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Background:Monkeypox is a highly infectious zoonotic disease, often resulting in
complications ranging from respiratory illnesses to vision loss. The escalating
global incidence of its cases demands prompt attention, as the absence of a
proven post-exposure treatment underscores the criticality of developing an
effective vaccine.

Methods: Interactions of the viral proteins with TLR2 and TLR4 were investigated
to assess their immunogenic potentials. Highly immunogenic proteins were
selected and subjected to epitope mapping for identifying B-cell and MHC
class I and II epitopes. Epitopes with high antigenicity were chosen,
considering global population coverage. A multi-target, multi-epitope vaccine
peptide was designed, incorporating a beta-defensin 2 adjuvant, B-cell epitopes,
and MHC class I and II epitopes.

Results: The coordinate structure of the engineered vaccine was modeled and
validated. In addition, its physicochemical properties, antigenicity, allergenicity,
and virulence traits were evaluated. Molecular docking studies indicated strong
interactions between the vaccine peptide and the TLR2 receptor. Furthermore,
molecular dynamics simulations and immune simulation studies reflected its
potent cytosolic stability and robust immune response dynamics induced by
the vaccine.

Conclusion: This study explored an innovative structure-guided approach in the
use of immunoinformatics and reverse vaccinology in pursuit of a novel multi-
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epitope vaccine against the highly immunogenic monkeypox viral proteins. The
simulation studies indicated the engineered vaccine candidate to be promising in
providing prophylaxis to the monkeypox virus; nevertheless, further in vitro and in
vivo investigations are required to prove its efficacy.

KEYWORDS

monkeypox, TLR4, TLR2, molecular docking, reverse vaccinology, immunogenic, multi-
epitope vaccine

1 Background

Monkeypox (MPX) is an infectious zoonotic disease caused by the
enveloped double-stranded DNA (dsDNA) monkeypox virus
belonging to the Orthopoxvirus genus within the Poxviridae family
and represents an alarming health concern. While most cases present
mild symptoms, certain populations, including children, pregnant
women, and immunocompromised individuals, are at a high risk of
severe complications from MPX, including bacterial infections,
respiratory distress, and even vision loss (Bragazzi et al., 2023). The
recent global surge inMPX infections, particularly in countries with no
prior history of monkeypox, calls for urgent attention. As of August
2023, the World Health Organization (WHO) has reported a
staggering 88,288 confirmed cases and even 149 deaths throughout
the 112 countries affected (World Health Organization, 2023).

Some antiviral drugs that were originally devised against
smallpox, such as tecovirimat, cidofovir, and brincidofovir, can
also be repurposed against a few cases of MPX. Apart from
conventional drugs, the development or repurposing of
antimicrobial peptides against the disease is also a growing area of
research. Some biocomputational studies postulate the inhibition of
MPX infection or dissemination by the use of salivary histatin
peptides and their autoproteolytic derivatives (Radhakuma et al.,
2023) or by repurposing potential antiviral peptides against MPX
(Miah et al., 2022; Singh et al., 2023). However, further in vitro and in
vivo trials would be required to validate the claims. That said, there is
currently no proven treatment for monkeypox (Das et al., 2023;
Ghosh et al., 2023; Ivanov et al., 2023; Khani et al., 2023).
Therefore, it is imperative to develop prudent prophylactic
measures. A study based on data from a small African population
indicates that smallpox vaccines can provide some amount of cross-
protection; however, they lack specificity. Existing smallpox vaccines,
such as ACAM2000, LC16, and MVA-BN (commercialized as
Imvanex, Imvamune, or Jynneos), have been approved for active
immunization against smallpox by the US Food and Drug
Administration (FDA). That said, we must tread carefully as
ACAM2000 is a live vaccinia virus-based preparation that carries
the risk of secondary vaccinia infection and potential adverse effects
like myocarditis or pericarditis in some recipients. While promising
data from human immunogenicity trials and pre-clinical studies hint
at the potential of MVA-BN to provide protection against MPX, a
comprehensive large-scale clinical study is needed to determine its
actual efficacy in safeguarding against monkeypox infection in
humans. Similarly, LC16, a live, non-replicating attenuated vaccine
approved for monkeypox prevention in Japan in August 2022, relies
on extrapolated data from animal studies rather than direct human
trials (Letafati and Sakhavarz, 2023; Reina and Iglesias, 2023;
Srivastava et al., 2023; Xu et al., 2023).

