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Exhaled breath analysis, with particular emphasis on volatile organic compounds,
represents a growing area of clinical research due to its obvious advantages over
other diagnostic tests. Numerous pathologies have been extensively investigated
for the identification of specific biomarkers in exhalates through metabolomics.
However, the transference of breath tests to clinics remains limited, mainly due to
deficiency in methodological standardization. Critical steps include the selection
of breath sample types, collection devices, and enrichment techniques. GC-MS is
the reference analytical technique for the analysis of volatile organic compounds
in exhalates, especially during the biomarker discovery phase in metabolomics.
This review comprehensively examines and compares metabolomic studies
focusing on cancer, lung diseases, and infectious diseases. In addition to
delving into the experimental designs reported, it also provides a critical
discussion of the methodological aspects, ranging from the experimental
design and sample collection to the identification of potential pathology-
specific biomarkers.
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1 Introduction

1.1 Volatile organic compounds

Volatile organic compounds (VOCs) are small molecules (MW <500 Da) with low
boiling points and high vapor pressures at ambient temperature. The profile of VOCs
released by an organism is called the volatilome, reflecting the metabolic state and playing
essential ecological and regulatory roles (Mansurova et al., 2018; Netzker et al., 2020;
Sidorova et al., 2021). In humans, VOCs are released through breath, skin, feces, urine, sweat,
and saliva, among others (Drabińska et al., 2021), and their origin can be endogenous and
exogenous (Pleil et al., 2013). Microorganism-derived VOCs, which include symbionts,
commensals, and pathogens, should be considered endogenous since they play significant
roles in human health (De Vos et al., 2022).
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1.2 Breath test along the history

The origin of the breath test can be traced back to ancient
Greece. Hippocrates of Kos (460–370 BC) described specific types of
odors associated with physiological imbalance, such as fetor
hepaticus for liver dysfunction, fetor oris for halitosis, the fruity
and sweet odor of patients with uncontrolled diabetes, the urine-like
smell of kidney failure, and the putrid stench of lung abscess.
Paracelsus, in the 16th century, further emphasized the link
between “bad” breath and pathology (Fortes et al., 2017).

In the 18th century, Antoine Lavoisier discovered the role of
oxygen in combustion and understood the respiratory physiology in
animals (Karamanou and Androutsos, 2013). That was the origin of
capnography and modern biochemistry. The sensitive detection of
VOCs became possible with the introduction of colorimetry in the
mid-19th century. Ethanol was isolated from breath by Francis E.
Anstie, and acetone was found increased in the breath of diabetes
mellitus patients by A. Nebelthau (Phillips, 1992).

Discoveries made in the 20th century are (Amann et al., 2014):
mercaptans were detected in the breath of severe liver disease
patients by Davidson (1949), connecting them to the fetor
hepaticus described by Hippocrates of Kos; acetonitrile was
detected in the breath of smokers by McKee et al. (1962);
methanol was found in human breath (Eriksen and Kulkarni,
1963); volatile fatty acids were reported in patients with cirrhosis
(Chen et al., 1970); ammonia was measured spectrometrically by
Hunt and Williams (1977); and dimethyl- and trimethylamine were
detected in the breath of end-stage renal disease patients (Simenhoff
et al., 1977).

The turning point came when Pauling et al. (1971) published a
pioneering study using gas–liquid partition chromatography to
analyze body fluids and breath to investigate the influence of diet
on human microbiota and health. This study detected 250 VOCs in
human breath, offering promising prospects for further research in
the field.

1.3 Breath test and clinical applications

Breath samples are particularly valuable for VOCs analysis. The
gaseous fraction contains over 1,000 VOCs, with acetone and
isoprene being the most abundant (Kuo et al., 2020; Drabińska
et al., 2021).

Breath tests aim to distinguish between healthy and pathological
states by analyzing exhaled breath VOC profiles, identifying
pathology-specific compounds and elucidating their biochemical
origin. Compared to routine diagnostic methods, they offer several
advantages: they are non-invasive, cost-effective, and fast and easy to
perform, have an unlimited sample size, and can be safely and
repeatedly collected (Sharma et al., 2023). Despite their simplicity, to
date, just a few tests are used in clinical practice, such as the
fractional exhaled nitric oxide (FeNO) test for asthma diagnosis,
the 13C-urea breath test for Helicobacter pylori infection, the
hydrogen/methane test to detect lactose and/or fructose
intolerance, also to detect small intestine bacterial overgrowth,
standard capnography based on monitoring CO2 partial pressure
levels during anesthesia and intensive care, and the alcohol breath

test used by the police (Simrén and Stotzer, 2006; Buszewski et al.,
2007, 2013).

Although many studies propose potential biomarkers for
various pathologies, the expected clinical application of breath
tests has not progressed as expected (Buszewski et al., 2007;
Sharma et al., 2023). Additionally, the link between potential
biomarkers and specific pathologies is not clear (Haick et al.,
2014; Zou et al., 2022).

1.4 Major sources of endogenous VOCs

Oxidative stress (OS) and cytochrome P450 (CYP) enzymes are
the main sources of endogenous VOCs. OS damages cellular
components, such as phospholipids, proteins, and DNA, thus being
involved in the development of many pathological conditions such as
cancer, inflammation, and aging. Lipid peroxidation, especially of
polyunsaturated fatty acids (PUFAs), is a significant source of
VOCs. The breakdown of lipid peroxides produces a wide range of
compounds, such as alkanes, alkenes, alcohols, aldehydes, carboxylic
acids, esters, epoxides, and furans (Calenic et al., 2015; Ratcliffe
et al., 2020).

CYP enzymes participate in reactive oxygen species (ROS)
generation and lipid peroxidation, affecting the oxidation–reduction
balance and OS, therefore also contributing to VOC generation. CYP
enzymes are found in various tissues, with higher levels in the liver and
enterocytes (Murray et al., 2009; Veith and Moorthy, 2018;
Behrendorff, 2021).

1.5 VOCs and exhaled breath

As seen in Figure 1, almost 1,000 articles have been published
with the aim of finding potential biomarkers and/or therapeutic
targets for various pathologies. Lung cancer has been extensively
studied (Antoniou et al., 2019; Janssens et al., 2020), although other
cancers, pulmonary pathologies [e.g., asthma, chronic obstructive
pulmonary disease (COPD), and obstructive sleep apnea (OSA)],
gastrointestinal pathologies (e.g., Crohn’s and inflammatory bowel
pathologies), diabetes, and infectious diseases (e.g., viral infections,
tuberculosis, and invasive aspergillosis) have also been investigated
(Sethi et al., 2013; Markar et al., 2015; Van Der Schee et al., 2015;
Acharige et al., 2018; Saasa et al., 2018; Hanna et al., 2019; Ghosh
et al., 2020; Ratiu et al., 2020). The Human Breathomics Database
(HBDB) created by Kuo et al. (2020) is a consequence of the
relevance of the topic, gathering information on VOCs detected
in healthy and pathological subjects.

1.6 Exhaled breath sampling

The average human expiratory volume is 500 mL, comprising
three portions: dead space air, air from the airways and alveoli, and
alveolar breath. Capnography can monitor the respiratory cycle, as
the CO2 level shows different trends in each portion. Consequently,
breath samples can be classified into three types: mixed breath
(containing the three portions), late expiratory breath (excluding
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dead space air), and alveolar breath (containing only the last portion
of the expiration) (Beauchamp and Miekisch, 2020).

There are two types of breath analysis: online and offline. Online
provides fast results and allows the volatilome to be monitored with
minimal sample manipulation. Nevertheless, offline analysis
(storing the sample for subsequent analysis) is the most widely
used, as it enables sampling at different locations (Sola-Martínez
et al., 2022). Sampling, transport, and storage are critical in the
offline analysis of gas samples, since the samples may suffer from
possible losses, adsorption, and artifact formation (Alonso and
Sanchez, 2013). Therefore, the correct choice of sampling
methodology is crucial.

Breath sampling methods can be categorized according to the
type of sample collected. Devices employed for mixed breath include
containers and bags with a valve system to prevent re-breathing,
such as Tedlar® and Mylar bags, sorbent tubes, canisters, sampling
tubes/bulbs, and the Pneumopipe device (Pennazza et al., 2014;
White and Fowler, 2019). Although these devices are simpler to
use, they may lead to losses, diffusion, adsorption onto the sampling
device material, and potential contamination, especially with
reactive VOCs (Miekisch et al., 2012; Tang et al., 2015; Beale
et al., 2016). In particular, Tedlar® bags emit contaminants like
N,N-dimethylacetamide, phenol, carbonyl sulfide, and carbon
disulfide. To preserve sample integrity, storage time should be
minimized, and analysis is recommended within 10 h
(Beauchamp et al., 2008; Mochalski et al., 2009).

For collecting late expiratory or alveolar breaths, traditional
sampling devices present some adaptations, such as a T-shaped
mouthpiece, a spirometer system, and CO2 and pressure sensors
(Alonso and Sanchez, 2013; Tang et al., 2015). CO2 sensors are
commonly used for alveolar breath sampling because CO2

concentrations are highest and constant in the alveolar phase
(Lawal et al., 2017). Various devices are available for this
purpose, either collecting a final fixed volume, based on the
Haldane–Priestly approach, or using CO2 and pressure sensors:
BioVOC®, RTubeVOC, QuinTron AlveoSampler, ReCIVA, the

adaptive breath sampler (ABS), breath collection apparatus
(BCA), and SOFIA sampler (Phillips, 1997; Basanta et al., 2007;
Beale et al., 2016; White and Fowler, 2019).

1.7 Analytical platforms: GC-MS

The concentrations of VOCs in exhalates range from parts-
per-million (ppmv) to parts-per-trillion (pptv), requiring highly
sensitive analytical techniques to detect these compounds.
Analytical platforms used for online and offline analysis
include laser spectrometry, selected ion flow tube-mass
spectrometry (SIFT-MS), proton transfer reaction-mass
spectrometry (PTR-MS), secondary electrospray ionization-
mass spectrometry (SESI-MS), ion molecule reaction-mass
spectrometry (IMR-MS), and ion mobility spectrometry
(IMS). These techniques perform fast analysis and present
high sensitivity, although they involve high costs and/or
require skilled technicians. An alternative method, also
emerging as a point-of-care tool, electronic noses (E-nose)
combine selective electronic sensors, offering rapid analysis
and affordability. Basically, E-noses are used to detect
patterns between the samples, which are further resolved
through statistical methods and machine learning. Other
online approaches such as optical/laser absorption
spectroscopy-based methods detect small molecules with
narrow adsorption lines, commonly used for acetone analysis.
Additionally, compound identification is limited, and no
accepted standards ensure interoperability/normalization of
methodologies. A promising approach utilizes nanomaterial-
based VOC/gas sensors, which offers a wider dynamic
detection range and high selectivity; however, some
challenges include receptor immobilization compromising
functionality, potentially irreversible reactions between VOCs
and the receptor (due to high selectivity), and a reduced
likelihood of VOC–receptor interaction due to the small

FIGURE 1
Results searching in PubMed using the terms: (volatile organic compounds) AND (exhaled breath).

Frontiers in Molecular Biosciences frontiersin.org03

Bajo-Fernández et al. 10.3389/fmolb.2023.1295955

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1295955


surface area of nanoscale elements (Buszewski et al., 2013;
Bruderer et al., 2019; Wojnowski et al., 2019; Sharma
et al., 2023).

GC-MS is a mature technique that is considered the “gold
standard” for VOC analysis in exhaled breath (De Lacy Costello
et al., 2014; Drabińska et al., 2021). It offers high sensitivity and
reproducibility, and the ability to identify and elucidate unknown
compounds, especially with high-resolution instruments (Sola-
Martínez et al., 2022; Sharma et al., 2023). In addition to
requiring an offline approach such as a pre-concentration step,
GC-MS applicability may be hampered by its high costs, complex
and time-consuming sampling, requirement for standardization and
trained personnel, and inapplicability for online analysis (Xu et al.,
2016). Nonetheless, its application to the clinical setting is valuable
due to its capabilities in biomarker discovery.

1.8 Sample pre-concentration strategies

Exhaled breath samples, especially mixed breath, require
enrichment before offline analysis due to low VOC concentration
and high water vapor content. Pre-concentration methods usually
include two consecutive steps, consisting of trapping VOCs in
sorbents followed by their release via thermal desorption. Three
main techniques especially suited for GC are used (Figure 2): solid-
phase microextraction (SMPE), thermal desorption tubes (TD), and
needle-trap devices (NTDs) (Lawal et al., 2017; Sola-Martínez
et al., 2022).

SPME (Figure 2A) was first applied to human breath by Grote
and Pawliszyn (1997). Equilibrium is established during sampling
based on analyte and sorbent physicochemical properties within the
fiber (Beauchamp and Miekisch, 2020). The fiber, coated usually
with polydimethylsiloxane (PDMS), Carboxen (Car), or
divinylbenzene (DVB), can also have a combination of coatings

(Car and/or DVB embedded into PDMS) for a wider chemical
species extraction (Trujillo-Rodríguez et al., 2020). Moreover,
derivatization reactions can be performed by doping the fiber to
increase the affinity of the analyte to the coating (Vas and
Vékey, 2004).

TD (Figure 2B) allows longer periods of storage and ease of
transport without affecting the sample. The device, composed of a
stainless steel or a glass tube, contains sorbent materials like organic
polymers (e.g., Tenax TA), graphitized carbon (e.g., Carbopack X) or
carbon molecular sieves (e.g., Carboxen). TD can have single- or
multi-bed sorbents, with the latter covering a wider range of analytes,
but compromising reproducibility due to analyte–sorbent interactions
(Lawal et al., 2017; Beauchamp and Miekisch, 2020; Sola-Martínez
et al., 2022).

NTD (Figure 2C) is less common but shares similarities with
SPME and TD. It uses a needle-shaped device filled with sorbent
materials to capture compounds by drawing breath through the
needle. Similar to SPME, NTD requires a small sample volume,
although the sensitivity is volume dependent as in TD (Trefz et al.,
2012). Storage and transportation are also similar to that of TD
(Lawal et al., 2017).

1.9 Metabolomics

Metabolomics has gained significant attention in clinical
research, providing insights into the pathological pathways of
various pathologies. These studies can be broadly categorized
into two approaches: untargeted and targeted. Untargeted
metabolomics is the non-biased approach, which aims to
study as many metabolites as possible to discover changes
among the groups of samples, while targeted metabolomics
focuses on specific metabolites, offering better sensitivity and
specificity. Combining both approaches allows for hypothesis

FIGURE 2
Schematic representation of the three main pre-concentration techniques. (A) Solid-phase microextraction (SPME). (B) Thermal desorption tube
(TD). (C) Needle-trap device (NTD). Created with Biorender.com.
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generation (untargeted) and the validation of findings (targeted).
Workflows and methodologies for both approaches have subtle
differences (Patti et al., 2012).

