoliosis or thoracolumbar fracture.
The degenerative grade of NP tissues was determined using the MRI-
based Pfirrmann grading system (Pfirrmann et al., 2001). Informed
consent was obtained from patients preoperatively. This study protocol
was approved by the Ethics Committee of the Xi’an Daxing Hospital,
affiliated with Yan’an University.
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2.12 qPCR

Total RNA was extracted using the RNA extraction solution
(cat. no. G3013, Servicebio, China), and the RNA concentration
and purity were measured using a Nanodrop
2,000 spectrophotometer (Thermo Scientific, United States).
The RNA samples were reverse transcribed into cDNA using a
reverse transcription kit (cat. no. G3337, Servicebio, China), and
the cDNA was used as a template for amplifying the target genes.
The reaction was performed with 40 amplification cycles using
the following protocol: denaturation at 95°C for 30 s, annealing at
60°C for 30 s, and extension at 72°C for 60 s. Samples were
analyzed in triplicate, and the mRNA expression levels were
calculated using the 2−ΔΔCT method, with GAPDH serving as
the internal reference. The sequences of the primers are listed
in Table 1.

2.13 HE and Safranin O staining

HE staining (cat. no. G1003, Servicebio, China) and Safranin O
staining (cat. no. G1053, Servicebio, China) were performed
according to manufacturer’s instructions, and the results were
recorded under a microscope (Nikon, Japan).

2.14 Fluorescence in situ hybridization (FISH)

RNA probes were designed and obtained from Servicebio
(Wuhan, China), see Table 2 for probe details. Initially, paraffin
slices underwent dewaxing and dehydration. Next, the slides were
immersed in a boiling retrieval solution, treated with proteinase K
for digestion, and then incubated with prehybridization solution for
1 h at 37°C. Following removal of the prehybridization solution, the

TABLE 1 Primer sequences used for qPCR.

Gene Forward primer (5′-3′) Reverse primer (5′-3′)

GAPDH GGAAGCTTGTCATCAATGGAAATC TGATGACCCTTTTGGCTCCC

CABIN1 CAGCCCATTCCTTTCTTCACCT TCCTGGTAGTCCGACAAATCAATC

CDKN2B GAATGCGCGAGGAGAACAAG CATCATCATGACCTGGATCGC

CDKN2C AGGGGGGACCTAGAGCAACTTAC GGCAGGTTCCCTTCATTATCC

CXCL8 CTCTTGGCAGCCTTCCTGATTT GGGGTGGAAAGGTTTGGAGTAT

H1-5 AGGCGCCGCTAAAGCTAAG CCTTCTTAGGGCTCTTCGCC

MAP4K4 AGGCGAGAAAGATGAAACTGAG TGTTCTTTCTGCTGCTCAATCC

MAPK11 TCAGAACACGCCCGGACATA TGTCCAGCACCAGCATCCTT

MDM2 TCAATCAGCAGGAATCATCGGA TTGTGGCGTTTTCTTTGTCGTT

MINK1 CCTGAAGGAGGACTGTATCGC CCAATGAAAGTGTTCCGTCTGC

TFDP2 GATGGGAATGTCGTTTGGCC CTTCTGCATCCAAGCATAACCCT

TINF2 GGCTCACCAACCCAGGTCATA CTCTGTGGCAGGCAAGTCAA

TNIK ACTTTCATTGGAACTCCCTACTGG TCGCTGGCTGTGATTCTTTACC

TABLE 2 Probe sequences used for FISH.

Probe names Probe sequences (5′-3′)

CDKN2C GTGTGCTTCACCAGGAACTCCACCA, CAAATCCATTTTGTGCATTGACGTT, TATTGAAGA
TTTGTGGCTCCCCCAG, TCTTTCAAATCGGGATTAGCACCTC, GCATCATGAATGACAGCG

AAACCAG

CXCL8 AAATCAGGAAGGCTGCCAAGAGAGC, AAACTTCTCCACAACCCTCTGCACC, GGGGTGGAA
AGGTTTGGAGTATGTC, CGCAGTGTGGTCCACTCTCAATCAC, GGGTCCAGACAGAGCTCT

CTTCCAT

MAP4K4 TGTAATTCTTCACCAGGCACCCTTC, ACCAGCTCAAAAATCCCAGCAGGAT, CACTCCAGT
AACATGGCCTGCTCCT, GTTCACGTTCCTGCTGCCTTCTAGC, GGCCTCCTATGGTCATGC