Given the increasing global burden of MPX infections and the
limitations in treatment options, it is crucial to prioritize research
and development efforts in the field of monkeypox vaccines. In
recent years, by leveraging immunoinformatics techniques, multi-
epitope vaccinology approaches have delivered strongly protective
vaccine candidates against microbial infections while minimizing
side effects compared to traditional vaccines (Gupta et al., 2016;
Nagpal et al., 2018). In a novel approach presented in this study, we
methodically target only those viral proteins that possess high
immunogenicity and physiological reactivity to immune
receptors. The highly immunogenic MPX proteins are further
screened for epitopes with superior antigenicity. Subsequently,
these epitopes are then used in the construction of the peptide
vaccine structure (Figure 1). Peptide vaccination strategies represent
a modern and time-tested vaccination platform that is being used
against a wide variety of diseases, ranging from Alzheimer’s disease,
HIV, malaria, and COVID-19 to cancer. In contrast to other modern
vaccination platforms like mRNA vaccines, peptide vaccinations are
highly scalable and economical as they are produced fully by
chemical synthesis. Furthermore, these vaccines lend themselves
to rigorous quality control assessments by established analytical

FIGURE 1
Generalized workflow of our structure-guided design of the
highly immunogenic multi-epitope multivalent vaccine against MPX.
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methods like liquid chromatography and mass spectrometry,
thereby ensuring high purity. Most importantly, the formulations
can be stored and freeze-dried and do not require cold-chain
facilities in storage, transport, or distribution, hence making it
possible to vaccinate people even in the most remote corners of
the world (Purcell et al., 2007; Dhanda et al., 2017; Usmani et al.,
2017; Nagpal et al., 2018; Usmani et al., 2018; Malonis et al., 2020).
Essentially, by utilizing this peptide vaccine, we hope to offer
enhanced prevention and control over the monkeypox disease.

2 Significance of the study

The structural basis of immunogenicity of the MPX viral
proteins remains virtually unexplored. The present study not
only intends to bridge this gap but also harnesses the
immunogenicity of the proteins to design a vaccination strategy
against the disease.

3 Materials and methods

3.1 Structure retrieval of viral proteins

Every protein of the monkeypox virus is not involved in
infection of the host, nor do they possess equal immunogenic
capacities. Therefore, extensive literature research was carried out
on the presently available proteomic data of MPX virions, using
filters to screen the protein’s role in viral invasion pathways (Hatmal
et al., 2022; Molteni et al., 2023) and its survivability. The in-depth
research resulted in the derivation of 12 different viral proteins, and
the primary structural data of the proteins were retrieved from the
GenBank database (Benson et al., 2018). Cell surface-binding
protein E8L (Accession ID: USO09213.1) is a transmembrane
protein that possesses binding motifs for gangliosides on the lipid
rafts, binds to the host cell receptor, and mediates viral entry into the
cell (Fantini et al., 2022). Thymidine kinase (NP_536513.1) is
important for replication and virulence of the virus and is an
attractive antiviral drug target (Abdizadeh, 2023; Patel et al.,
2023). DNA-dependent RNA polymerase (DdRp) subunit rpo132
(NP_536562.1) is essential for viral replication and is a promising
drug target (Abduljalil et al., 2023), whereas profilin (USO09267.1)
is involved in actin remodeling and plays an important role in the
viral replication cycle (Minasov et al., 2022). Complement-binding
protein (QNI40442.1) enhances viral survival by deactivating
complement-based immune response from the host (Shchelkunov
et al., 2002; Uvarova et al., 2005), and 36 kDa major membrane
protein (QNI40458.1) is important in viral assembly and release
(Sarkar et al., 2023). Poly A polymerase large subunit (QNI40472.1)
plays a role in viral replication (Shchelkunov et al., 2002), E11L
(AAL40566.1) is important for viral transcription, E13L
(AAL40568.1) is a scaffold protein that gives immature virions a
rigid and curved convex membrane (Farzan et al., 2023), and H6R
(AAL40554.1) is a topoisomerase enzyme necessary for early
transcription. Likewise, E6R (AAL40561.1) is required for virion
assembly (Van Vliet et al., 2009), E4R (AAL40559.1) is a uracil DNA
glycosylase and is functional in viral replication (Kannan et al.,
2022), and E3R (AAL40558.1) is a structural protein and gives shape

to the virion (Shchelkunov et al., 2002). Furthermore, using the
SWISS-MODEL (Waterhouse et al., 2018) server from ExPASy,
homology modeling methods were used to build coordinate
structures of the abovementioned proteins. The stereochemical
quality of these models was, nevertheless, validated using the
structural assessment tool from ExPASy (Kiefer et al., 2009).