2 Objectives and literature search

This review aims to identify potential VOC biomarkers that are
consistent across different pathologies and to consolidate and
discuss the methodologies employed for exhaled breath sampling
and analysis. To achieve this, a literature search was conducted,
focusing on studies that analyzed human exhaled breath by GC-MS
published since 2012. The search strategy utilized specific keywords,
such as “volatile organic compounds,” “exhaled breath” or “breath
test,” “gas chromatography,” and “mass spectrometry.” The
databases employed were Scopus and Web of Science. Initially,
377 articles were obtained, which were then narrowed down to
152 after title and abstract evaluation, and the articles were sorted
according to the pathology studied. Finally, 70 articles focusing on
10 pathologies of significant interest were included in this review,
and categorized in: cancer (such as lung, gastric, colorectal, and
breast cancers), other pulmonary pathologies (comprising asthma,
COPD, OSA, and cystic fibrosis), and infectious pathologies
(encompassing community-acquired pneumonia (CAP)/hospital-
acquired pneumonia (HAP)/ventilator-associated pneumonia
(VAP) and COVID-19).

3 VOCs in exhaled breath in health
and pathology

In the following sections, selected studies for each pathology are
discussed, along with the identified candidate VOCs reported as
pathology-specific biomarkers. Figure 3 illustrates the distribution of

studies, showing that lung cancer has been the most extensively
studied, followed by asthma, COPD, and CAP/HAP/VAP.

3.1 VOCs in cancer

3.1.1 Lung cancer
Lung cancer (LC) is the second most diagnosed cancer, and the

leading cause of cancer-related deaths (Ferlay et al., 2021). LC
comprises two major histological types: small-cell lung cancer
(SCLC) and non-small-cell lung cancer (NSCLC) (Rodak et al.,
2021). The 5-year relative survival rates for localized NSCLC and
SCLC are 65% and 30%, dropping to 9% and 3% when metastasized
(2012–2018), respectively (Lung Cancer Survival Rates, 2023).
Symptoms may be absent, non-specific, or easily confused with
other pulmonary pathologies (Balata et al., 2022).

Low-dose computed tomography (LDCT) is the main screening
tool, although it exhibits a high false-positive rate (Nooreldeen and
Bach, 2021). Lung tissue biopsy, the gold standard procedure for
diagnosis, determines malignancy, histological type, and TNM
(tumor, nodule, and metastases) stage. However, this procedure
is highly invasive and can lead to complications, such as
pneumothorax and pneumonia (Zhang et al., 2020b). Indeed, the
development of rapid and non-invasive early diagnostic tests is
urgently required, and breath tests offer promising alternatives.
Among the pathologies studied in exhaled breath, LC is the most
prevalent, as this pathology is directly related to the respiratory tract.

Twenty-three studies focusing on potential biomarkers for LC
are summarized in Supplementary Tables S1–S3, referring to
metabolomic methodology, group comparisons, and VOC
biomarkers, respectively. A Chinese group performed two
untargeted studies on the same data, comparing LC patients and
healthy controls (HCs). The first study (Zou et al., 2021) developed a
prediction model based on the whole breath profile (308 peaks),
achieving 85.0% accuracy, 83.0% sensitivity, and 85.0% specificity.
Twenty-two discriminative VOCs were annotated, styrene being
also found downregulated in LC patients who responded partially to
treatment or remained stable (Supplementary Table S3), along with
two other VOCs (dodecane, 4-methyl and α-phellandrene) (Nardi-
Agmon et al., 2016). The second study (Zou et al., 2022) selected
31 VOCs as biomarkers in the univariate analysis (UVA), which
showed 0.787 AUC in the multivariate analysis (MVA) after cross-
validation. Additionally, eight VOCs were found to be involved in a
total of 18 metabolic pathways, of which 11 were
significantly altered.

A Polish group compared LC patients with HCs. Buszewski et al.
(2012) divided both groups according to smoking habits, identifying
12 significant VOCs between non-smokers, 7 being upregulated
when compared to active smokers. Rudnicka et al. (2014) measured
43 VOCs and developed a model with 88 features, yielding
0.970 AUC, 74.0% sensitivity, and 73.0% specificity, with
dimethyl sulfide as the main discriminating VOC. Ligor et al.
(2015) applied machine learning algorithms, and the final model
formed by eight compounds showed an value (e.i. 0.650) AUC. In a
subsequent study (Rudnicka et al., 2019), the model containing
seven VOCs selected from the UVA presented an improved
performance, showing 86.4% sensitivity and specificity in the test

FIGURE 3
Pie plot depicting the proportion of studies for each pathology
included in this review. CAP, community-acquired pneumonia;
COPD, chronic obstructive pulmonary disease; HAP, hospital-
acquired pneumonia; OSA, obstructive sleep apnea; VAP,
ventilator-associated pneumonia.
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group. Twelve VOCs were found in common between these four
abovementioned studies (Supplementary Table S3).

Schallschmidt et al. (2016) focused on 24 VOCs previously
selected as potential LC biomarkers, 20 being also reported in
other studies (Supplementary Table S3). In the UVA, 11 and
7 VOCs were significantly altered between LC patients and HCs
(non-smokers and active smokers, respectively), 8 VOCs seemingly
unrelated to smoking. Moreover, four models were constructed with
different subsets of the targeted VOCs, achieving the highest
sensitivity (92.0%) with a subset of four VOCs, and the highest
specificity (96.0%) with seven VOCs. Ethanol and octane were two
target VOCs proposed as potential biomarkers in other studies
(Supplementary Table S3).

Sakumura et al. (2017) reported ethanol, along with other four
VOCs, in a study classifying LC and HCs using a support vector
machine (SVM) algorithm, achieving 89.0% accuracy, a 94.4% true-
positive ratio, and a 89.7% true-negative ratio when combining
different subsets of five VOCs. Furthermore, the distance to the
SVM classification boundary provided information on the cancer
stage, with early-stage LC located closer to the boundary than
advanced-stage LC.

Two research groups from China and Greece conducted several
studies comparing LC patients, pulmonary non-malignant disease
(PNMD) patients, and HCs. The Chinese group conducted 4 studies,
sharing 27 VOCs (Supplementary Table S3). Wang et al. (2012)
found 23 significant VOCs with AUCs >0.6, unrelated to smoking,
as potential biomarkers, of which five VOCs were significant
between squamous carcinoma and adenocarcinoma LC patients.
The discrimination model for LC, PNMD, and HCs could correctly
classify 96.5% of LCs. Zou et al. (2014) selected five VOCs as LC-
specific biomarkers, achieving AUCs ranging from 0.672 to 1 in a
validation cohort, with hexadecanal being the most discriminative.
Additionally, Chen et al. (2021) annotated 19 VOCs that could
discriminate LC from PNMD, as well as 20 VOCs that differentiated
LC fromHCs with AUCs of 0.809 and 0.987, respectively. Moreover,
LC patients could be distinguished by histology (NSCLC and SCLC)
using 20 VOCs value (e.i. 0.939) AUC and stage (early and
advanced) with 19 VOCs value (e.i. 0.827) AUC. The Greek
group used both targeted and untargeted approaches on the same
data set. The targeted study (Koureas et al., 2020) included 19 VOCs,
of which 17 VOCs were also found in other studies (Supplementary
Table S3). In the UVA, seven VOCs showed significance when
comparing LC, PNMD, and HCs, although no single VOC was
altered between LC and PNMD. However, LC and HCs were
correctly classified by either including 19 VOCs, nine VOCs
selected in the UVA (LC vs. HCs), or a subset of VOCs
identified by feature selection (FS) (AUCs 0.769–0.970). In the
untargeted study (Koureas et al., 2021), 29 features were
considered for the analysis, 18 features (12 VOCs annotated)
showing significance between LC and HCs, and only 2 (1 VOC
annotated) among LC and PNMD. Moreover, LC and HCs were
correctly classified using either 29 features or a subset of eight
features identified by FS (AUCs 0.940 and 0.960, respectively). In the
case of LC and PNMD, three VOCs achieved 75.0% discrimination
accuracy value (e.i. 0.820) AUC. Among the features/VOCs from
both approaches, three VOCs (one from the targeted and two from
the untargeted) achieved an accuracy of 72.0% in discriminating LC
and PNMD value (e.i. 0.780) AUC. However, the VOC from the

targeted study was detected in extremely low frequencies. Another
targeted study focusing on 21 VOCs identified four upregulated
VOCs in LC compared to PNMD (Corradi et al., 2015), of which two
(hexane and ethylbenzene) were also included in the targeted study
by Koureas et al. (2020) (Supplementary Table S3), showing elevated
increased levels in adenocarcinoma LC (hexane) and in advanced-
stage LC (ethylbenzene) patients.

Furthermore, both untargeted and targeted approaches were
performed in the same study comparing LC, COPD, asthmatic
patients, and HCs. Monedeiro et al. (2021) built an RF model
with the 12 most important VOCs from the untargeted analysis,
achieving an overall accuracy of 85.7%. In the following targeted
approach, 29 VOCs were preselected, of which 9 were used to build
the classification model that provided 91.0% overall accuracy.
Additionally, Callol-Sanchez et al. (2017) identified nonanoic acid
significantly altered in LC patients compared to both COPD patients
and HCs in a targeted study, and Muñoz-Lucas et al. (2020) found
elevated levels of propionic acid in LC patients with COPD, mainly
detected in advanced-stage LC.

3.1.2 Gastric cancer
Gastric cancer (GaC) is among the five deadliest cancers in 2020,

according to the World Health Organization (WHO) (Cancer,
2023). The 5-year relative survival rate is 72% when localized
and decreases to 6% when distant at the time of diagnosis
(2012–2018) (American Cancer Society, 2017). The main risk
factors for GaC, which is predominantly sporadic (90%), include
smoking, high meat intake, alcohol consumption, obesity, and
Helicobacter pylori infection (Conti et al., 2023). Persistent H.
pylori infection causes chronic inflammation, leading to precursor
lesions associated with GaC: atrophy, metaplasia, dysplasia, and
carcinoma (Conti et al., 2023).

The gold standard diagnostic technique is upper endoscopy,
followed by a biopsy, although it is invasive and requires specialists
(Hamashima, 2016). While high-incidence countries have
implemented screening programs, low-incidence countries require
cost-effective alternatives (Herrera-Pariente et al., 2021). Serum
biomarkers, which include carcinoembryonic antigen (CEA),
alpha-fetoprotein (AFP), and carbohydrate antigens (CA19-9 or
CA72-4), have been used for early diagnosis, but their lack of
specificity results in low positive rates and the inability to detect
precancerous lesions (Feng et al., 2017).

Five studies focusing on biomarkers for GaC, all employing an
untargeted metabolomics approach, are included in Supplementary
Tables S1–S3. Two studies, conducted in China and Latvia,
compared GaC patients, peptic ulcer disease (PUD) patients, and
controls. Xu et al. (2013) identified three upregulated VOCs in GaC
and four VOCs upregulated in PUD compared to HCs, with one
VOC (furfural) shared among comparisons. Likewise, Amal et al.
(2013) found four VOCs upregulated in GaC of which two were also
upregulated in PUD. However, no single discriminating VOC
between GaC and PUD was identified in any of the studies. Only
one VOC was found to be common to different geographical areas,
6-methyl-5-hepten-2-one (Supplementary Table S3).

Tong et al. (2017) reported 11 candidate GaC biomarkers
comparing GaC patients with PUD, gastritis patients, and HCs,
using UVA and MVA. One VOC, nonanal, was also found by Amal
et al. (2013) to be significantly altered between GaC, PUD, and an
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additional group stratified based on the operative link on gastric
intestinal metaplasia (OLGIM), which classifies patients according
to the presence/absence and stage of precancerous lesions. Among
the multiple comparisons, eight VOCs showed alterations among
groups, seven of which were upregulated in GaC compared to
OLGIM, only one VOC being altered between GaC and OLGIM
III-IV, and three VOCs in PUD compared to OLGIM.

Lastly, Bhandari et al. (2023) explored the correlation between
the fecal microbiome and exhaled breath VOCs. Two VOCs (1-
octanol and dioctyl ether) were significantly altered and exclusively
present in GaC. Moreover, 14 VOCs from GaC patients were
correlated with 33 fecal bacterial taxa, and 7 VOCs from HCs
were correlated with 17 bacterial taxa, with no common VOCs
between groups.

3.1.3 Colorectal cancer
Colorectal cancer (CRC) ranks among the most common

cancers worldwide (Ferlay et al., 2021). The 5-year relative
survival drops from 65% to 15.6% when diagnosed at later stages
(2013–2019), which represents 23% of cases, as early symptoms are
not pathology-specific (Colorectal Cancer—Cancer Stat Facts,
2023). The most applied screening tools are the fecal
immunochemical test (FIT) and colonoscopy (Helsingen and
Kalager, 2022). The FIT test is based on the measurement of the
amount of hemoglobin in feces, and one-third of stage I cancers are
missed (Niedermaier et al., 2020). Colonoscopy, while effective, is
invasive, time-consuming, and expensive and is performed with
conscious sedation, carrying the risk of colonic perforation and
major bleeding (Qaseem et al., 2019; Helsingen and Kalager, 2022).
Other CRC screening tests such as the guaiac-based fecal occult
blood test (gFOBT), sigmoidoscopy, fecal biomarker panel test, and
computed tomography (CT) colonography have several limitations,
such as false-positive results, invasiveness, and high cost (Qaseem
et al., 2019).

Five studies focusing on potential biomarkers for CRC are
summarized in Supplementary Tables S1–S3, all employing an
untargeted metabolomics approach. The studies that analyzed
mixed breath sampled the same cohort of CRC patients. The first
study (Altomare et al., 2013) compared CRC and HCs by selecting a
pattern of 15 VOCs by UVA to construct the probabilistic neural
network (PNN) model, which yielded 76.0% accuracy in the
validation cohort. In a subsequent study (Altomare et al., 2015),
the data were reprocessed, and 32 of 52 CRC patients were
resampled after cancer removal. The PNN model was constructed
with 31 VOCs selected by UVA, yielding 97.5% and 97.7% accuracies
discriminating pre- and post-surgery CRC patients, and post-surgery
CRC and HCs, respectively. Additionally, 11 VOCs shared with the
previous study could discriminate pre- and post-surgery CRC patients
with 98.8% accuracy. These results demonstrate the metabolic change
in exhaled VOC patterns due to cancer cell metabolism and suggest
that metabolism does not return to the pre-cancer state after
cancer removal.

Another study by the aforementioned research group
investigated potential biomarkers of cancer stages (early/I–II or
advanced/III–IV) (Altomare et al., 2020). Fifteen VOCs were
selected by UVA comparing CRC and HCs, to build a model
that included age class (>65 vs. ≤65 year olds). Fourteen
identified VOCs could discriminate CRC from HCs, with a

93.0% overall positive predictive value (PPV) after
cross-validation, whereas eight and five VOCs could discriminate
early-CRC from HCs with an 86.0% PPV and advanced-CRC from
HCs with a 91.0% PPV. Three common VOCs between UVA and
MVA, namely, ethylbenzene, methylbenzene, and tetradecane, were
quantified to establish the threshold concentration values. However,
none of these compounds were reported in other studies.
Nevertheless, five out of the 15 VOCs were common with
previous studies (Altomare et al., 2013, 2015), and three were
reported as significantly altered between CRC and HCs: 4-
methyloctane and ethanol (research group from Latvia) (Amal
et al., 2016) and dodecane (research group from China) (Wang
et al., 2014a) (Supplementary Table S3).