TGTAGAG

TFDP2 GGACTCCCAATCAGAACACTTCCTG, AACGACATTCCCATCCGCTTTAGTA, GCATCCAAG
CATAACCCTTGGTTTA, GCAGCCAAATGGTTATTTGAATTGG, TGTAGGAGAAGTTCTTGC

AGCTGGG

TNIK ATCTATTTCATCCAGGCTTCGAGCC, ATGCAATCCACTCCTCTTTCAACGT, CACTTTATG
CTGGTGCAGGTGACTC, AGCTGAGCACTGACTCCAAAGTCCA, AGCACCACAAAACTCCAT

CACCAAC
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slides were exposed to probe hybridization solution in a humidity
chamber overnight at 40°C. Subsequently, the slides were washed,
signal probe hybridization solution was added, and nuclear
counterstaining with DAPI was performed according to the
manufacturer’s instructions. Finally, the slices were placed under
a fluorescence microscope (Nikon, Japan) for observation and
image capture.

2.15 Immunohistochemistry

After deparaffinization and rehydration of paraffin-embedded
tissue sections, they were blocked with 3% BSA blocking solution
(cat. no. GC305010, Servicebio, China) at room temperature for
30 min. The sections were then incubated overnight at 4°C with
primary antibodies: MAP4K4 (Rabbit, cat. no. 55247-1-AP,

FIGURE 1
Flow chart of the study.

FIGURE 2
Datasets integration and batch effect removal. (A) Box plots of gene expression levels for the combined two datasets (GSE34095 and GSE70362). (B)
Principal component analysis (PCA) plots of the combined two datasets (GSE34095 and GSE70362). (C) Box plots of gene expression levels for the two
datasets (GSE34095 andGSE70362) after removal of batch effects. (D) PCA plots of two datasets (GSE34095 andGSE70362) after removing batch effects.
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Proteintech, China), CXCL8 (Rabbit, cat. no. 17038-1-AP,
Proteintech, China), TFDP2 (Rabbit, cat. no. 11500-1-AP,
Proteintech, China), TNIK (Mouse, cat. no. 67948-1-Ig,
Proteintech, China), CDKN2C (Rabbit, cat. no. AF0620, Affinity
Biosciences, China). After washing the sections, they were incubated
with secondary antibodies (cat. no. GB23303, Servicebio, China) for
50 min. Finally, the sections were rinsed with water, counterstained
with hematoxylin, and mounted with a coverslip. The results were
examined under an optical microscope (Nikon, Japan).

2.16 Statistical analysis

All data calculations and statistical analyses were performed
using R software (https://www.r-project.org/, version 4.0.2). For the
comparison of two groups of continuous variables were analyzed by
Mann-Whitney U test (Wilcoxon rank sum test). The cut-off for
statistical significance was set at p < 0.05.

3 Results

3.1 Flow chart of the study

We merged the GSE34095 and GSE70362 datasets then
removed the batch effect. The integrated dataset was used to

identify DEGs using the limma package and intersection was
taken with senescence-related genes to identify senescence-
related DEGs associated with IDD. Key senescence-related
DEGs were identified by LASSO regression and risk scores
were established based on this. Next, IDD patients were
divided into high- and low-risk groups to compare the
differences in pathways, function, and immune cell infiltration
between the two groups. Finally, in the single-cell dataset
GSE165722, key senescence-related DEGs were scored to
evaluate their expression in IDD single-cell samples. The flow
chart is shown in Figure 1. The GEO datasets are shown in
Supplementary Table S2.

3.2 Datasets integration and batch
effect removal

We performed a preliminary merge of the GSE34095 and
GSE70362 datasets, showing the expression levels of 54 samples
with box plots (Figure 2A) and the expression distribution of
54 samples with PCA plots (Figure 2B). We removed batch effects
for the combined dataset and showed the expression levels of
54 samples using box plots (Figure 2C) and the expression
distribution of 54 samples using PCA plots (Figure 2D). The
results showed good correction with no batch effect in
the sample.