3.2 Interaction analyses of viral proteins to
TLRs

In the present approach, we intend to design a novel vaccine
candidate targeting only the highly immunogenic proteins of MPX.
Studies have evidenced the role of TLR2 and TLR4 innate immune
receptors in being the primal sensors for the viral proteins (Zhu
et al., 2007; Van Vliet et al., 2009; Olejnik et al., 2018; Kaur et al.,
2019; Sartorius et al., 2021; Zhou et al., 2021; Yu et al., 2021; Sanami
et al., 2023; Tan et al., 2023). Hence, it was important to understand
the interactions of the abovementioned proteins with the said TLRs
to assess their immunogenic potencies. In this connection, structural
data of TLR2–MD2 and TLR4–MD2 complexes were derived from
the RCSB database (Rose et al., 2015) in the form of PDB ID: 6NIG
and 3FXI, respectively. The coordinate data of the TLRs and MPX
proteins were refined using PyMol (Yuan et al., 2017) and further
used for intermolecular docking studies by using the ClusPro
2.0 supercomputer server (Kozakov et al., 2017; Alekseenko et al.,
2020). The ClusPro server uses a PIPER algorithm that is based on
the fast Fourier transform (FFT) correlation approach. It is a fast and
accurate server that has always been a program of choice.

3.3 Screening of highly immunogenic
proteins and epitope mapping

The designed vaccine candidate should be capable of generating
a strong and durable immune response. In order to realize the same,
we had to filter the most immunogenic MPX proteins; hence, we
assessed the binding scores resulting from the molecular docking
studies among the proteins and TLRs. The proteins showing the
strongest fit with TLR2 and TLR4 were selected and used for the
epitope prediction process. B-cell epitopes were extracted using the
BepiPred-2.0 linear epitope prediction (Jespersen et al., 2017)
algorithm offered by the Immune Epitope Database (IEDB). It is
an enhanced sequence-based epitope prediction algorithm that can
not only predict linear epitopes for a wide range of proteins with
high accuracy but also analyze flexible regions that are quite
challenging for other programs. An even and robust immune
stimulation to T cell has been yet another pre-requisite;
therefore, MHC class I and II epitopes were retrieved from the
proteins using the T-cell epitope prediction and analysis tools from
IEDB. We used NetMHCpan 4.1 EL and NetMHCIIpan 4.1 EL for
MHC class I and II epitopes, respectively (Trolle et al., 2015;
Andreatta et al., 2018). These algorithms are precise and
versatile, supporting high-throughput data handling. For
maximizing the coverage for more than 95% of the world
population, specific MHC-I alleles were chosen: HLA-A*02:01,9,
HLA-B*15:01,9, HLA-A*02:06,10, HLA-A*03:01,9, HLA-B*54:
01,10, and HLA-B*51:02,9. Similarly, MHC-II alleles of H2-IAb,
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HLA-DPA1*01/DPB1*04:01, HLA-DRB1*01:01, HLA-DRB1*13:
01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-DRB1*07:01,
HLA-DRB3*01:01, HLA-DRB1*08:01, HLA-DRB1*11:01, HLA-
DRB3*02:02, HLA-DRB5*01:01, HLA-DRB4*01:01, and HLA-
DRB1*15:01 were used (Solanki and Tiwari, 2018). Furthermore,
the top 0.2 percentile epitopes were selected as they were ranked by
their binding affinity toward the MHC proteins. VaxiJen 2.0 is a
server based on the transformation of protein sequence auto cross-
covariance (ACC) into uniform vectors of main amino acid
properties (Doytchinova and Flower, 2007; Zaharieva et al., 2017;
Salod and Mahomed, 2022). It was used to determine the
antigenicity of the derived epitopes against a virus model, and
only the high-ranking epitopes were picked.

3.4 Structural construction and validation of
the vaccine candidate

A vaccine designmust support the proper folding and presentation
of antigenic peptides, and it must enable epitopes to be accessible to the
immune cells while also stabilizing the protein structure of the vaccine.
Hence, it is necessary to use linkers for joining the epitopes in the
structure. The primary structure of the construct peptide initiated with
a highly immunogenic adjuvant of beta-defensin 2 (Accession ID
AAC69554.1) (García-Valtanen et al., 2014; Kim et al., 2018) was
linked to a series of MHC-I epitopes using an EAAAK linker. The
MHC-I epitopes, however, were connected to each other using AAY
linkers. The B-cell epitopes were joined to each other using the KK
linkers. Similarly, MHC class II epitopes were linked using GPGPG
sequences. Thereafter, the tertiary structure of the multi-target multi-
epitope vaccine peptide was generated by the transform-restrained
Rosetta (trRosetta) server that uses deep learning methods for highly
accurate de novo protein modeling (Du et al., 2021). The model was
subjected to stereochemical validation using the ERRAT program
provided by the SAVES 6.0 server (Colovos and Yeates, 1993); it is
a highly sensitive program that verifies protein structures based on the
statistics of non-bonded atom–atom interactions in the structure and
compares it with a database of reliable high-resolution structures.
Furthermore, the SWISS-Model Structural Assessment tool was also
used for the purpose.