Likewise, Amal et al. (2016) found four significantly altered
VOCs between CRC and HCs, which were identified by UVA and
subsequently quantified: 4-methyloctane and ethanol were
downregulated, whereas acetone and ethyl acetate were
upregulated. Likewise, Wang et al. (2014a) found nine potential
biomarkers (eight upregulated and one downregulated) for CRC
patients with adenocarcinoma by MVA.

3.1.4 Breast cancer
Breast cancer (BC) is the most diagnosed type of cancer and the

fifth cause of cancer-related mortality (Cancer; Ferlay et al., 2021).
While the 5-year relative survival rate stands at 90.8%, it drops
dramatically to 31% when diagnosed at a distant stage (2012–2019)
(Female Breast Cancer, 2023). The current gold standard screening
methods include annual mammography and clinical breast
examination for women over the age of 40. Unfortunately,
physical breast examinations, even when performed by a
physician, fail to reduce mortality (Barba et al., 2021). Regarding
mammography, the sensitivity is compromised by breast density
(Boyd et al., 2007), and the procedure requires X-ray examination
and may lead to overdiagnosis, resulting in unnecessary procedures
and treatments (Løberg et al., 2015). Alternative screening
approaches, such as digital breast tomosynthesis (DBT),
ultrasonography, magnetic resonance imaging (MRI), and
positron emission tomography/computed tomography (PET/CT),
are hampered by high costs, discomfort, the requirement for trained
technicians, and radiation exposure (Barba et al., 2021). Therefore,
there is an urgent requirement for innovative screening tools that
can overcome these drawbacks, and breath tests show promise as a
potential approach.

Four studies focusing on potential BC biomarkers are
summarized in Supplementary Tables S1–S3. These studies were
conducted in the same geographical area (China). The targeted
study by Li et al. (2014) focused on four aldehydes and their
potential to discriminate between BC patients, breast non-
malignant disease (BNMD) patients, and HCs. All the targeted
aldehydes were significantly upregulated in BC, while hexanal
was upregulated in BNMD, both compared to HC. Furthermore,
nonanal was increased in BC when compared to BNMD. The
combination of these VOCs showed 91.7% sensitivity and 95.8%
specificity (0.934 AUC) in discriminating early-stage BC from
HCs, and the predictive model achieved 80.4% correct
classification after leave-one-out cross-validation (LOOCV).
Hexanal was also identified as a potential biomarker in a
different study (Supplementary Table S3).
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Two untargeted studies compared BC with HCs and BNMD.
Barash et al. (2015) identified 23 VOCs by UVA, 21 of which showed
significant differences between HCs and patients with breast lesions
[BC, BNMD, and an additional group of patients with ductal
carcinoma in situ (DCIS)], and four VOCs were significant
between BC and DCIS. The MVA revealed 14 VOCs that could
discriminate BC from HC and BNMD, and from DCIS, yielding
72.0% and 81.0% accuracies after LOOCV, respectively.
Additionally, two of these 14 VOCs were consistent with findings
from other studies (Supplementary Table S3). Wang et al. (2014b)
annotated 28 potential biomarkers, of which 21, 6, and 8 VOCs were
significantly altered in BC when compared separately to HCs,
BNMD (cyclomastopathy and mammary gland fibroma), and
DCIS, respectively. Among these, three VOCs, namely,
cyclohexanone, 1,4-dimethoxy-2,3-butanediol, and 2,5,6-
trimethyloctane, were upregulated in BC compared to both HCs
and BNMD. Only cyclohexanone was again reported by Zhang et al.
(2020a) (Supplementary Table S3).

Furthermore, Zhang et al. (2020a) subdivided the BC group into
DCIS, lymph node metastasis-negative (LNMN), and lymph node
metastasis-positive (LNMP), annotating 13, 12, and 17 significant
VOCs when compared to HC, respectively. An additional group of
GaC patients was included for comparison with BC, yielding
17 significant VOCs. The set of seven overlapping VOCs among
all comparisons could discriminate BC and the different subgroups
from HCs value (e.i. 0.864–0.943) AUC, sensitivity 80.8%–96.2%,
and specificity 71.6%–100%.

3.2 VOCs in other pulmonary pathologies

3.2.1 Asthma
Asthma is a chronic and heterogeneous lung pathology

characterized by inflammation and airway obstruction,
manifesting with variable symptoms that include cough,
wheezing, shortness of breath, and chest tightness (Asthma, 2023;
Asthma-Diagnosis, 2023). This pathology places a significant
economic burden on healthcare systems, affecting approximately
292 million people worldwide, typically being developed during
childhood. Asthma’s impact on patients’ quality of life and the risk
of premature death are major concerns (The Global Asthma
Report, 2022).

Diagnosis relies on spirometry, bronchoprovocation tests, peak
expiratory flow tests, allergy skin or blood tests, and FeNO tests
(Asthma-Diagnosis, 2023). Patients may experience a loss of
pathology control and acute exacerbations of symptoms, leading
to significant morbidity and a progressive loss of lung function
(Castillo et al., 2017). Moreover, the heterogeneity of asthma,
concerning severity and response to treatment, is a consequence
of the underlying pathophysiological mechanisms. Patients can be
classified into different phenotypes based on observable
characteristics (steroid response, obesity, allergies, etc.), or
endotypes based on the underlying cellular and molecular
mechanisms (Kuruvilla et al., 2019). In this context, breath tests
offer a non-invasive and easy-to-perform approach for early
diagnosis and exacerbation prediction, especially suitable for
children, and could be also used to define phenotypes and
endotypes by analyzing the profile of endogenous VOCs, which

reflects the inflammatory state of the bronchia and underlying
molecular mechanisms involved, allowing a significant
improvement in treatment effectiveness.

Eleven untargeted studies focused on asthma are included in
Tables 1, 2; Supplementary Table S4. Several studies were conducted
by the same research group focusing on asthmatic children. Van
Vliet et al. (2016, 2017) studied the loss of asthma control and
exacerbation episodes over a period of 1 year. In the first study (Van
Vliet et al., 2016), a combination of 15 VOCs (10 annotated) showed
86.0% accuracy in classifying persistently controlled and
uncontrolled asthma, although no association was found between
different exhaled inflammatory markers [FeNO, exhaled breath
condensate (EBC), and VOCs] and asthma control. Subsequently
(Van Vliet et al., 2017), in a larger cohort of asthmatic children, the
combination of seven VOCs used to construct the RF model could
predict 88.0% of asthma exacerbation episodes within 14 days. These
two studies shared only two VOCs: 1,2-dimethylcyclohexane and 2-
methylfuran (Table 2). Additionally, Robroeks et al. (2013)
annotated 30 VOCs related to asthma exacerbation, and the
models combining six and seven VOCs could correctly classify
96.0% of baseline and exacerbation samples taken from the same
patient (100% sensitivity and 93.0% specificity) and 91.0% of
patients who would have future exacerbations or not,
respectively. These results suggest that the profile of VOCs can
identify exacerbations and could be used to predict which patients
will suffer these episodes. Additionally, Smolinska et al. (2014)
studied a cohort of wheezing children with HCs between the ages
of 2 and 4 years until the age of 6 years, to find potential biomarkers
for preclinical asthma. A total of 17 VOCs (13 annotated) were
selected by comparing asthmatic children with HCs and with
transient wheezers, which could correctly classify 80.0% of the
wheezing children at inclusion, differentiating those who would
develop asthma from those who were transient wheezers. Notably,
three VOCs reported in these studies (2-methylfuran, 3-
methylfuran, and m-cymene) were also identified by Monedeiro
et al. (2021) when comparing LC, COPD asthmatic patients, and
HCs. In this study, the model built with 12 VOCs from the
untargeted data presented 85.7% overall accuracy, and another
with 9 of the 29 targeted VOCs provided 91.0% overall accuracy.

Likewise, two other studies included a cohort of asthmatic
children, in this case, compared to HC. Gahleitner et al. (2013)
identified a panel of eight candidate VOCs, all of which were
upregulated in asthmatic children. Moreover, Caldeira et al.
(2012) built a model with the full data set of metabolites (134),
yielding a classification rate of 98.0% (96.0% sensitivity and 95.0%
specificity). Among these metabolites, six alkanes were related to
allergic asthma and four aldehydes and one alkene to HC. The new
model that included nine alkanes and aldehydes showed a
classification rate of 96.0% (98.0% sensitivity and 93.0%
specificity). One VOC from the latter study, decane, was also
reported by Sola-Martínez et al. (2021). In this study, a
population of women 3 months postpartum was recruited and
divided into asthmatics with other coexisting atopic diseases
(A-AD) and non-asthmatics, and the latter were further divided
into those with and without other atopic diseases (NA-AD and NA-
NAD, respectively). Several models were built to compare the
different groups, selecting a total of nine VOCs, which could
discriminate between asthmatic and non-asthmatic patients, even
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TABLE 1 Summary of studies focused on asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and cystic fibrosis. AB, alveolar breath; ABS, adaptive breath sampler; CF, cystic fibrosis; COPD, chronic
obstructive pulmonary disease; GC, gas chromatography; GC×GC, two-dimensional gas chromatography; LC, lung cancer; MB, mixed breath; MS, mass spectrometry; na, not applicable; nd, not detailed; NIST, National Institute
of Standards and Technology; NTD, needle-trap device; OSA, obstructive sleep apnea; SPME, solid-phase microextraction; TD, thermal desorption tube; TOF, time-of-flight; UI, ultra-inert, VOCs, volatile organic compounds.

Reference Pathology Methodology Sample Sampling Analysis
technique Sorbent material Column IS

Identification

Library Authentic
STD

Gahleitner et al.
(2013)

Asthma Untargeted AB ABS TD-GC-MS Tenax/Carbotrap nd No NIST Yes

Sola-Martínez et al.
(2021)

Asthma Untargeted MB Tedlar® bag TD-GC-MS Tenax TA
HP-5MS UI (30 m ×
0.25 mm × 0.25 μm)

(Agilent)
No NIST No

Schleich et al.
(2019)

Asthma Untargeted MB Tedlar® bag
TD-GC-TOF-MS/

TD-GCxGC-
TOF-MS

Carbograph 1TD/
Carbopack X and Tenax

TA/Carbopack B

RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek) and Rxi-624Sil
MS (30 m × 0.25 μm ×
1.4 μm) (Restek) 1D
and Stabilwax (2 m ×
0.25 μm × 0.5 μm)

(Restek) 2D

No NIST Yes

Brinkman et al.
(2017) Asthma Untargeted MB Tedlar® bag TD-GC-MS Tenax GR

VF1-MS column
(30 m × 0.25 mm ×
1 μm) (Varian)

No NIST No

Van Vliet et al.
(2017)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

nd No NIST No

Van Vliet et al.
(2016)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

nd No NIST No

Meyer et al. (2014) Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek)
No

nd
No

Smolinska et al.
(2014)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek)
No NIST No

Robroeks et al.
(2013)

Asthma Untargeted MB Tedlar® bag TD-GC-TOF-MS Active carbon
RTX-5MS (30 m ×
0.25 mm × 1 μm)

(Restek)
No NIST No

Caldeira et al.
(2012)

Asthma Untargeted MB Tedlar® bag
SPME-GC×GC-

TOF-MS
DVB/Car/PDMS

HP-5 (30 m × 0.32 mm
× 0.25 μm) (Agilent) 1D
and DB-FFAP (0.79 m
× 0.25 mm × 0.25 μm)

(Agilent) 2D

No
In-house library
and Wiley and

NIST
No

(Continued on following page)
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TABLE 1 (Continued) Summary of studies focused on asthma, chronic obstructive pulmonary disease, obstructive sleep apnea, and cystic fibrosis. AB, alveolar breath; ABS, adaptive breath sampler; CF, cystic fibrosis; COPD,
chronic obstructive pulmonary disease; GC, gas chromatography; GC×GC, two-dimensional gas chromatography; LC, lung cancer; MB, mixed breath; MS, mass spectrometry; na, not applicable; nd, not detailed; NIST, National
Institute of Standards and Technology; NTD, needle-trap device; OSA, obstructive sleep apnea; SPME, solid-phase microextraction; TD, thermal desorption tube; TOF, time-of-flight; UI, ultra-inert, VOCs, volatile organic
compounds.

Reference Pathology Methodology Sample Sampling Analysis
technique Sorbent material Column IS

Identification

Library Authentic
STD

Monedeiro et al.
(2021)

LC/COPD/
Asthma

Untargeted/
targeted

MB Tedlar® bag NTD-GC-MS
PDMS/Carbopack/

Carboxen

DB-624 capillary
column (60 m ×

0.32 mm × 1.8 μm)
(Agilent)

No NIST Yes

Pizzini et al. (2018) COPD Untargeted AB Glass syringe TD-GC-TOF-MS
Carbotrap B 80 mg/
Carbopack X 260 mg

Restek-Q-Bond (30 m ×
0.25 mm × 8 μm)

(Restek)
No NIST Yes

Basanta et al.
(2012)

COPD Untargeted AB — TD-GC-TOF-MS Tenax TA/Carbotrap
DB5-MS column

(30 m × 0.25 mm x
0.25 μm) (Agilent)

D5-Bromobenzene NIST No

Phillips et al.
(2012)

COPD Untargeted AB Bio-VOC® TD-GC-MS
Carbograph 1TD/
Carbopack X

HP-5MS (30 m ×
0.25 mm × 0.25 μm)

(Agilent)
No NIST No

van Velzen et al.
(2019)

COPD Untargeted MB Tedlar® bag TD-GC-TOF-MS Tenax GR
VF1-MS column

(30 m × 0.25 mm ×
1 μm) (Varian)

No NIST No

Gaida et al. (2016) COPD Untargeted MB
Stainless steel

tube
TD-GC-MS Tenax TA nd No NIST Yes

Cazzola et al.
(2015)

COPD Untargeted MB Tedlar® bag SPME-GC-MS
DVB/Car/PDMS 50/

30 μg

Equity-5 capillary
column (30 m ×

0.25 mm × 0.25 μm)
(Supelco)

No NIST No

Jareño-Esteban
et al. (2017)

COPD Targeted AB Bio-VOC® TD-GC-MS
Tenax TA/graphitized
carbon black/carbonized

molecular sieve

DB-1 (30 m ×
0.25 mm × 1 μm)

(Agilent)
Hexamethylcyclotrisiloxane na Yes

Bayrakli et al.
(2016)

OSA Targeted AB Bio-VOC® TD-GC-MS Tenax TA 200 mg
DB-5 (30 m ×

0.25 mm) (Agilent)
No na Yes

Aoki et al. (2017) OSA Targeted MB
DuPont™
Tedlar® bag

TD/NTD-GC-MS nd nd No na Yes

Woollam et al.
(2022b) CF Untargeted MB Tedlar® bag SPME-GC-MS DVB/Car/PDMS

HP-5MS (30 m ×
0.25 mm × 0.25 μm)

(Agilent)
No nd No

van Horck et al.
(2021)

CF Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

nd No NIST No
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TABLE 2 VOCs reported in asthma and chronic obstructive pulmonary disease (≥2 studies). EO, eosinophilic asthma; na, not applicable; NEO, neutrophilic asthma;
ppbv, parts per billion by volume; *LOD, Limit of detection.