FIGURE 3
Identification of senescence-related differentially expressed genes (DEGs). (A) Volcano diagram of DEGs, red represents upregulation and blue
represents downregulation. (B)Heatmap of DEGs, red represents upregulation and blue represents downregulation. (C) Venn diagramof 26 senescence-
related DEGs.
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3.3 Identification of senescence-
related DEGs

A total of 2,122 DEGs were obtained, including 975 upregulated
and 1,147 downregulated genes, and all DEGs were displayed in a
volcano map (Figure 3A). The 30 genes with the largest log2FC and
30 with the smallest log2FC were plotted in the heat map (Figure 3B).
A total of 26 senescence-related DEGs were obtained from the
intersection of senescence-related genes and DEGs (Figure 3C).

3.4 Lasso regression to establish
senescence-related risk scores

To further identify key senescence-related DEGs for IDD, we
performed LASSO regression analysis based on 26 senescence-
related DEGs (Figure 4A) and obtained 12 key senescence-related
DEGs, including, CABIN1, CDKN2B, CDKN2C, CXCL8, H1-5,
MAP4K4, MAPK11, MDM2, MINK1, TFDP2, TINF2, and TNIK
(Figure 4B). Based on these key genes we developed a diagnostic
model. Risk score = −0.747× CABIN1 + 0.887× CDKN2B+ 1.06×
CDKN2C + 1.21× CXCL8–0.0238× H1-5 + MAP4K4×2.19–0.356×
MAPK11 + 0.935×MDM2–0.148×MINK1–0.0520× TFDP2–0.567×
TINF2–1.36× TNIK. This risk score could distinguish well between

the control and disease groups (Figure 4C). Subsequently, used
chromosome mapping, we presented the chromosomal localization
of these 12 genes (Figure 4D).

3.5 TFs and miRNAs prediction of key
senescence-related DEGs

The expression levels of the 12 key senescence-related DEGs in the
IDD and control groups were demonstrated by box plots. Five of these
genes were significantly highly expressed in IDD: CDKN2B (p < 0.05),
CDKN2C (p < 0.01), CXCL8 (p < 0.01), MAP4K4 (p < 0.001), and
MDM2 (p < 0.05). Six genes were significantly low expressed in IDD:
H1-5 (p < 0.01), MAPK11 (p < 0.05), MINK1 (p < 0.01), TFDP2 (p <
0.01), TINF2 (p < 0.05), and TNIK (p < 0.05) (Figure 5A). A total of
25 relevant miRNAs and 45 TFs were obtained through the JASPAR
database and multiMiR, and the network was mapped (Figure 5B).

3.6 Validation of key senescence-
related DEGs

To screen high-quality NP tissues for subsequent
experiments, we collected control (grade II) and IDD (grade

FIGURE 4
Lasso regression analysis. (A) Lasso regression analysis based on 26 senescence-related differentially expressed genes (DEGs). (B) Lasso regression
analysis obtained 12 key senescence-related DEGs. (C)Box plot showing risk scores for the intervertebral disc degeneration (IDD) and control groups. Red
represents the IDD group and blue represents the control group. (D) Chromosome map showing the chromosomal localization of these 12 key
senescence-related DEGs.
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IV) NP tissues using the MRI-based Pfirrmann grading system.
Grade II NP tissues exhibited high water content and appeared as
high signal intensity in T2-weighted MRI, presenting a more
gelatinous texture under macroscopic observation. In contrast,
grade IV NP tissues showed low signal intensity in T2-weighted
MRI and varying degrees of fibrotic changes when observed
macroscopically (Figure 6A). HE staining revealed distinct
characteristics of the tissues associated with increasing IDD
grade. Grade II NP cells displayed a uniformly dark-stained
extracellular matrix (ECM) with a few small vacuolated cells.
Conversely, grade IV cells exhibited a uniformly light-stained
ECM with heavily aggregated and large vacuolated cells
(Figure 6A). Safranin O staining indicated reduced levels of
proteoglycan and collagen fiber in the ECM of grade IV
tissues (Figure 6A). Immunohistochemical staining was
employed to detect the expression of P16 and P21. The results
revealed a higher expression of P16 and P21 in the IDD group,
suggesting increased cellular senescence (Figure 6A). In the
qPCR results, the expression levels of CDKN2C (p < 0.01),

MAP4K4 (p < 0.01), TFDP2 (p < 0.05), and TNIK (p < 0.01)
in the IDD group were significantly higher compared to the
control group. However, CXCL8 showed a significant decrease
(p < 0.01) in the IDD group (Figure 6B). The FISH and
Immunohistochemistry results were generally consistent with
the qPCR (Figures 6C, D).