Asthma

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls)

Unit Reference

1 1-Propanol 71-23-8 C3H8O Alcohol

Upregulated 9.94 14.59 ppbv
Monedeiro
et al. (2021)

Downregulated
(EO)/

Upregulated
(NEU)

na na na

Schleich et al.
(2019)

2 Phenol 108-95-2 C6H6O Alcohol

Downregulated na na na
Meyer et al.

(2014)

Upregulated <1.43* <1.43* ppbv
Monedeiro
et al. (2021)

3 Nonanal 124-19-6 C9H18O Aldehyde

Altered na na na
Van Vliet
et al. (2017)

Altered na na na
Caldeira

et al. (2012)

Upregulated na na na
Schleich et al.

(2019)

4 Octanal 124-13-0 C8H16O Aldehyde

Downregulated na na na
Meyer et al.

(2014)

Altered na na na
Van Vliet
et al. (2017)

5 Benzene 71-43-2 C6H6
Aromatic

hydrocarbon

Upregulated na na na
Meyer et al.

(2014)

Altered na na na
Robroeks

et al. (2013)

6 m-Cymene 535-77-3 C10H14
Aromatic

hydrocarbon

Upregulated na na na
Gahleitner
et al. (2013)

Altered na na na
Van Vliet
et al. (2016)

Upregulated 0.32 0.61 ppbv
Monedeiro
et al. (2021)

7 2,4-Dimethylheptane 2213-23-2 C9H20
Branched

hydrocarbon

Downregulated na na na
Meyer et al.

(2014)

Upregulated na na na
Smolinska
et al. (2014)

8 2-Methylpentane 107-83-5 C6H14
Branched

hydrocarbon

Upregulated 4.59 1.24 ppbv
Monedeiro
et al. (2021)

Upregulated na na na
Smolinska
et al. (2014)

9 3-Methylpentane 96-14-0 C6H14
Branched

hydrocarbon

Upregulated 1.07 0.24 ppbv
Monedeiro
et al. (2021)

Altered na na na
Robroeks

et al. (2013)

10 1,2-Dimethylcyclohexane 583-57-3 C8H16
Cyclic

hydrocarbon

Altered na na na
Van Vliet
et al. (2016)

Altered na na na
Van Vliet
et al. (2017)

(Continued on following page)
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TABLE 2 (Continued) VOCs reported in asthma and chronic obstructive pulmonary disease (≥2 studies). EO, eosinophilic asthma; na, not applicable; NEO,
neutrophilic asthma; ppbv, parts per billion by volume; *LOD, Limit of detection.

Asthma

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls)

Unit Reference

11 2-Methylfuran 534-22-5 C5H6O Ether

Altered na na na
Van Vliet
et al. (2016)

Altered na na na
Van Vliet
et al. (2017)

12 Decane 124-18-5 C10H22
Hydrocarbon
(saturated)

Altered na na na
Caldeira

et al. (2012)

Altered na na na
Sola-

Martínez
et al. (2021)

13 Dodecane 112-40-3 C12H26
Hydrocarbon
(saturated)

Downregulated na na na
Meyer et al.

(2014)

Upregulated 6.27 5.18 ppbv
Monedeiro
et al. (2021)

Altered na na na
Caldeira

et al. (2012)

14 Tetradecane 629-59-4 C14H30
Hydrocarbon
(saturated)

Altered na na na
Monedeiro
et al. (2021)

Altered na na na
Caldeira

et al. (2012)

15 Undecane 1120-21-4 C11H24
Hydrocarbon
(saturated)

Upregulated 1.78 0.80 ppbv
Monedeiro
et al. (2021)

Downregulated na na na
Schleich et al.

(2019)

16 Acetone 67-64-1 C3H6O Ketone

Altered na na na
Sola-

Martínez
et al. (2021)

Downregulated na na na
Smolinska
et al. (2014)

17 Acetonitrile 75-05-8 C2H3N
Nitrogen-
containing

Altered na na na
Brinkman
et al. (2017)

Altered na na na
Monedeiro
et al. (2021)

Chronic obstructive pulmonary disease

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit Reference

1 Isopropanol 67-63-0 C3H8O Alcohol

Downregulated na na na
Cazzola et al.

(2015)

Upregulated 258.37 10.55 ppbv
Monedeiro
et al. (2021)

2 Phenol 108-95-2 C6H6O Alcohol

Altered na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)

3 Decanal 112-31-2 C10H20O Aldehyde

Altered na na na
Basanta et al.

(2012)

Altered na na na
Phillips et al.

(2012)

(Continued on following page)
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in the validation cohort (AUCs 0.670–0.900, 71.0%–100%
sensitivity, and 60.0%–70.0% specificity), although the accuracy
decreased when asthmatic patients were compared to the non-
asthmatic groups separately (AUCs 0.680–0.810 for NA-AD and
0.603–0.750 for NA-NAD).

Furthermore, two articles studied asthma phenotypes and
endotypes. Schleich et al. (2019) conducted a study on a group of
asthmatic patients classified by inflammatory subtypes. From all
binary comparisons, 12 VOCs were selected, of which eight were
identified as candidate biomarkers. Among them, two VOCs

TABLE 2 (Continued) VOCs reported in asthma and chronic obstructive pulmonary disease (≥2 studies). EO, eosinophilic asthma; na, not applicable; NEO,
neutrophilic asthma; ppbv, parts per billion by volume; *LOD, Limit of detection.

Chronic obstructive pulmonary disease

No Compound name CAS-N Formula Chemical
class

Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit Reference

4 Hexanal 66-25-1 C6H12O Aldehyde

Upregulated na na na
Jareño-

Esteban et al.
(2017)

Altered na na na
Basanta et al.

(2012)

Altered na na na
Phillips et al.

(2012)

5 Nonanal 124-19-6 C9H18O Aldehyde

Upregulated na na na
Jareño-

Esteban et al.
(2017)

Altered na na na
Basanta et al.

(2012)

6 Benzene 71-43-2 C6H6
Aromatic

hydrocarbon

Upregulated na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)

7 Toluene 108-88-3 C7H8
Aromatic

hydrocarbon

Upregulated na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)

Altered na na na
van Velzen
et al. (2019)

8 Limonene 138-86-3 C10H16
Cyclic

hydrocarbon

Downregulated na na na
Cazzola et al.

(2015)

Altered na na na
van Velzen
et al. (2019)

Altered na na na
Phillips et al.

(2012)

Upregulated 1.71 1.57 ppbv
Monedeiro
et al. (2021)

9 Butane 106-97-8 C4H10
Hydrocarbon
(saturated)

Altered na na na
Phillips et al.

(2012)

Downregulated na na na
Pizzini et al.

(2018)

10 Tridecane 629-50-5 C13H28
Hydrocarbon
(saturated)

Altered ns ns ns
Gaida et al.

(2016)

Upregulated 28.36 3.43 ppbv
Monedeiro
et al. (2021)

11 Acetic acid 64-19-7 C2H4O2 Organic acid

Altered na na na
Gaida et al.

(2016)

Altered na na na
Phillips et al.

(2012)
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(hexane and 2-hexanone), along with 1-propanol, were selected from
the comparison between eosinophilic and paucigranulocytic value (e.i.
0.680) AUC. Meanwhile, the comparison between neutrophilic and
paucigranulocytic yielded two VOCs (3-tetradecene and pentadecene)
in the discovery phase and another two (undecane and nonanal) in the
replication value (e.i. 0.850 and 0.700, respectively) AUC.
Furthermore, when comparing neutrophilic to eosinophilic, three
VOCs (3,7-dimethylnonane, 1-propanol, and nonanal) were
identified in the discovery phase value (e.i. 0.920) AUC, although
only nonanal, along with hexane, showed the best classification
performance in the replication phase value (e.i. 0.710) AUC. As a
result, two (hexane and 2-hexanone) and three (nonanal, 1-propanol,
and hexane) VOCs could discriminate eosinophilic and neutrophilic
asthma from other phenotypes value (e.i. 0.720 and 0.730,
respectively) AUC. Moreover, Meyer et al. (2014), besides building
a model based on 16 VOCs that could discriminate asthmatic patients
fromHC (100% sensitivity and 91.1% specificity), performed a cluster
analysis that included clinical, medication features, and four VOCs
that were only present in asthmatic patients, to identify different
asthma endotypes. As a result, seven clusters were formed, two with
non-allergic asthma and five with allergic asthma. Some clusters
presented high clinical similarity but different profiles of VOCs, as
well as similar profiles and different clinical symptoms. Although no
common VOCs were found between these two studies, eight VOCs
were shared with others (Table 2).

3.2.2 COPD
COPD is characterized by chronic respiratory symptoms, such as

dyspnea, cough, production of sputum, and/or exacerbations, caused by
abnormalities in the airways (bronchitis and bronchiolitis) and/or the
alveoli (emphysema), resulting in persistent and progressive airflow
obstruction. The causes of the pathology are environmental exposures
(tobacco smoking, toxic particles, and gases) and/or genetic risk factors.
According to the WHO, 3.23 million people died from COPD in 2019,
with 90% of deaths (under the age of 70) occurring in low- andmiddle-
income countries. COPD often coexists with chronic pathologies, such
as lung infections and cancer, heart problems, depression, and anxiety
(GOLDCOPD, 2023).

COPD diagnosis relies on spirometry, with weak specificity.
Additional tests, lung imaging and arterial blood gas tests, can help
assess pathology severity. The symptoms develop slowly, and even
though COPD is not curable, different treatments can be applied.
However, under- or misdiagnosis can lead to lack/incorrect treatment
(GOLDCOPD, 2023), and most patients are diagnosed when the lung
damage is irreversible (Fazleen andWilkinson, 2020). Detecting early or
pre-COPD cases, where clinical signs are absent or airflow obstruction
is not evident in spirometry, can be challenging. Breath tests offer a
valuable tool for identifying these cases that diagnostic tests may miss.

Eight studies are indicated in Tables 1, 2; Supplementary Table S4.
Jareño-Esteban et al. (2017) targeted five VOCs (hexanal, heptanal,
nonanal, propanoic acid, and nonanoic acid) as potential biomarkers.
Although hexanal and nonanal were upregulated in COPD patients
compared to non-smokers (HC), no significant VOCs were found
between COPD patients and active smokers (HC). Both these VOCs
were reported in previous studies (Table 2).

Four studies compared COPD patients with HCs, two being
performed in the same geographical area (UK), in different research
groups. Phillips et al. (2012) applied different machine learning

methods, which included a step of FS, to compare the whole group of
COPD with HCs, active with former smokers within the COPD
group, and COPD with HCs (non-smokers). Of the automatically
generated VOCs in the three comparisons (12, 13, and 10,
respectively), six overlapped. Likewise, two of these six shared
VOCs were reported by Gaida et al. (2016), and another six
VOCs were reported in different studies (Table 2). Moreover,
Basanta et al. (2012) built a classification model containing
11 VOCs after data reduction (UVA and PCA), with an accuracy
of 70.0%. The groups were further divided and compared by
smoking status, improving the performance of the model,
especially when active smokers were compared (91.0% accuracy).
Furthermore, four VOCs were correlated with sputum
eosinophils ≥1%, one VOC with sputum eosinophils ≥2%, and
four VOCs with exacerbation episodes (≥2/year). The prediction
models showed an accuracy of 75.0% and 88.0% for sputum
eosinophils ≥1% and sputum eosinophils ≥2%, respectively, and
83.0% for exacerbations, after LOOCV. Of these 11 VOCs,
3 aldehydes (decanal, hexanal, and nonanal) were shared with
Jareño-Esteban et al. (2017) and Phillips et al. (2012) (Table 2).
Additionally, Gaida et al. (2016) studied two cohorts of COPD
patients and HCs from different locations, which were split by
smoking habits. Overall, 14 VOCs showed potential as COPD
biomarkers, with 4 being reported also by Phillips et al.
(2012) (Table 2).

The study byMonedeiro et al. (2021) was previouslymentioned in
the LC/asthma section, with untargeted and targeted analyses to build
classificationmodels that distinguish COPD, LC, asthma patients, and
HCs, yielding 85.7% and 91% overall accuracy (untargeted and
targeted, respectively). Two of these VOCs (isopropyl alcohol and
limonene) were shared with Cazzola et al. (2015), and two additional
VOCs were common with other studies (Table 2).

The remaining studies focused on COPD exacerbations. Pizzini
et al. (2018) applied UVA and post hoc analysis between pairwise
combinations, resulting in 12 significant VOCs. Additionally, four
VOCs were classified as discriminative for acute exacerbation (A)
COPD, two VOCs were classified as discriminative for stable (S)
COPD, and two VOCs as associated with COPD. The RF model
containing these 12 VOCs could classify COPD patients value (e.i.
0.970, 78.0% sensitivity, and 91.0% specificity) AUC. Meanwhile,
van Velzen et al. (2019) sampled the same cohort of COPD patients
before (baseline), during, and after (recovery) an exacerbation
episode. The UVA between the Clinical COPD Questionnaire
(CCQ) symptom scores and VOCs resulted in 10 discriminative
compounds. The subsequent MVA discriminated between baseline
and exacerbation and between exacerbation and recovery with
accuracies of 71.0% and 75.0% , respectively.

3.2.3 OSA
OSA is a respiratory disorder with an incidence of 24% in men

and 9% in women (30–60 years of age), affecting nearly 1 billion
people worldwide (Lv et al., 2023). OSA is characterized by the
repeated collapse of the pharynx, leading to episodes of apnea or
hypopnea accompanied by decreased oxygen levels and interruptions
in sleep. It is associated with poor sleep quality and daytime sleepiness,
as well as an increased risk for several metabolic and cardiovascular
pathologies (arterial hypertension, diabetes, etc.), and depression
(Lévy et al., 2015; Schwarz et al., 2017; Nowak et al., 2021).
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Current OSA diagnosis relies on sleep examination (monitoring
sleep stages and cycles), mainly through polysomnography, a costly,
time-consuming, and inconvenient test. Although home tests are
available, these devices are subject to more measurement errors
compared to polysomnography (Kapur et al., 2017). Moreover,
several nights should be monitored to obtain a more reliable
diagnosis (Stöberl et al., 2017). Therefore, breath tests are
presented as a potential tool for both the screening and
diagnosis of OSA.

Two independent targeted studies focusing on OSA are included
in Table 1 and Supplementary Table S4. Bayrakli et al. (2016) studied
the levels of acetone and butanol in patients before and after
sleep. Although butanol was upregulated in patients compared to
HC (after sleep), this VOC was not significantly increased between
patients (before vs. after sleep). Conversely, Aoki et al. (2017)
focused on 14 VOCs, which included aromatic, alicyclic, chain
hydrocarbons, isoprene, acetone, and ethanol, and classified OSA
patients into moderate, severe, and most severe in terms of the
apnea–hypopnea index (AHI). The UVA yielded four VOCs
upregulated in all OSA patients, four VOCs in severe and most
severe OSA patients, and three VOCs exclusively in the most severe
OSA patients compared to HCs. Furthermore, four of these VOCs
(ethylbenzene, p-xylene, phenylacetic acid, and nonane) showed
increased levels according to OSA severity, being correlated with the
AHI, arousal index, and duration of percutaneous oxygen saturation
(SpO2) ≤ 90%. Additionally, the levels of acetone and isoprene
decreased after continuous positive airway pressure treatment.
Nevertheless, no common VOCs were found between these
two studies.

3.2.4 Cystic fibrosis
Cystic fibrosis (CF) is an autosomal recessive genetic pathology

caused by a mutation in the cystic fibrosis transmembrane
conductance regulator (CFTR) gene. This mutation disrupts the
cells’ electrolyte transport system, affecting mainly organs with
secretory functions, such as as the lungs, pancreas, and
reproductive system (Cystic Fibrosis-Causes, 2023). In the lungs,
altered sodium absorption results in thick, hardened secretions,
increasing the risk of respiratory infections, inflammation, and
oxidative stress (Roesch et al., 2018). Pulmonary exacerbations
(PEx) are frequent events in the progression of the pathology,
potentially leading to permanent lung function loss, reduced
quality of life, and decreased survival. PEx treatment includes
antibiotics, but delayed symptom onset worsens outcomes (Goss,
2019). The identification of PEx relies on symptomatology, clinical
evaluation, and the measurement of changes in forced expiratory
volume in one second (FEV1pp) using spirometry devices (Goss,
2019). The use of breath tests to predict PEx in CF is a promising
approach. In two independent untargeted studies, CF PEx in
children was studied, as shown in Table 1; Supplementary Table
S4. van Horck et al. (2021) performed a 1-year observational pilot
study, recruiting patients from three different centers. The RFmodel
with the nine most discriminating VOCs could predict 79.0% of
patients with stable or upcoming PEx (within 7 days) (79.0%
sensitivity and 78.0% specificity). However, no single VOC was
found significantly altered when applying UVA between stable and
CF PEx patients. Meanwhile, Woollam et al. (2022b) divided the CF
patients into CF baseline (not suffering from PEx) and CF PEx. Four

VOCs were found to be correlated with FEV1pp at the time of breath
collection, of which two VOCs (4-methyl-octane and 3,7-
dimethyldecane) were further correlated with changes in
FEV1pp. Moreover, four VOCs were found to be significantly
different between CF baseline and CF PEx patients: 3,7-
dimethyldecane, durene, and 5-methyltridecane were downregulated,
and 2,4,4-trimethyl-1,3-pentanediol 1-isobutyrate was upregulated in
PEx patients. Although both studies aimed to identify differential VOCs
between CF stable and CF PEx patients, none of the reported
were shared.

3.3 VOCs in infectious pathologies

3.3.1 Pneumonia (CAP/HAP/VAP)
CAP, HAP, and VAP are lower respiratory tract infections

associated with high morbidity, mortality, and healthcare costs
(Ferreira-Coimbra et al., 2020; Munro et al., 2021; Alnimr, 2023).
HAP is developed after 48 h of hospitalization, while VAP is the
most frequent infection in the intensive care unit (ICU), developed
after endotracheal intubation (Modi and Kovacs, 2020). The pathogens
involved encompass Gram-positive bacteria (Staphylococcus aureus and
Streptococcus pneumoniae), Gram-negative bacteria (Pseudomonas
aeruginosa, Haemophilus influenzae, Klebsiella pneumoniae, and
Acinetobacter baumannii), and fungi (Aspergillus spp. and Candida
spp.) (Filipiak et al., 2013, 2015).

Current diagnostics rely on clinical, radiological, and
microbiological cultures of respiratory samples [endotracheal
aspirates, bronchoalveolar lavage (BAL), and protected specimen
brush], which present high inter-variability and moderate sensitivity
and specificity. The microbiological confirmation can take several
days, leading to overtreatment with antibiotics until the specific
pathogen is identified (Fernando et al., 2020; Modi and Kovacs,
2020). Therefore, there is an urgent requirement for less invasive and
faster diagnostic techniques.

In the case of VAP, van Oort et al. (2017a) presented a protocol
for a prospective multicenter study named BreathDx (Molecular
Analysis of Exhaled Breath as Diagnostic Test for Ventilator-
Associated Pneumonia), aiming to develop a breath test capable
of distinguishing suspected VAP patients, with a 99% sensitivity for
culture-positive cases. It also aimed to identify unique VOC patterns
that could predict specific pathogen infections, holding promise for
more efficient VAP diagnosis and treatment.

Seven studies focusing on VAP, and one on CAP/HAP, are
summarized in Tables 3–5. To date, two studies have been
conducted in relation to BreathDx. Van Oort et al. (2022)
performed an untargeted study within a group of intubated and
ventilated ICU patients with suspected VAP, further divided into
culture-positive (CP) and culture-negative (CN) BAL samples.
Moreover, two platforms were used to cover a wider range of
compounds: GC-MS-1 for more volatile compounds and GC-
MS-2 for heavier and cyclic volatile compounds. The
discriminative model that included 20 VOCs previously selected
by UVA andMVA showed 0.830–0.870 AUCs, even when applied to
a different set of samples. Furthermore, Ahmed et al. (2023)
performed a targeted study focusing on microbial VOCs
(mVOCs) previously selected from bacterial species associated
with VAP (S. aureus, P. aeruginosa, K. pneumoniae, and
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Escherichia coli). In the case of CP for S. aureus, two VOCs were
upregulated compared to the other patients value (e.i. 0.790–0.870)
AUC. In the case of CP for P. aeruginosa, two VOCs were
downregulated compared to CP for other pathogens, and one of
these VOCs (identified as 3-methylbutanal) was common with CP
for S. aureus. Moreover, those VAP patients with CP for bacteria
known to metabolize tryptophan (E. coli, Klebsiella oxytoca, and H.
influenzae) presented increased levels of indole. Despite the fact that
both studies followed the same BreathDx protocol, no shared VOCs
were identified. However, two VOCs (dimethyl sulfide and
tetrahydrofuran) reported by Van Oort et al. (2022) and another
two (3-methylbutanal and acetone) by Ahmed et al. (2023) were also
found in other studies (Table 5).

Additionally, several research groups participating in BreathDx
had previously conducted studies focusing on CAP/HAP/VAP, one
aiming at possible biomarkers for CAP/HAP (Van Oort et al.,
2017b). In this study, patients were categorized based on their
clinical suspicion, namely, probable CAP/HAP patients (high
clinical suspicion), possible CAP/HAP patients (low clinical
suspicion), colonized patients (without symptoms of pneumonia),
and controls. Additionally, the entire patient cohort was divided into
CP and CN. In the UVA, probable CAP/HAP patients and those
who were CP presented 11 and 52 downregulated VOCs,
respectively, and the classification models could discriminate
between groups based on their clinical suspicion, and among CP
and CN, even after LOOCV value (e.i. 0.730 and 0.690, respectively)
AUC. While this study differed from the others, since they focused
on CAP/HAP, several VOCs were shared, such as acetone, which
was described by Ahmed et al. (2023), and 2-methylcyclopentanone,
as reported by Fowler et al. (2015) (Table 5). The aforementioned
study (Fowler et al., 2015) was performed by another research group
involved in BreathDx, where ventilated ICU patients were sampled
over their stay at five different time points to identify the VOCs
that could be used to predict the risk of developing VAP. The
model could separate CP and CN patients (sensitivity 98.0% and
specificity 97.0%), and eight VOCs were selected as potential
predictors (four downregulated and four upregulated). Several
of these VOCs were common in different studies, such as
ethanol, which was reported in a total of four independent
studies (Table 5). In this regard, Schnabel et al. (2015)
constructed an RF model based on 12 VOCs, such as ethanol,
which correctly classified 74.2% of VAP and non-VAP patients
(75.8% sensitivity, 73.0% specificity, and 0.870 AUC).
Furthermore, when searching these VOCs in human and VAP-
causing bacteria pathways, ethanol was found to be involved in six
distinct pathways. Although ethanol seems to be a promising
biomarker, its involvement in VAP development should be
further studied, as this VOC participates in many physiological
and pathological processes, such as OS, and its origin can be
attributed to alcohol consumption.

Additionally, two studies focused on mVOCs previously
detected in vitro from different cultures of pathogens associated
with VAP. Filipiak et al. (2015) annotated 13 mVOCs in CP for S.
aureus and 11 mVOCs in CP for Candida albicans. Considering the
possible coexistence of VAP-causing pathogens, the study further
aimed to explore and assess differential mVOCs that could
potentially be associated with the progression of VAP caused by
each pathogen. In this regard, 4-heptanone was found to be possibly

related to C. albicans; propane and butane to S. aureus; acetanilide,
2-pentanone, and dimethyl sulfide to E. coli; 3-methyl-1-butene to
H. influenzae; 1-undecene to P. aeruginosa; and n-hexane, iso-
butane, and 2-methyl-1-butene to S. pneumoniae. Likewise, Gao
et al. (2016) studied the presence of mVOCs in VAP patients,
focusing on A. baumannii. For this purpose, A. baumannii VAP
patients, A. baumannii colonized patients, and controls were
compared, yielding 19 significant VOCs by UVA, 4 being also
detected in in vitro A. baumannii cultures. Moreover, 8 of
these VOCs were considered derived from A. baumannii, being
able to differentiate A. baumannii VAP patients from colonized
patients, as well as from controls (0.880 and 0.890 AUCs,
respectively). Both studies reported three VOCs in common.
Additionally, one VOC was reported by Filipiak et al. (2015). 3-
Methylbutanal was also found in the BreathDx study (Ahmed et al.,
2023) (Tables 5).

3.3.2 COVID-19
In the past 3 years, COVID-19 has led to approximately

750 million confirmed cases and nearly 7 million deaths
worldwide according to the WHO (WHO Coronavirus
Dashboard, 2023). Several diagnostic tests were developed to
contain the outbreak, such as reverse-transcription polymerase
chain reaction (RT-PCR) for SARS-CoV-2 RNA detection in
nasopharyngeal or oral swab samples, and antigen tests for spike
(S) protein and nucleocapsid (N) protein detection. However, these
tests have variable false-negative rates (Kucirka et al., 2020), with
antigen tests being less sensitive and specific than RT-PCR (Scohy
et al., 2020). Furthermore, these tests require multiple reagents, and
in the case of RT-PCR tests, specialized equipment and trained
technicians are required.

Despite the vaccination of over 13 million people worldwide
(WHO Coronavirus Dashboard, 2023), COVID-19 remains an
ongoing public health challenge. The potential emergence of
more transmissible variants, changes in clinical symptoms,
immune evasion (even in vaccinated individuals), and the
possibility of reinfection are significant concerns. Additionally,
distinguishing COVID-19 from other upper respiratory infections
is crucial for isolation and transmission prevention. Consequently,
breath tests, particularly in resource-limited settings, could offer a
rapid means of diagnosing COVID-19.

Five studies that focused on COVID-19 are included in Tables 3
and 4. Two studies were conducted within a cohort of hospitalized
patients. The targeted study by Berna et al. (2021) was performed in
a cohort of pediatric patients. Six of the 84 targeted VOCs were
upregulated in COVID-19 patients, which were further validated in
an independent cohort. Moreover, the cumulative abundance of
these six VOCs was evaluated as a diagnostic strategy (0.920 AUC,
91.0% sensitivity, and 75.0% specificity). Likewise, Ibrahim et al.
(2021) identified six VOCs (seven features) that could discriminate
COVID-19-positive test patients and COVID-19-negative test
patients (0.836 AUC, 68.0% sensitivity, and 85.0% specificity),
although the model based on 11 VOCs showed 0.659 AUC,
discriminating patients based on clinical suspicion. In both
comparisons, only two VOCs, 1-propanol and benzaldehyde,
were common, suggesting that the specific metabolic alterations
caused by COVID-19 are not necessarily related to symptomatology,
especially if the symptoms are shared with other upper respiratory
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TABLE 3 Summary of studies focused on pneumonia and COVID-19. AB, alveolar breath; BSG, breath-gas sampler; CAP, community-acquired pneumonia; GC×GC, two-dimensional gas chromatography; HAP, hospital-acquired
pneumonia; MB, mixed breath; MS, mass spectrometry; na, not applicable; nd, not detailed; NIST, National Institute of Standards and Technology; QTOF, quadrupole time-of-flight; SPME, solid-phase microextraction; TD,
thermal desorption tube; TOF, time-of-flight; VAP, ventilator-associated pneumonia.

Reference Pathology Methodology Sample Sampling Analysis
technique Sorbent material Column IS

Identification

Library Authentic
STD

Van Oort et al.
(2022)

VAP Untargeted MB BGS TD-GC-MS
Carbograph 5TD
300 mg/Tenax GR

90 mg

VF1-MS column (30 m ×
0.25 mm × 1 μm) (Varian)

Acetone-D8, hexane-D14,
toluene-D8, and xylene-D10

NIST No

Van Oort et al.
(2017a)

CAP/HAP Untargeted MB — TD-GC-MS Tenax GR 250 mg
VF1-MS column (30 m ×
0.25 mm × 1 μm) (Varian)

No NIST No

Gao et al. (2016) VAP Untargeted MB — TD-GC-MS Tenax TA
Rtx-5MS (30 m ×

0.25 mm × 0.25 μm)
No NIST No

Fowler et al.
(2015)

VAP Untargeted MB — TD-GC-TOF-MS Tenax TA/Carbotrap
RTX-5 amine column
(30 m × 0.25 mm ×
0.5 μm) (Restek)

4-Bromofluorobenzene NIST No

Schnabel et al.
(2015)

VAP Untargeted MB Tedlar® bag TD-GC-TOF-MS
Carbograph 1TD/
Carbopack X

RTX-5MS (30 m ×
0.25 mm × 1 μm)

No NIST No

Filipiak et al.
(2015)

VAP Targeted AB Glass syringe TD-GC-MS
Carbotrap B 80 mg/
Carbopack X 260 mg

PoraBOND Q (25 m ×
0.32 mm × 5 μm)

(Varian)
No NIST No

Ahmed et al.
(2023)

VAP Targeted MB BGS TD-GC-MS Tenax GR 200 mg
DB-5MS (30 m ×

0.25 mm × 0.25 μm)
(Agilent)

4-Bromofluorobenzene na Yes

Cen et al. (2023) COVID-19 Untargeted AB ReCIVA
TD-GC×GC-
TOF-MS

Tenax TA/
Carbograph 5TD

DB-624 (30 m ×
0.25 mm × 1.4 μm)
(Agilent) 1D and DB-
WAX column (5 m ×
0.25 mm × 0.25 μm)

(Agilent) 2D

Bromochloromethane,
chlorobenzene-d5, and 1,4-

dichlorobenzene-d4
NIST Yes

Myers et al. (2023) COVID-19 Untargeted MB Tedlar® bag TD-GC-TOF-MS
Tenax TA/

Carbograph 1TD
nd Toluene-D8 nd Yes

Woollam et al.
(2022a)

COVID-19 Untargeted MB Tedlar® bag
SPME-GC-
QTOF-MS

DVB/Car/PDMS
HP-5MS (30 m ×

0.25 mm × 0.25 µm)
(Agilent)

No nd Yes

Ibrahim et al.
(2021) COVID-19 Untargeted MB Tedlar® bag TD-GC-MS Carbograph 1TD

DB-5MS (60 m ×
0.25 mm × 0.25 μm)

(Agilent)

Toluene-d8, phenanthrene-d10,
and n-octane-d18

In-house
library Yes

Berna et al. (2021) COVID-19 Targeted MB
SamplePro
FlexFilm

Sample Bag

TD-GC×GC-
TOF-MS

Tenax/Carbograph/
Carboxen

Stabilwax (30 m ×
250 μm × 0.25 μm)
(Restek) 1D and Rtx-

200MS (5 m × 250 μm ×
0.1 μm) (Restek) 2D

Bromochloromethane, 1,4-
difluorobenzene, chlorobenzene-
D5, and 4-bromofluorobenzene

na Yes
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TABLE 4 Summary of group comparisons, statistical approaches, and identified VOCs in the studies focused on pneumonia and COVID-19. CAP, community-
acquired pneumonia; CLZ, airway colonized; CN, culture-negative; CP, culture-positive; CTR, controls; FU COVID-19, follow-up samples of COVID-19 patients; HAP,
hospital-acquired pneumonia; MVA, multivariate analysis; non-VAC, non-vaccinated; non-VAP, non-ventilator–associated pneumonia; PR CAP/HAP, probable
community-acquired pneumonia/hospital-acquired pneumonia; PS CAP/HAP, possible community-acquired pneumonia/hospital-acquired pneumonia; UVA,
univariate analysis; VAC, vaccinated; VAP, ventilator-associated pneumonia; VOCs, volatile organic compounds.