3.7 ROC curve

We analyzed the ROC curves of key senescence-related DEGs
for identifying IDD and controls, and labeled the corresponding
AUC. AUC of CABIN1 = 0.639 (Figure 7A), AUC of CDKN2B =
0.689 (Figure 7B), AUC of CDKN2C = 0.746 (Figure 7C), AUC of
CXCL8 = 0.753 (Figure 7D), AUC ofH1-5 = 0.740 (Figure 7E), AUC
of MAP4K4 = 0.880 (Figure 7F), AUC of AUC of MAPK11 = 0.698
(Figure 7G), AUC ofMDM2 = 0.701 (Figure 7H), AUC ofMINK1 =
0.771 (Figure 7I), AUC of TFDP2 = 0.731 (Figure 7J), AUC of
TINF2 = 0.680 (Figure 7K) and AUC of TNIK = 0.783 (Figure 7L).

FIGURE 5
Transcription factors (TFs) and miRNAs prediction of key senescence-related differentially expressed genes (DEGs). (A) Box plots showing the
expression levels of CABIN1, CDKN2B, CDKN2C, CXCL8, H1-5, MAP4K4, MAPK11, MDM2, MINK1, TFDP2, TINF2, and TNIK in the intervertebral disc
degeneration (IDD) and control groups. Red represents the IDD group, blue represents the control group. *p < 0.05, **p < 0.01, ***p < 0.001. (B)
Interaction network diagram showing 25 associated miRNAs and 45 TFs for 12 key senescence-related DEGs.
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3.8 Nomogram

The incidence of IDD was predicted by constructing models
using genes with AUC >0.75 (CXCL8, MAP4K4, MINK1, and
TNIK), performing multifactorial logistic regression and

plotting nomogram (Figure 8A), and the model was
evaluated. We plotted the ROC curve (AUC = 0.905)
(Figure 8B) and the cxalibration plot of the prediction
model, suggesting that the prediction model has good
predictive power for IDD (Figure 8C).

FIGURE 6
Validating key senescence-related DEGs. (A) Representative images were obtained using magnetic resonance imaging, and NP tissues obtained
from patients with intervertebral disc degeneration were stained with HE, Safranin O, and immunohistochemical staining for P16 and P21. (B) qPCR
validate the expression levels of CABIN1, CDKN2B, CDKN2C, CXCL8, H1-5, MAP4K4, MAPK11, MDM2, MINK1, TFDP2, TINF2, and TNIK in IDD and control
nucleus pulposus tissue. Red represents the IDD group, blue represents the control group. *p < 0.05, **p < 0.01. Representative images of CDKN2C,
MAP4K4, TFDP2, TNIK, and CXCL8 expression in NP tissue detected by FISH (C) and Immunohistochemistry (D).
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3.9 GO and KEGG enrichment analysis

We identified 2,368 DEGs in the high- and low-risk groups for
IDD and performed GO and KEGG enrichment analyses. These
DEGs mainly affect biological processes such as cellular response to
chemical stress, extrinsic apoptotic signaling pathway, and
activation of protein kinase activity (Supplementary Figure S1A),
molecular functions such as protein heterodimerization activity,
transcription coactivator activity and small GTPase binding
(Supplementary Figure S1B) and cellular components such as
proteasome complex, endopeptidase complex, and proteasome
accessory complex (Supplementary Figure S1C). Pathways such
as pathways of neurodegeneration−multiple diseases,
amyotrophic lateral sclerosis, and Alzheimer’s disease
(Supplementary Figure S1D). Detailed information about the
significantly enriched GO and KEGG categories is provided in
Supplementary Tables S3, S4.

3.10 GSEA and GSVA enrichment analysis

We performed a GSEA analysis (Supplementary Table S5) to
further analyze the differences between the high- and low-risk