Reference Pathology Comparison Statistical
approach Significant VOC Detail

Van Oort et al.
(2022)

VAP CP (n = 52) vs. CN (n = 56) UVA/MVA

1-Propenylbenzene (down), 2-
bromophenol (down), 2-

propenylbenzene (down), 2-
methyldecane (up), 2,2-

dimethyldecane* (up), 2,2,4,4-
tetramethyloctane* (up), 2,6-

difluorobenzaldehyde (up), 2,6,7-
trimethyldecane (up), 3-

methylheptane** (down), 6-methyl-5-
hepten-2-one (up), cyclohexane (down),
cyclohexanol (up), dimethyl sulfide*
(up), enflurane (up), formaldehyde*
(up), isopropylbenzene (down), m-di-

tert-butylbenzene (down), and
tetrahydrofuran (up)

*Significant VOCs in the UVA;
**VOC reported in both

platforms

Van Oort et al.
(2017a)

CAP/HAP

PR CAP/HAP (n = 12) vs. PS CAP/
HAP (n = 21) vs. CLZ (n = 13) vs.
CTR (n = 47)/CP (n = 25) vs. CN

(n = 68)

UVA/MVA

1-Pentanol* (down), 1-propanol**
(down), 2-ethoxy-2-methyl-propane**
(down), 2-methylcyclopentanone*
(down), 5-methyl-2-heptanone*
(down), acetone (down), carbon

disulfide (down), cyclohexene (down),
cyclohexanone* (down),

hexafluoroisopropanol (down), methyl
isobutyl ketone (down), and sevoflurane

(down)

*VOCs colonized vs. non-
colonized; **common VOCs PR
CAP/HAP vs. CTR and colonized

vs. non-colonized

Gao et al. (2016) VAP
VAP (n = 20) vs. CLZ (n = 20) vs.

CTR (n = 20)
UVA/MVA

1,5-Dimethyl-naphthalene (a), 1-
undecene** (up), 2,6,10-trimethyl-
dodecane* (up), 2-butyl-1-octanol*

(up), 2-ethyl-1-hexanol (a), 5-methyl-5-
propyl-nonane* (up), benzaldehyde (a),

butylated hydroxytoluene (a),
cyclohexanone (a), decanal** (up),

ethanol (a), isoprene (a), longifolene**
(up), n-nonylcyclohexane (a), nonanal*
(up), tetradecane** (up), toluene (a), α-

cedrene (a), and α-funebrene (a)

*Significant VOCs derived from
Acinetobacter baumannii;

**common VOCs in vitro and in
vivo

Fowler et al.
(2015)

VAP CP (n = 15–26) vs. CN (n = 31–20) MVA

2,6,11,15-Tetramethyl-hexadecane (up),
2-methyl cyclopentanone (down), 3-
carene (up), ethanol (down), heptane
(down), n-butyric acid 2-ethylhexyl

ester (up), N-cyclohexyl-N′(2-
hydroxyethyl)thiourea (down), and

nonanal (up)

Schnabel et al.
(2015)

VAP VAP (n = 32) vs. non-VAP (n = 68) MVA

Acetone (down), acrolein (down),
butane, 2-methyl (up), carane (up),
dodecane (down), ethanol (up),

ethylbenzene (up), tetrahydrofuran
(down), heptane (up), isopropyl alcohol

(down), tetradecanal (up), and
tetradecane (up)

Filipiak et al.
(2015)

VAP VAP (n = 22) vs. non-VAP (n = 6) -

(E)-2-Butene (a), (Z)-2-butene (a), 1,3-
butadiene (a), 1-undecene***** (a), 2-

methyl-1-butene****** (a), 2-
methylpropene (a), 2-pentanone*** (a),

3-methylbutanal (a), 3-methyl-1-
butene**** (a), 4-heptanone** (a),
acetaldehyde (a), acetic acid (a),

acetonitrile*** (a), benzaldehyde (a),
butane* (a), dimethyl sulfide*** (a),

ethanol (a), ethyl acetate (a), hexanal (a),
hexane****** (a), iso-butane****** (a),
methacrolein (a), methanol (a), methyl
vinyl ketone (a), propanal (a), and

propane* (a)

*VOCs related to the course of
infection with Staphylococcus
aureus; **VOCs related to the

course of infection with Candida
albicans; ***VOCs related to the

course of infection with
Escherichia coli; ****VOCs

related to the course of infection
with Haemophilus influenzae;

*****VOCs related to the course
of infection with Pseudomonas
aeruginosa; *******VOCs related
to the course of infection with
Streptococcus pneumoniae

(Continued on following page)
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infections. These two studies presented one VOC in common,
octanal (Table 5).

Conversely, two other studies were conducted on non-hospitalized
COVID-19-positive patients. Woollam et al. (2022a) enrolled a cohort
undergoing COVID-19 testing due to symptom onset, contact with
symptomatic individuals, or mitigation testing. When COVID-19
patients were compared with HC, 41 VOCs were found to be
significantly altered, mostly upregulated. Curiously, COVID-19
patients were divided into two subclasses based on their VOC
profiles, one of which presented 4 of the 41 VOCs upregulated
compared to the other subclass and HCs. Furthermore, the set of

41 VOCs could distinguish among groups with 96.0% accuracy,
increasing to 100% when the 16 most significant VOCs were
selected. The predictive classification model based on three VOCs
(hexyl acetate, cedrene, and 3,5,5-trimethylhexanal) presented 100%
sensitivity and 92.0% specificity value (e.i. 0.990) AUC. Lastly,
11 COVID-19 patients were sampled after recovery, and 34 VOCs
recovered baseline levels, although five were still upregulated. When
including this group in the final model, recovered COVID-19 patients
clustered with controls and could be distinguished from COVID-19
patients with 90.0% accuracy. Myers et al. (2023) included patients
presenting upper respiratory infections from two different ambulatory

TABLE 4 (Continued) Summary of group comparisons, statistical approaches, and identified VOCs in the studies focused on pneumonia and COVID-19. CAP,
community-acquired pneumonia; CLZ, airway colonized; CN, culture-negative; CP, culture-positive; CTR, controls; FU COVID-19, follow-up samples of COVID-19
patients; HAP, hospital-acquired pneumonia; MVA, multivariate analysis; non-VAC, non-vaccinated; non-VAP, non-ventilator–associated pneumonia; PR CAP/
HAP, probable community-acquired pneumonia/hospital-acquired pneumonia; PS CAP/HAP, possible community-acquired pneumonia/hospital-acquired
pneumonia; UVA, univariate analysis; VAC, vaccinated; VAP, ventilator-associated pneumonia; VOCs, volatile organic compounds.

Reference Pathology Comparison Statistical
approach Significant VOC Detail

Ahmed et al.
(2023)

VAP CP (n = 45) vs. CN (n = 59) UVA
3-Methylbutanoic acid (up), 3-

methylbutanal* (down/up*), acetone*
(down), and indole** (up)

*Significant VOCs P. aeruginosa
vs. other pathogen-positive
culture; **significant VOC in

patients with positive culture for
bacteria that can metabolize

tryptophan; down/up* different
alterations between group

comparisons

Cen et al. (2023) COVID-19
VAC (n = 54) vs. non-VAC

(n = 50)
UVA/MVA

2-Methyloctane* (down), 6-methyl-5-
hepten-2-one (up), acetonitrile* (down),
benzene (down), benzothiazole (up),

cyclopentanone (up), hexanal* (down),
methanesulfonyl chloride (up), and

phenol* (down)

*VOCs in UVA

Myers et al.
(2023)

COVID-19
COVID-19 (n = 69) vs. FU

COVID-19 (n = 22) vs. CTR (n =
58) vs. HC (n = 21)

UVA/MVA

1-Propene, 1-(methylthio)-, (E)-
(down), 2,2,4,6,6-

pentamethylheptane**/*** (up), 2,2,4-
trimethylpentane*/*** (up), 2-
methyldecane*** (down/up*), 2-
methylpentane**/*** (up), 2-

pentanone*** (up), 3-methylheptane*/
*** (up), allyl methyl sulfide*/*** (down/
up*), cyclohexanone*** (up), dimethyl
disulfide (down), ethyl acetate**/***

(up), heptanal (up), hexane**/*** (up),
indole*** (up), methyl acetate**/***
(down), methyl butyrate**/*** (up),

sulcatone*/*** (down/up*), α-
phellandrene**/*** (down), and γ-

terpinene**/*** (down)

*Common VOCs between
comparisons: COVID-19 vs. FU
COVID-19 and COVID-19 vs.
CTR; **significant VOCs in

COVID-19 vs. FU COVID-19;
***significant VOCs in the UVA;
down/up* different alterations
between group comparisons

Woollam et al.
(2022a)

COVID-19
COVID-19 (n = 14) vs. HC

(n = 12)
UVA/MVA

3,5,5-Trimethylhexanal (up), cedrene
(up), and hexyl acetate (up)

Ibrahim et al.
(2021)

COVID-19
COVID-19 (n = 52) vs. CTR

(n = 29)
MVA

1-Propanol** (up), 2,2-dimethyl-1-
propanol* (a), 3-heptene* (a), 3,6-

dimethylundecane (up), 4-ethenyl-1,2-
dimethyl-benzene* (a), acetic acid
methyl ester* (a), acetoin* (a),

benzaldehyde** (a), camphene (up),
cyclohexene* (a), iodobenzene (up),

octanal* (a), pentadecane* (a),
tetrachloroethylene* (a), and β-

cubebene (up)

*VOCs identified in clinical
suspicion comparison; **VOC
identified in both comparisons
(COVID-19 test and clinical

suspicion)

Berna et al. (2021) COVID-19
COVID-19 (n = 22) vs. CTR

(n = 27)
UVA/MVA

2-Pentyl-furan (up), dodecane (up),
heptanal (up), nonanal (up), octanal

(up), and tridecane (up)
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TABLE 5 VOCs reported in pneumonia and COVID-19 (two or more studies). na, not applicable; ppbv, parts per billion by volume. *Downregulated in culture
positive for P. aeruginosa ventilator-associated pneumonia patients and upregulated in culture positive for S. aureus ventilator-associated pneumonia patients;
**downregulated in COVID-19 patients compared to follow-up COVID-19 patients and upregulated in COVID-19-positive patients compared to COVID-19-negative
patients and healthy controls.

Pneumonia (CAP/HAP/VAP)

No. Compound
name Cas-N Formula Chemical

class
Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit Reference

1 Ethanol 64-17-5 C2H6O Alcohol

Upregulated na na na
Schnabel

et al. (2015)

Altered na na na
Gao et al.
(2016)

Altered na na na
Filipiak et al.

(2015)

Downregulated na na na
Fowler et al.

(2015)

2 3-Methylbutanal 590-86-3 C5H10O Aldehyde

Altered na na na
Filipiak et al.

(2015)

Downregulated/
upregulated*

na na na
Ahmed et al.

(2023)

3 Benzaldehyde 100-52-7 C7H6O Aldehyde

Altered na na na
Gao et al.
(2016)

Altered na na na
Filipiak et al.

(2015)

4 Nonanal 124-19-6 C9H18O Aldehyde

Upregulated na na na
Fowler et al.

(2015)

Upregulated na na na
Gao et al.
(2016)

5 Tetrahydrofuran 109-99-9 C4H8O Ether

Downregulated na na na
Schnabel

et al. (2015)

Upregulated na na na
Van Oort
et al. (2022)

6 Heptane 142-82-5 C7H16
Hydrocarbon
(saturated)

Upregulated na na na
Schnabel

et al. (2015)

Downregulated na na na
Fowler et al.

(2015)

7 Tetradecane 629-59-4 C14H30
Hydrocarbon
(saturated)

Upregulated na na na
Schnabel

et al. (2015)

Upregulated na na na
Gao et al.
(2016)

8 1-Undecene 821-95-4 C11H22
Hydrocarbon
(unsaturated)

Upregulated na na na
Gao et al.
(2016)

Altered na na na
Filipiak et al.

(2015)

9
2-

Methylcyclopentanone
1120-72-5 C6H10O Ketone

Downregulated na na na
Fowler et al.

(2015)

Downregulated na na na
Van Oort

et al. (2017a)

10 Acetone 67-64-1 C3H6O Ketone

Downregulated na na na
Van Oort

et al. (2017a)

Downregulated na na na
Schnabel

et al. (2015)

Downregulated na na na
Ahmed et al.

(2023)

(Continued on following page)

Frontiers in Molecular Biosciences frontiersin.org20

Bajo-Fernández et al. 10.3389/fmolb.2023.1295955

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1295955


care settings. Moreover, some COVID-19 patients infected with Alpha,
Beta, or Delta variants were resampled after 8–12 weeks (FU COVID-
19). In theMVA, 12 VOCs could discriminate between COVID-19 and
FU COVID-19 patients value (e.i. 0.825–0.862) AUC. Furthermore,
COVID-19 patients and controls (COVID-19-negative test patients
presenting symptoms) could be distinguished by 11 VOCs, which were
further validated in an independent cohort value (e.i. 0.960, 80.0%
sensitivity, and 90.0% specificity) AUC. From both comparisons, four
common VOCs (2,2,4-trimethylpentane, sulcatone, allyl methyl sulfide,
and isobutyric acid) were identified.

Additionally, Cen et al. (2023) investigated the metabolic
reprogramming triggered by the inactivated COVID-19 vaccine,
comparing the VOC profiles of COVID-19 vaccinated and
unvaccinated subjects. The discriminative model based on nine
VOCs (from 21 identified in both UVA and MVA), which
included 6-methyl-5-hepten-2-one already found by Myers et al.
(2023) (Table 5), exhibited 94.4% overall accuracy, 91.3% sensitivity,

and 98.6% specificity value (e.i. 0.995) AUC. Furthermore, the
examination of the biomarkers’ metabolic pathways demonstrated
that the protective metabolic regulation induced by the vaccine
influences enzymatic activity and microbial metabolism within the
lungs, liver, and gastrointestinal tract.

3.4 Searching for pathology-specific VOCs
in human exhaled breath

The search for potential biomarkers in exhaled breath is
challenging due to the substantial variability in the
concentration of VOCs. This variability is due to metabolic
activity but also depends on lifestyle choices (smoking,
exercise, diet, etc.) and/or exposure to exogenous factors, such
as pollutants and other environmental compounds, among
others. Despite this challenge, numerous studies have focused

TABLE 5 (Continued) VOCs reported in pneumonia and COVID-19 (two or more studies). na, not applicable; ppbv, parts per billion by volume. *Downregulated in
culture positive for P. aeruginosa ventilator-associated pneumonia patients and upregulated in culture positive for S. aureus ventilator-associated pneumonia
patients; **downregulated in COVID-19 patients compared to follow-up COVID-19 patients and upregulated in COVID-19-positive patients compared to COVID-
19-negative patients and healthy controls.

Pneumonia (CAP/HAP/VAP)

No. Compound
name Cas-N Formula Chemical

class
Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit Reference

11 Cyclohexanone 108-94-1 C6H10O Ketone

Altered na na na
Gao et al.
(2016)

Downregulated na na na
Van Oort

et al. (2017a)

12 Dimethyl sulfide 75-18-3 C2H6S
Sulfur-

containing

Upregulated na na na
Van Oort
et al. (2022)

Altered 0–101.5 na ppbv
Filipiak et al.

(2015)

COVID-19

No Compound
name CAS-N Formula Chemical

class
Sign of
alteration

Concentration
(patients)

Concentration
(controls) Unit

First
author/
year

1 Heptanal 111-71-7 C7H14O Aldehyde

Upregulated na na na
Berna et al.

(2021)

Upregulated na na na
Myers et al.

(2023)

2 Octanal 124-13-0 C8H16O Aldehyde

Upregulated na na na
Berna et al.

(2021)

Altered na na na
Ibrahim et al.

(2021)

3 Methyl acetate 79-20-9 C3H6O2 Ester

Altered na na na
Ibrahim et al.

(2021)

Downregulated na na na
Myers et al.

(2023)

4
6-Methyl-5-hepten-

2-one
110-93-0 C8H14O Ketone

Upregulated na na na
Cen et al.
(2023)

Downregulated/
upregulated**

na na na
Myers et al.

(2023)
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on identifying specific VOCs associated with a wide range of
pathologies. Nevertheless, the results of these studies should be
interpreted with caution. In most instances, the origin of
these VOCs remains unidentified, which can lead to false
discoveries.

The VOCs included in Tables 2, 5; Supplementary Table S3, as
classified by Drabińska et al. (2021), are illustrated in Figure 4. As
noted, the analysis of exhaled breath covers a wide range of chemical
species, although the distribution of these is variable across
pathologies. Aldehydes are the most abundant, mainly derived
from alcohol metabolism in the liver or the reduction of
hydroperoxides during lipid peroxidation (Murray et al., 2009;
Hakim et al., 2012), although aldehydes can also come from
cigarette smoking or tobacco components’ detoxification by
cytochrome P450 (Furge and Guengerich, 2006; Papaefstathiou
et al., 2020). This chemical group is predominant in CAP/HAP/
VAP, COVID-19, and COPD.

Ketones are also strongly represented in CAP/HAP/VAP and
COVID-19, mainly resulting from the liver’s synthesis of ketone
bodies (acetoacetate, acetone, etc.) during conditions like diabetes,
fasting, or alcoholism, formed through the metabolism of proteins
and/or as secondary products of lipid peroxidation (Vaz and Coon,
1987; Murray et al., 2009). Remarkably, a significant proportion of
ethers is observed in COVID-19 and BC, although its origin is
commonly attributed to exogenous sources. Other abundant
compounds in BC are alcohols, which may come from the
gastrointestinal tract or are formed through the hydrocarbon’s
metabolism or lipid peroxidation (Ortiz De Montellano, 2010;
Ratcliffe et al., 2020).

Additionally, hydrocarbons are widely reported in exhalates,
primarily saturated, aromatic, branched and cyclic. These
compounds are highly represented in LC, asthma, and CRC.
Hydrocarbons are mainly produced by lipid peroxidation, in an
abnormal metabolic state. Branched-chain hydrocarbons may be of
an endogenous origin from bacterial metabolism (Ratcliffe
et al., 2020).

The concept of the exposome is gaining popularity, encompassing
not only external exposures (chemical agents, radiation, etc.) and
associated physiological responses but also internal sources, such as
microbiota, and “psychosocial components” (Vineis et al., 2020).
Several studies have focused on identifying metabolites related to
the exposome, such as the database developed by Neveu et al. (2023),
which includes microbial metabolites and is supported by evidence on
their origin, and the method developed by González-Domínguez et al.
(2020) for exposome research. Furthermore, the effect of the
exposome on human health has been widely studied (Morales
et al., 2022). Nevertheless, many metabolites associated with the
exposome overlap with those produced by human cells/tissues,
making it a difficult task to establish what can be considered truly
endogenous. This issue is especially challenging for VOCs detected in
exhaled breath, since the pulmonary tract is closely associated with
environmental exposure.

The full list of reported VOCs was used to identify pathology-
specific compounds (Figure 5). The overlapping VOCs may come
from exogenous sources (exposome), such as cigarette smoking,
environmental pollution, or diet, as well as shared endogenous
origins like the ones derived from OS or common VOCs found
in breath, such as isoprene and acetone.

Regarding pathology-specific possible biomarkers, several
unique VOCs were found (Figure 5), especially in LC, according
to the literature reviewed herein. Furthermore, the obtained list of
unique pathology-specific VOCs was submitted to searches on
KEGG and BioCyc databases with the aim of excluding the
VOCs mainly coming from exogenous sources. Upon exclusion
of such exogenous VOCs, the final list of pathology-specific possible
biomarkers is compiled in Table 6. It is worth mentioning that
although these candidate biomarkers might provide useful
information, further research is required to establish associations
with metabolic alterations in each pathology, as well as to discern
between the VOCs that may be related to the exposome and the ones
that are truly endogenous.

Furthermore, the correct metabolite identification is a highly
important aspect in metabolomics, and different levels can be
distinguished based on the reliability of the identification. In this
regard, the Metabolomics Standard Initiative (MSI) levels can
range from 1 to 4, level 1 being the most rigorous (Sumner
et al., 2007).

In the case of LC, four VOCs from Table 6 were reported as
potential biomarkers in at least two different studies
(Supplementary Table S3). In this regard, 2,3-butanedione and
butanal (both MSI level 1) were found to be upregulated. The
remaining candidate biomarkers were reported as altered; thus,
the trend of their levels should be assessed. Propionic acid (MSI
levels 1 and 2) was reported as upregulated and downregulated in
two different studies; therefore, it is not an adequate candidate
due to the contradictory findings. The remaining metabolites
included in Table 6 were reported only once, requiring further
study for their use as pathology-specific biomarkers. Additional
candidate biomarkers whose endogenous origin has not been
established include 2-nonenal (MSI levels 1 and 2), 3-
methylhexane (MSI levels 1 and 2), butanal (MSI level 1),
pentane (MSI level 1), and propylene (MSI levels 1 and 2) for
LC, all of which are reported several times and show a trend
toward increased levels; acrylonitrile (MSI level 1) for GaC is
reported as upregulated in two independent studies; methacrylic
acid (MSI level 2) for BC presents decreased levels; and 1,2-
dimethylcyclohexane (MSI level 2) for asthma and 2-
methylcyclopentanone (MSI level 2) for CAP/HAP/VAP are
reported as downregulated (Tables 2, 5; Supplementary
Table S3).

4 Methodologies

The methodologies used for breath sampling and VOCs’ pre-
concentration and separation in the reviewed studies are presented
in Tables 1, 3; Supplementary Table S1 and illustrated in Figure 6.

4.1 Exhaled breath sampling

Breath samples were categorized in mixed or alveolar breath, as
late expiratory breath sampling was not specified in any study, being
usually confused with alveolar breath. The lack of distinction may be
due to the absence of standardized protocols or guidelines for the
collection of late expiratory breath. Devices that discard dead space

Frontiers in Molecular Biosciences frontiersin.org22

Bajo-Fernández et al. 10.3389/fmolb.2023.1295955

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1295955


air may not ensure true alveolar breath sampling; therefore, only
those with CO2 or pressure sensors should be used for this type
of sample.

Exhaled breath sampling devices can collect from a few milliliters
to 10 L, which depends not only on the device’s capacity but also on
the fraction of breath sampled, since alveolar breath represents
approximately 350 mL of the total expiratory volume. Even though
breath samples can be taken from a single expiration or multiple
expirations, VOC profiles can vary from breath to breath
(Khoubnasabjafari et al., 2022), and the concentrations differ
significantly in hypoventilation, hyperventilation, and normal
ventilation (Cope et al., 2004).

The selection of sample type depends on the compounds of
interest. When studying endogenous VOCs, late expiratory or
alveolar breath are preferred, the latter being more convenient
due to the higher concentration of VOCs and reduced
contamination (Miekisch et al., 2008). However, as depicted in
Figure 6A, mixed breath was the most analyzed sample type,
probably because the devices used for this type of sample are
more affordable and easier to use. However, due to the
increasing interest in endogenous VOCs, alveolar breath was
analyzed in a significant number of studies, especially in those
focused on cancer.

The most common collection device was Tedlar® bags
(Figure 6B), consistent with previous reviews (Lawal et al., 2017;
Westphal et al., 2023).While these bags are subject to contamination
and have limited sample storage time, they are affordable and
reusable, with several cleaning protocols available (Westphal

et al., 2023). Additionally, devices such as Bio-VOC®, breath-gas
sampler, and ReCIVA are gaining popularity, although they are not
as widely used.

Sampling methodologies are organized per type of pathology in
this section as the severity of the pathology may justify specific
approaches.

4.1.1 Cancer
In LC, 14 studies analyzed alveolar breath, while the remaining

9 analyzed mixed breath. The alveolar breath samples were collected
using various techniques, such as Bio-VOC®, BCA, Tedlar®/Mylar
bags, or other devices (analytical barrier bag and breath reservoir). For
mixed breath samples, Tedlar®/Mylar bags were predominantly used,
and some studies employed self-developed devices and glass bulbs.

In GaC, alveolar breath was the main type, sampled either
with Mylar/Tedlar® bags, GaSampler collection bags (QuinTron),
or a custom-built in-house breath sampler. One study used gas-
tight syringes for mixed breath sampling. In CRC, two studies
sampled mixed breath using Tedlar® bags, and the remaining
alveolar breath employed ReCIVA® or other devices [GaSampler
Collection Bag (QuinTron) and gas-tight syringes]. In BC, all
studies collected alveolar breath, using various devices such as
gas-tight syringes, Tedlar® bags, and Bio-VOC®.

4.1.2 Other pulmonary pathologies
In asthma, all the studies collected mixed breath samples using

Tedlar® bags, except for one that analyzed alveolar breath and used
an ABS. In COPD, alveolar breath and mixed breath were selected

FIGURE 4
Bar chart of the chemical classes of VOCs (referred by two or more studies) reported in each pathology. CAP, community-acquired pneumonia;
COPD, chronic obstructive pulmonary disease; HAP, hospital-acquired pneumonia; VAP, ventilator-associated pneumonia.
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with equal frequency. The samplers employed were either Tedlar®
bags or stainless steel tubes for mixed breath, and Bio-VOC® or glass
syringes for alveolar breath. Furthermore, in one study, alveolar

breath was also collected directly into the pre-concentration device.
In OSA, alveolar and mixed breath samples were sampled with Bio-
VOC® and Tedlar® bags, respectively, and in CF, mixed breath was
collected using Tedlar® bags.

4.1.3 Infectious pathologies
In CAP/HAP/VAP, one of the targeted studies sampled alveolar

breath employing glass syringes, while the remaining studies
analyzed mixed breath samples. Since the patients were intubated
and mechanically ventilated, most of the sampling was performed
directly in sorbent tubes, except for three studies that employed
either Tedlar® bags or a breath-gas sampler. In COVID-19, most of
the studies analyzed mixed breath, collecting the sample either using
Tedlar® bags or SamplePro FlexFilm Sample Bags. Only one study
sampled alveolar breath employing ReCIVA.

4.2 Pre-concentration techniques

TD were the most utilized pre-concentration technique,
followed by SPME (Figure 6C), consistent with previous reviews
(Lawal et al., 2017; Westphal et al., 2023). The widespread use of TD
can be attributed to their suitability for long-term sample storage,
ease of transport, and the stability of the entrapped compounds.
However, SPME requires smaller sample volumes and is less affected
by humidity, offering a similar extraction range to TD. Notably,
NTD was used in only a few studies, despite presenting aspects of
both SPME and TD.

FIGURE 5
Upset plot of the VOCs reported in the reviewed studies. BC, breast cancer; CAP, community-acquired pneumonia; COPD, chronic obstructive
pulmonary disease; CRC, colorectal cancer; GaC, gastric cancer; HAP, hospital-acquired pneumonia; LC, lung cancer; OSA, obstructive sleep apnea;
VAP, ventilator-associated pneumonia. Created with RStudio (Conway et al., 2017).

TABLE 6 Pathology-specific proposed biomarkers. BC, breast cancer; CAP,
community-acquired pneumonia; COPD, chronic obstructive pulmonary
disease; CRC, colorectal cancer; GaC, gastric cancer; HAP, hospital-acquired
pneumonia; LC, lung cancer; OSA, obstructive sleep apnea; VAP, ventilator-
associated pneumonia. *Possible exogenous origin.

Pathology PubChem ID Compound*

LC 650 2,3-Butanedione

LC 261 Butanal

LC 1032 Propionic acid

LC 984 Hexadecanal

GaC 225936 2,3-Butanediol

CRC 243 Benzoic acid

CRC 2969 Decanoic acid

BC 10413 4-Hydroxybutanoic acid

Asthma 11005 Myristic acid

Asthma 637540 2-Hydroxycinnamic acid

COPD 2879 p-Cresol

OSA 999 Phenylacetic acid

CAP/HAP/VAP 10430 Isovaleric acid
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The choice of the sorbent material depends on the chemical
nature of the analytes of interest, including polarity and molecular
weight (MW). The most used SPME fiber coating material was Car/
PDMS (mainly 75 µm thickness), followed by DVB/Car/PDMS, and
lastly, PDMS 100 µm and PDMS/DVB (Tables 1, 3; Supplementary
Table S1). These fibers are bipolar, except for PDMS (non-polar),
with the latter compromising the extraction of polar metabolites
(Vas and Vékey, 2004). The wider use of Car/PDMS fiber could be
due to the ability of this coating material to better extract low-
molecular-weight volatiles (MW 30–225 g/mol) compared to PDMS
100 µm (MW 60–275 g/mol) and DVB/PDMS (MW 80–300 g/mol)
(Lawal et al., 2017). However, in a recent study (Schulz et al., 2023),
DVB/Car/PDMS turned out to be the most adequate for untargeted
studies compared to Car/PDMS and PDMS fibers due to the higher
number of extracted VOCs and the stronger overall GC-MS signal.