groups for IDD. Among them, KEGG SYSTEMIC LUPUS
ERYTHEMATOSUS (P.adj = 2.4e-06) (Figure 9A), KEGG
TERPENOID BACKBONE BIOSYNTHESIS (P.adj = 0.011)
(Figure 9B) and KEGG RIBOSOME (Figure 9C) (P.adj =
0.028) were significantly enriched in the low-risk group. KEGG
METABOLISM OF XENOBIOTICS BY CYTOCHROME P450
(P.adj = 1.1e-03) (Figure 9D), KEGG PROTEASOME (P.adj =
2.4e-04) (Figure 9E), KEGG STEROID HORMONE
BIOSYNTHESIS (P.adj = 1.6e-04) (Figure 9F) were
significantly enriched in the high-risk group. We also
performed GSVA analysis and drew a heat map showing the
20 most relevant KEGG pathways (Figure 9G). The pathways
KEGG LIMONENE AND PINENE DEGRADATION and KEGG
TERPENOID BACKBONE BIOSYNTHESIS were significantly
enriched in the low-risk group and the pathways KEGG
MTOR SIGNALING PATHWAY and KEGG UBIQUITIN
MEDIATED PROTEOLYSIS were significantly enriched in the
high-risk group. Figure 9H shows the 20 most relevant GO
functions, GO INTERLEUKIN 10 SECRETION was
significantly enriched in the low-risk group, GO POSITIVE
REGULATION OF ERAD PATHWAY and GO PROTEIN
LOCALIZATION TO CHROMATIN were significantly
enriched in the high-risk group.

FIGURE 7
Receiver operating characteristic (ROC) curve. (A) ROC curve of CABIN1. (B) ROC curves of CDKN2B. (C) ROC curves of CDKN2C. (D) ROC curve of
CXCL8. (E) ROC curves of H1-5. (F) ROC curve of MAP4K4. (G) ROC curve of MAPK11. (H) ROC curves of MDM2. (I) ROC curve of MINK1. (J) ROC curve of
TFDP2. (K) ROC curve of TINF2. (L) ROC curves of TNIK.
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3.11 Immune infiltration analysis

We used ssGSEA to calculate the levels of 28 immune cell
infiltrates in patients in the high- and low-risk groups for IDD,
plotted a heat map for display (Figure 10A), and plotted a box plot
comparing the differences in immune cell infiltration levels between
patients in the high-risk and low-risk groups. Nine immune cells
were significantly different, with eosinophils being significantly
elevated in patients in the low-risk group (p < 0.05); Effector
memory CD8 T, central memory CD4 T, myeloid-derived
suppressor cells (MDSCs), natural killer, monocyte, type
1 T helper cell, plasmacytoid dendritic cell, and natural killer
T cells were significantly elevated in patients in the high-risk
group (p < 0.05) (Figure 10B). Subsequently, we calculated the
correlation between the abundance of immune cell infiltration and
the risk score. Eosinophils were negatively correlated with the risk
score (cor = −0.34, p = 0.048) (Figure 10C); Effector memory
CD8 T cells were positively correlated with risk score (cor =
0.51, p = 0.0021) (Figure 10D); Central memory CD4 T cells
were positively correlated with risk score (cor = 0.52, p = 0.0016)
(Figure 10E), MDSCs were positively correlated with risk score
(cor = 0.30, p = 0.079) (Figure 10F); Natural killer cells were

positively correlated with risk score (cor = 0.34, p = 0.048)
(Figure 10G); Monocytes were positively correlated with risk
score (cor = 0.38, p = 0.042) (Figure 10H), Type 1 T helper cells
were positively correlated with risk score (cor = 0.43, p = 0.010)
(Figure 10I); Plasmacytoid dendritic cells were positively correlated
with risk score (cor = 0.30, p = 0.084) (Figure 10J); Natural killer
T cells were positively correlated with risk score (cor = 0.34, p =
0.046) (Figure 10K).

3.12 GSE165722 single-cell analysis

We performed single-cell data analysis on eight IDD samples
from GSE165722 and divided the cell population into 16 clusters
using tSNE analysis (Figure 11A), and each cluster was annotated by
markers of the cells and plotted in bubble plots for display
(Figure 11B). The cell cluster was divided into B cells, nucleated
erythrocytes, macrophages, neutrophils, myeloid cells, myeloid
progenitor cells and T or NK cells according to the results of cell
annotation (Figure 11C), and a proportional histogram was drawn
to show the proportion of cells in these eight IDD
samples (Figure 11D).

FIGURE 8
Clinical prediction model. (A) Nomogram plots based on CXCL8, MAP4K4, MINK1, and TNIK expression to identify intervertebral disc degeneration
(IDD) and controls. (B) Receiver operating characteristic (ROC) curves of clinical prediction models. (C) Calibration plot of the clinical prediction model.
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3.13 GSE165722-based senescence scoring

Senescence scores were calculated for individual cells (B cells,
nucleated red blood cells, macrophages, neutrophils, myeloid
cells, myeloid progenitor cells, and T or NK cells) based on key
senescence-related DEGs (CABIN1, CDKN2B, CDKN2C, CXCL8,
H1-5, MAP4K4, MAPK11, MDM2, MINK1, TFDP2, TINF2, and
TNIK) using the AddModuleScore function (Figure 12A). Using
the calculated senescence score to plot tSNE, we found that the
senescence score was significantly highly expressed in
neutrophils (Figure 12B). We show the senescence scores of
these eight IDD samples using box plots (Figure 12C) and that
IDD patients with IV/V classification have lower senescence
scores relative to IDD patients with II/III classification. This

result suggests that these genes may play a role in neutrophils in
IDD (Figure 12D).

4 Discussion

IDD is the most common cause of lower back pain (Cheng et al.,
2018). The pathophysiological mechanisms of IDD are complex and
not fully understood. IDD is closely associated with senescence.
Therefore, it is crucial to explore the key senescence-related genes
and their pathogenic mechanisms to provide an experimental and
theoretical basis for the repair of IDD.

In this study, 12 key senescence-related DEGs were identified. A
risk score was established based on this, which could distinguish well

FIGURE 9
Gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA). (A–C) KEGG SYSTEMIC LUPUS ERYTHEMATOSUS (A), KEGG
TERPENOID BACKBONE BIOSYNTHESIS (B), KEGG RIBOSOME (C)were significantly enriched in the low-risk group. (D–F) KEGG CELL CYCLE (D), KEGG
DNA REPLICATION (E), KEGG MISMATCH REPAIR (F) were significantly enriched in the high-risk group. (G) Heat map showing the 20 most significantly
different Kyoto Encylopedia of Genes and Genomes (KEGG) pathways in the high- and low-risk groups. Red and blue represent pathways with high
and low expression in that group, respectively. (H) Heat map showing the 20 most significantly different Gene Ontology (GO)-related functions in the
high- and low-risk groups. Red represents pathways with high expression in that group, blue represents pathways with low expression in that group.
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between the control and IDD groups. In addition, a nomogram for
predicting IDD prevalence was constructed by selecting genes with
AUC >0.75 (CXCL8,MAP4K4,MINK1, and TNIK). The ROC curve
and the calibration plot suggest that the nomogram has good
predictive power for IDD. Calcineurin upregulation was observed
in hypoxic nucleus pulposus cells (Huang et al., 2020). CABIN1, a
natural calcineurin antagonist, is speculated to play a significant role
in IDD. CDKN2B and CDKN2C regulate the cell cycle and are
closely linked to cellular senescence (Gagrica et al., 2012; Park et al.,
2023). These findings suggest that CDKN2B and CDKN2C could be

potential targets for IDD. However, further experiments are needed
to confirm the above hypothesis. CXCL8 plays a role in neurogenic
pain caused by disc herniation, with its expression correlating to the
severity of degenerative tissue changes in the nucleus pulposus
(Phillips et al., 2013; Pedersen et al., 2015). MDM2 is highly
expressed in degenerated intervertebral discs (Wang et al., 2021).
Our study identified significant upregulation of CXCL8 and
MDM2 expression in IDD, consistent with previous findings.
Prior research demonstrates significant overexpression of
MAPK11 in IDD (Yang et al., 2016). Conversely, our study

FIGURE 10
Risk score and immune cell infiltration. (A) Heat map showing the abundance of 28 immune cell infiltrates in intervertebral disc degeneration (IDD).
(B) Box plot showing the difference in immune infiltration levels between high- and low-risk groups, with blue and red representing low- and high-risk
groups, respectively. (C) Correlation analysis of eosinophil and risk scores. (D) Correlation analysis of effector memory CD8 T cells and risk scores. (E)
Correlation analysis of central memory CD4 T cells and risk scores. (F) Correlation analysis between myeloid-derived suppressor cells (MDSCs) and
risk score. (G) Correlation analysis between natural killer cells and risk score. (H) Correlation analysis of monocytes and risk score. (I) Correlation analysis
between Type 1 T helper cells and risk score. (J) Correlation analysis between plasmacytoid dendritic cells and risk score. (K) Correlation analysis of
natural killer T cells and risk score.
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suggests downregulation of MAPK11. Further clinical samples and
cellular experiments are required to validate MAPK11 expression in
IDD. No prior research has examined the role of H1-5 in IDD. Our
study discovered low expression levels of H1-5, highlighting its
potential as a promising molecular target for IDD. miR-547-3p
regulates inflammatory cytokines by targeting MAP4K4, alleviating
neuropathic pain from lumbar disc herniation (Yao et al., 2022).
MINK1 and TNIK are associated with senescence, suggesting their
potential role in IDD (Reizis, 2019; Yu et al., 2020). Our findings
demonstrate downregulation of TFDP2 and TINF2 in IDD.
However, their roles in IDD have not been reported and require
further investigation.