Regarding TD, Tenax TA is the most used sorbent material
(Tables 1, 3; Supplementary Table S1). Although this material
captures heavy- and less-volatile compounds, its low affinity to
water and the broad sampling range (C6–C30) makes it adequate for
untargeted analysis (Wilkinson et al., 2020). Similarly, a few studies
have opted for Tenax GR. Other sorbent materials encompass
carbon black adsorbents, such as Carbograph 1TD, Carbograph
5TD, Carbopack X, Carbopack B, and Carbotrap. Additionally,
carbon-based materials like Carboxen were employed. These
alternatives offer a narrower range (C3–C20 and C2–C5),
although they facilitate the capture of low-molecular-weight and
more volatile compounds (Lawal et al., 2017; Westphal et al., 2023).
Many studies have employed multi-bed sorbents, with the most
prevalent being Carbograph 1TD/Carbopack X. Furthermore,
combinations of the aforementioned materials have been used,
such as Tenax TA/Carbograph 1TD and Tenax TA/Carbograph

5TD, both of which have been considered for exhaled breath analysis
in previous studies (Wilkinson et al., 2020). Additional
combinations, such as Tenax/Carbograph/Carboxen and
Carbotrap B/Carbopack X, were also employed.

4.3 GC-MS methods

Considering that the main objective of most studies discussed in
the present review was to obtain a snapshot of the VOC content in
the breath samples, and also the analysis conditions and the pre-
concentration techniques. Conditions of the GC-MSmethod such as
the injector mode, chromatographic column, and type of detector
employed for analysis are as important as the preceding pre-
concentration technique.

Regarding GC injector parameters, from the 70 works reviewed,
an astonishing 61% do not detail the type of injector or injection
employed. Such a number is alarming given the fundamental
difference between injecting gaseous and liquid samples. In fact,
for gaseous injections choosing an injector glass liner of smaller
inner diameter would provide a more efficient transfer of analytes
onto the GC column, thus yielding more peak capacity efficiency.
Nonetheless, of the 39% of works that mentioned the employment of
a splitless/split injector, none mentioned the dimensions of the
injector glass liner diameter employed. Out of these split/splitless
injections, 70% of the injected samples are in the splitless mode,
which would indeed be expected for pre-concentration techniques
such as direct TD and SPME.

When it comes to GC columns as presented in Figure 6D
(compiling the information from Tables 1, 3; Supplementary
Table S1), over 50% of the studies herein reviewed employed 5%

FIGURE 6
Bar charts of the exhaled breath sampling and pre-concentration methods from the reviewed studies. (A) Breath-type sample; (B) sampler device;
(C) pre-concentration technique; (D) GC-column. BGS, breath-gas sampler; GC, gas chromatography; NTD, needle-trap device; SPME, solid-phase
microextraction; TD, thermal desorption tube.
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diphenyl/95% polydimethylsiloxane phases, here named as X-5
columns (DB-5, RTX-5, SLB-5, HP-5, VF-5, etc.). This type of
stationary phase is considered the most versatile owing to the
slight polarity imparted by the substitution of 5% of dimethyl
groups by diphenyl. This addition also makes this stationary
phase suitable for the separation of unsaturated hydrocarbons
and aromatic compounds. Conversely, this stationary phase
should not be the first choice regarding the analysis of VOCs.
In fact, despite its slight polarity, it does not provide sufficient
retention and efficiency for the separation of low-molecular-
weight polar VOCs, such as alcohols, aldehydes, and
organic acids.

The secondmost used types of GC stationary phase are X-624 and
X-1, each being employed in 14% of the studies presented in Tables 1,
3; Supplementary Table S1. The X-624 stationary phase (DB-624, VP-
624, SLB-624, etc.) consists of polydimethylsiloxane with 6% of the
dimethyl substituted by cyanopropyl and phenyl groups. Therefore, as
expected, this is a low-polarity phase, though of higher polarity than
its X-5 counterparts. A key characteristic of these columns is the
thickness of the stationary phase. While most X-5 columns employ
stationary phases of 0.25 µm thickness, X-624 columns are coated
with, at least, 1.4 µm of the stationary phase. Therefore, in addition to
its chemistry allowing for better selectivity, there is also a considerable
gain in retention for low-molecular-weight polar VOCs and a wider
range of VOC classes could be successfully analyzed in breath samples.
In fact, X-624 stationary phases are the most suitable for VOC
analyses, as it is the official stationary phase for a variety of
Environmental Protection Agency (EPA) methods dealing with
VOCs. X-1 columns (DB-1, RTX-1, SLB-1, HP-1, VF-1, etc.)
contain 100% polydimethylsiloxane, the most non-polar stationary
phase. Similar to X-5 types of phases, this stationary phase does not
provide sufficient selectivity for the separation of small and polar
VOCs even when employing thicker phases.

Given the importance of aldehydes and alcohols in the studies
herein reviewed, as presented in Figure 4, it may be surprising that
only two studies employ polyethylene glycol (WAX) stationary
phases, as they are highly selective for polar compounds such as
alcohols. A plausible explanation in this type of application might be
related to the presence of water in the breath sample. WAX columns
are particularly sensitive to moisture in the sample, which may lead
to the degradation of this stationary phase.

While all other GC columns mentioned here encompass wall-
coated open tubular (WCOT) columns, porous layer open tube
(PLOT) columns are highly retentive and, therefore, are primarily
employed for the analysis of very low boiling point compounds that
are gaseous at room temperature, such as sulfides. Applied in 12% of
the studies herein reviewed, Q-PLOT columns are non-polar, as they
employ 100% divinylbenzene as adsorbent, therefore imparting great
selectivity and retention for low-molecular-weight hydrocarbons.

Most of the studies included in Tables 1, 3; Supplementary Table
S1 were performed by one-dimensional (1D) GC-MS. Additionally,
five studies applied comprehensive bidimensional gas
chromatography (GC×GC). The most common GC×GC setup
employs an orthogonal mechanism of separation, using two
sequential GC columns with stationary phases of different
polarities, with a modulator between them. In short, a narrow
band eluting from the first dimension (1D) column is collected
and focused on the modulator, and then sent to the second

dimension (2D) column (which is much shorter than the 1D). In
this way, for example, compounds of similar boiling points coeluting
on the 1D could be separated according to their polarity differences
on the 2D. This technique offers significant advantages: the extended
peak capacity improves peak space separation and allows the
detection of coeluting compounds that could be missed by
conventional 1D-GC. Moreover, given the acquisition speed
required by the narrow bands eluting from the 2D in GC×GC,
this technique is often hyphenated with MS detectors with rapid MS
analyzers such as TOF, providing also higher sensitivity than that
obtained by 1D-GC employing single quadruple MS. As an example
of the advanced capacities of GC×GC-TOF-MS, Caldeira et al.
(2012) could detect eight-fold more compounds, especially
alkanes, alkenes, aldehydes, and ketones, and the concentration
range achieved was lower than that of a previous study
performed with GC-qMS. Four out of the five studies presented
the traditional apolar × polar configuration, employing stationary
phases like X-624 and X-5 in the first dimension (1D) and a polar
polyethylene glycol-based (WAX) phase in the second dimension
(2D) (Caldeira et al., 2012; Pesesse et al., 2019; Schleich et al., 2019;
Cen et al., 2023). This combination reduces the interaction of water
with the polar stationary phase and provides information on both
the volatility (1D) and polarity (2D) of the compounds in the sample
(Wilde et al., 2019). Interestingly, Berna et al. (2021) employed a
polar × polar setup, using a WAX-based column in the 1D and a
trifluoropropylmethyl polysiloxane (RTX-200) column in the 2D.
The 2D stationary phase offers a unique selectivity for electron-rich
molecules and resolves compounds that could not be resolved by the
Wax 1D column. The limited use of this technology can be attributed
to the high costs of instrumentation, especially for cryo-based
modulators that are the most adequate for applications such as
breath analysis due to their ability to successfully trap very volatile
compounds. Moreover, method optimization in GC×GC is not as
straightforward as in 1D-GC, hence requiring specialized personnel
from method development to data process and interpret (Pesesse
et al., 2019).

Moreover, 20 studies have employed high-resolution mass
spectrometers (TOF-MS), of which more than half were included in
studies on other pulmonary diseases (Tables 1, 3; Supplementary Table
S1). The high-resolution approach offers notable advantages, especially
when performing an untargeted study. In this regard, sensitivity and
selectivity are improved compared to the low-resolution approach. The
spectral libraries used for compound identification include accurate
mass, which further allows for the enhanced structural elucidation of
unknown compounds. Nonetheless, the use of this equipment is more
complex; data processing requires more time and space and the price is
higher (Rey-Stolle et al., 2021).

4.4 Quality control

In breath analysis, as in any metabolomics study, evaluating the
quality of the obtained data is crucial. This is essential not only for
obtaining reproducible results but also to ensure that the differences
observed between groups are attributable to the composition of the
samples rather than analytical/instrumentation variations. Such
assurance involves the analysis of blanks and the use of internal
standards among other strategies detailed below (Dudzik et al., 2018).
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The analysis of blanks allows for the identification of
contaminants (e.g., Tedlar® bag contaminants) and artifacts (e.g.,
polydimethylsiloxanes), and its elimination from the data matrix,
avoiding false discoveries. The main blanks include collecting device
blank, air blank, and vial/tube blank (Westphal et al., 2023). In this
regard, several studies have reviewed and conducted analyses of
ambient air, yet a considerable number of studies do not include this
step, such as that of Gao et al. (2016), Aoki et al. (2017), Van Vliet
et al. (2017), and Saidi et al. (2020). Moreover, the inclusion of the
remaining blanks is not specified in most of the studies. The
injection of a standard mixture over the sequence is
recommended, although just a few studies include it in their
workflow (Schleich et al., 2019; Koureas et al., 2021).

Despite being of utmost importance to obtain precise results, the
addition of an internal standard (IS) to the samples was performed in
few studies (Basanta et al., 2012; Corradi et al., 2015; Fowler et al., 2015;
Berna et al., 2021; Ibrahim et al., 2021; Van Oort et al., 2022; Ahmed
et al., 2023; Cen et al., 2023; Myers et al., 2023) (Tables 1, 3;
Supplementary Table S1). Likewise, hexamethylcyclotrisiloxane, a
desorption tube bleeding compound, was used as an internal
reference compound (Callol-Sanchez et al., 2017; Jareño-Esteban
et al., 2017; Muñoz-Lucas et al., 2020). The ISs used include not
isotopically labeled compounds such as 1,4-difluorobenzene, 2-
methylpentanal, 4-bromofluorobenzene, bromochloromethane, and
stable isotopically labeled ones, such as acetone-d8, 1,4-
dichlorobenzene-d4, chlorobenzene-d5, bromobenzene-d5, hexane-
d14, n-heptane-d16, n-octane-d18, phenanthrene-d10, styrene-d8,
toluene-d8, and xylene-d10. Additionally, ISs can be used for data
normalization. However, most of the studies reviewed did not add an IS
nor did they specify how the data normalization is performed. It is
worth mentioning that for a pre-concentration technique based on
equilibrium, such as SPME, isotopically labeled ISs present by far the
best precision (and accuracy). In fact, inconsistencies during sampling
can be normalized as the IS extraction will be influenced to the same
extent as the analyte of interest.

Generally, to ensure quality in the analysis of exhaled breath
samples by GC-MS, and therefore reliable findings, several key
quality assurance and quality control measures are essential.
These measures aim to guarantee the accuracy, reproducibility,
and reliability of the entire analytical results and are as follows
(Li et al., 2019; Becker, 2020; Westphal et al., 2023):

• Calibrants and reference materials: Calibrants and reference
materials containing volatile marker compounds are used to
establish detector stability, known detection limits, and
instrument calibration. These materials should be available
consistently during clinical trials and routine applications.

• Training and test samples: For the reproducible identification
of specific odor patterns, the availability of appropriate sets of
training and test samples is essential. These samples aid in
electronic nose-based or canine-based identification methods.

• Standardization and harmonization: Standardization of
breath sampling procedures is crucial to minimize inter-
observer and intra-observer errors. Researchers involved in
breath sampling should undergo certification to ensure
uniform and accurate collection processes. Standardization
also involves monitoring room air for potential VOC
contamination.

• Instrument calibration: Regular instrument calibration using
internal standards, such as stable isotope-labeled compounds,
enhances QC/QA efforts. It helps in tracking instrument
performance and ensuring the accuracy of results.

• Blank analysis: To identify and remove contaminants, blank
analyses are essential. These blanks include air blanks, system
blanks to identify instrument artifacts, and blanks to account for
chemical backgrounds originating from sampling materials like
Tedlar® bags.

• Spiking samples with internal standards of known
concentrations and different retention times aids in data
normalization and enhances data quality.

• Inter-laboratory comparisons: For diagnostic purposes, it is
important to compare data obtained from different
laboratories and methods. It helps assess the reproducibility
and relevance of potential biomarkers.

In summary, ensuring quality in exhalation analysis by GC-MS
involves a comprehensive approach that encompasses quality
control, standardization, instrument calibration, and data
management. All these measures must be implemented without
any exception in clinical applications where breath analysis holds
potential for disease diagnosis and monitoring.

5 Conclusion

This comprehensive review aims to investigate the potential of
GC-MS analysis of VOCs in breath as biomarkers for severe
pathologies, such as cancer, pulmonary diseases, and infectious
diseases. Critical aspects of the workflow are thoroughly
considered and discussed, encompassing the type of exhaled
breath, collection devices, pre-concentration techniques, and
analysis, as well as the experimental designs, statistical analysis,
identification strategies, and proposed potential VOCs biomarkers.

Tedlar® bags and TD are by far the most extended for collection
and pre-concentration, respectively. However, the choice of the type of
breath sample was more diverse, spanning betweenmixed and alveolar
breath, a critical consideration when aiming to accurately compare and
establish levels of endogenous VOCs. Despite the wealth of studies, the
conspicuous lack of standardization in the methodological approach
and the scarce absolute quantitation of potential biomarkers delay their
transference to clinics. Additionally, relatively small cohorts with only a
limited model validation in an independent cohort, along with the lack
of consensus in altered findings among different studies hindered the
identification of a single pathology-specific VOC. A deeper
understanding of the endogenous origin of VOCs is imperative to
fully grasp the significance of each VOC in discriminating between
healthy and pathological states.

Overall, this review underscores the substantial potential of
VOCs as biomarkers in health and pathology. Nonetheless, to
fully harness this potential, it is crucial to address the lack of
standardization in methodological approaches, include larger and
well-defined cohorts, and validate models in independent cohorts.
As we delve deeper into the complexities of VOCs in exhaled breath,
we are poised to advance personalized and non-invasive diagnostic
strategies that can revolutionize the detection and management of
the pathology, ultimately benefiting public health.
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