To further investigate the biological function and pathway
differences between patients at different risks, we performed
functional and pathway enrichment analysis. The results of this
study showed that the two groups of patients differed mainly in
cellular response to chemical stress, extrinsic apoptotic signaling
pathway, activation of protein kinase activity, and transcription
coactivator activity. Oxidative stress has been confirmed as a
significant contributor to IDD, with excessive reactive oxygen
species causing cellular oxidation and chemical stress, leading to
apoptosis of functional disc cells and hastening degeneration

(Lin et al., 2020). Protein kinases are critical regulators of cellular
function, governing multiple intracellular signaling pathways to
maintain normal physiological cell activity (Kupka et al., 2020; Du
et al., 2022). DNA-binding transcription factors interact with co-
activator complexes to enhance gene expression (Dietrich et al., 2017).
Mechanism-sensitive transcriptional coactivators MRTF-A and YAP/
TAZ play a role in regulating the phenotype of nucleus pulposus cells
through cell shape modulation (Fearing et al., 2019). IL-10 secretion
was prominently enriched in the low-risk group, while the high-risk
group exhibited significant enrichment in the mTOR pathway and
positive regulation of ERAD pathways. Previous research has
indicated that IL-10 delays IDD by inhibiting the p38 MAPK
pathway, suggesting its protective role in IDD, consistent with our
study findings (Ge et al., 2020). ERAD is the primary mechanism for
clearing misfolded proteins from the endoplasmic reticulum and has
potential as a target for IDD treatment (Wen et al., 2021). Recent
studies demonstrate the involvement of mTOR signaling in regulating
intervertebral disc cell functions like oxidative stress, inflammation,
cellular senescence, and apoptosis (Chen et al., 2023). Further
investigation is warranted to explore the potential of targeting
mTOR signaling and promoting ERAD pathways as molecular
interventions for IDD.

FIGURE 11
GSE165722 single-cell sequencing analysis. (A) Reduced-dimensional cluster analysis divides cells into 16 clusters and presents them with
t-distributed stochastic neighbor embedding (t-SNE) plots. (B) Cellular annotation heat map showing the expression levels of markers for 16 clusters. (C)
Annotation of 16 clusters containing 7 cell types: B cells, nucleated erythrocytes, macrophages, neutrophils, myeloid cells, myeloid progenitor cells, and T
or NK cells. (D) Histogram of cell proportions, where the horizontal coordinates represent cell proportions and the vertical coordinates represent
sample names.
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Although there have been some reports on IDD and the immune
microenvironment (Saberi et al., 2021; Wang et al., 2021), the
relationship between these immune cells and genes remains
unknown. High eosinophil levels were found in the low-risk
group, with a negative correlation between eosinophil infiltration
and the risk score. Effector memory CD8 T, central memory CD4 T,
MDSC, natural killer cells, monocyte, type 1 T helper, plasmacytoid
dendritic, and natural killer T cells were significantly elevated in the
high-risk group of patients, and their infiltration abundance was all
positively correlated with the risk score. We discovered that
eosinophil abundance is protective in IDD. However, additional
research on eosinophils in IDD is required to confirm their role.
Plasmacytoid dendritic cells (pDCs) are implicated in IFN-
producing diseases (Li et al., 2019). However, the role of pDCs in
IDD development has not been reported. Our study found
significantly elevated pDC levels in the high-risk group,
highlighting the need for further investigation on the pDC-IDD
interaction. Studies have shown increased infiltration of CD8+ and
CD4+ T cells in IDD, leading to exacerbation of the inflammatory
response (Li et al., 2020; Lan et al., 2022). MDSCs were significantly
enriched in severely degenerated nucleus pulposus tissue (Tu et al.,
2022). In vitro assays demonstrated that NK cells and macrophages
have immune function in the early stages of IDD (Stich et al., 2015).
There is evidence of monocyte infiltration occurring during the early
degenerative stages (Li et al., 2023). Research has shown that in IDD,
activated T cells predominantly differentiate into Th1, Th2, and
Th17 subsets, with Th1 regulating macrophage involvement in IDD
(Francisco et al., 2022). The above studies suggest that patients with

IDD of different degenerative periods and degrees have different
patterns of immune cell infiltration, which is supported by our
findings. These results further deepen the understanding that
immune cell infiltration has on different functions in patients
with different risks of IDD.

Senescent cells form a senescence associated secretory
phenotype (SASP), which induces inflammation, recruits immune
cells (such as macrophages, natural killer cells, and neutrophils), and
spreads senescence to other cells, thus exerting long-range effects on
surrounding cells and tissues (Kale et al., 2020). Through single cell
sequencing analysis, we found that the senescence score was
significantly high in neutrophils. Neutrophils are typically the
first immune cells to arrive at the site of inflammation and
respond to bacterial infections. IL-8, as a major SASP cytokine,
attracts neutrophils and stimulates their release of antimicrobial
granules (Prata et al., 2018). Lagnado et al. (2021) showed that
neutrophils can trigger senescence in neighboring cells by delivering
reactive oxygen species. Neutrophils show a strong correlation with
cellular senescence, indicating potential benefits in countering
neutrophil-induced senescence for aging and age-related diseases.
This aligns with our findings. Further research is needed to explore
the interaction between senescence-related genes and neutrophil
infiltration in IDD.

In contrast to previous studies, our research encompasses a
comprehensive exploration of mRNA, miRNA, and TFs, enabling a
more in-depth understanding of the molecular mechanisms
underlying IDD. This approach allows for an extensive
examination of gene features and potential regulatory networks

FIGURE 12
Senescence score based GSE165722. (A) AddModuleScore calculated senescence score. Violin diagram of different cell expression. (B) Senescence
score distributed stochastic neighbor embedding (t-SNE). Blue represents high scores, while white represents low scores. (C) Box plots showing the
senescence scores of different samples in GSE165722. (D) Box plots showing senescence score for different grades of intervertebral disc degeneration
(IDD), with red representing grade II/II and blue representing grade IV/V.
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related to IDD, providing a unique contribution in comparison to
studies that solely concentrate on mRNA. Furthermore, we
employed PCR, in situ hybridization, and immunohistochemistry
to experimentally validate diagnostic markers at both the
transcriptional and protein levels. This rigorous approach
enhances result reliability and provides valuable confirmation for
our findings. Finally, single-cell sequencing analysis found that
neutrophils had a very high senescence score, indicating that
senescence-related genes may play a role in neutrophils in IDD,
further deepening the mechanism research. This methodological
difference allows for a more comprehensive examination of gene
features and potential regulatory networks associated with IDD,
offering new insights into the molecular mechanisms underlying
the disease.

Through experimental verification and analysis, we observed
discrepancies in the expression trends of certain genes compared to
the preliminary analysis. These inconsistencies may be attributed to
technical limitations, sample heterogeneity, disease complexity, and
small sample size. Technical limitations arise from inherent errors and
variability associated with qPCR, which can lead to different expression
trends. Sample heterogeneity, including variations in age, gender,
disease severity, and treatment status, can influence gene expression
and contribute to divergent trends. The complexity of intervertebral disc
degeneration (IDD) involves multiple regulatory mechanisms, resulting
in varying gene expression among patients. Additionally, the limited
sample size limits the accuracy and reliability of our findings, leading to
unstable and inconsistent results.

There are some limitations in this study. First, although we have
conducted validation using nucleus pulposus tissue, further
biological experiments are needed to confirm the clinical value of
this study due to the small sample size. In addition, the sample size of
this study was limited due to the lack of high-quality datasets, and
the analysis results may be biased. Therefore, in future studies, we
will continue to expand our sample size and conduct basic
experiments to validate our results for better clinical application.

In summary, this study has developed a diagnostic model that
significantly associates immune cell infiltration with IDD based on
key senescence-related DEGs. Early screening and effective
prevention of high-risk populations from the perspective of
senescence-related genes will have a profound impact on the
management of IDD.
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