3.5 Physiochemical evaluation of the vaccine
peptide

Following the design of the vaccine, it is imperative to assess its
different physiochemical properties. ExPASy ProtParam (Garg et al.,
2016) was primarily used for analyzing the physiochemical
characteristics of the vaccine peptide. Furthermore, its overall
antigenicity was determined using the VaxiJen 2.0 server. The
allergenic nature of the peptide was assessed using AllerTOP 2.0
(Dimitrov et al., 2013; Dimitrov et al., 2014), and VirulentPred
(Garg and Gupta, 2008) was used for the evaluation of the virulence
traits of the vaccine. Moreover, the ElliPro (Ponomarenko et al.,
2008; Usmani et al., 2018) tool from IEDB was used to map the
conformational B-cell epitopes of the vaccine. It is known for its
accuracy in predicting the discontinuous epitopes based on the
special positioning of residues in the protein.

3.6 Molecular docking with TLR

To gain insights into the immunological instigatory capacities of
the vaccine, the peptide was docked to the TLR2 receptor using the
ClusPro 2.0 supercomputer server, and the interactions were studied
using PyMol.

3.7 Molecular dynamics simulations and
binding energy

Inspecting the binding interactions of the vaccine and the
receptor TLR2 demands their dynamic behavior to be kept in
consideration, and thus, the molecular dynamics (MD)
simulations are performed. For a comprehensive analysis, the
TLR2 protein was simulated primarily in its apo form, and
thereafter, the vaccine-TLR2 complex was operated by using the
Desmond module from the Schrodinger suite. The proteins were
immersed in a TIP3P predefined water solvent model delimited by
orthorhombic periodic boundary conditions. Furthermore,
electrical neutralization was achieved by adding appropriate
amounts of sodium and chlorine ions, whereby the system was
minimized under the OPLS3e force field (Roos et al., 2019). The
NPT ensemble (Kim et al., 2019) was used to run the simulation at a
constant temperature of 300 K at 1 atm pressure for 100 ns (Basconi
and Shirts, 2013). The stability of the proteins was analyzed in terms
of different parameters, like root mean square deviation (RMSD),
root mean square fluctuation (RMSF), the radius of gyration (Rg),
and solvent-accessible surface area (SASA). Moreover, molecular
mechanics with generalized Born surface area (MM-GBSA)
calculations were performed in order to evaluate the overall
binding strength of the vaccine–receptor complex.

3.8 Immune simulation studies

By modeling the interactions between the vaccine antigens and
immune cells, immune simulations can serve as a cost-effective and
time-efficient approach for predicting themagnitude and kinetics of the
immune response induced by the designed vaccine. The C-ImmSim
server provides an agent-basedmodel that uses position-specific scoring
matrix (PSSM) scores derived from machine learning techniques for
predicting immune interactions (Castiglione et al., 2007; Rapin et al.,
2011). Employing the server, a 35-day-long simulation was run, and a
dose of the vaccine peptide was injected on the very first day. The
subsequent immune response dynamics were noted.

3.9 Reverse translation and in silico cloning

Efficient and fast manufacturing of the vaccine candidate poses a
significant step toward herd immunity, one that is achieved through
cloning the vaccine codons into highly optimized expression vectors.
Hence, the vaccine peptide sequence was first reverse-translated
through the E. coli K12 codon table using EMBOSS Backtranseq
(Rice et al., 2000), and SnapGene ver.6.1 software was used to clone
it into a pET-28a (+) expression plasmid vector (Mauro and
Chappell, 2014).

Frontiers in Molecular Biosciences frontiersin.org04

Choudhury et al. 10.3389/fmolb.2023.1295817

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1295817


4 Results

4.1 Immunostimulatory potency of viral
proteins

Coordinate structures of the MPX proteins were prepared by
homology modeling (Figure 2), followed by their structural
assessment, which revealed that all the structures were quite
precise naturally and had 92.63%–98.71% residues in the
Ramachandran-favored regions, as visualized in the plots of
Supplementary Figure S1. Furthermore, they were subjected to
molecular docking studies against TLR2 and TLR4 to understand
the immunostimulatory abilities of the proteins. The studies

reflected that except for the complement-binding protein, all the
MPX proteins were able to bind TLR2, and the strongest interactions
were found in the case of the DdRp subunit rpo132,
scoring −1327.6 at ClusPro (Figure 3B). Similarly, TLR4 was able
to detect all the proteins; however, exceptionally well results were
observed with the E6R protein, scoring −992.9 (Figure 3A).

4.2 Prediction and screening of
immunogenic epitopes

The immunogenic proteins of the DdRp subunit rpo132 and
E6R were now scanned for different forms of epitopes present. The

FIGURE 2
Coordinate structures for MPX viral proteins: (A) Cell surface-binding protein, (B) DNA-dependent RNA polymerase subunit rpo132, (C)
complement-binding protein, (D) E3R, (E) E4R, (F) E6R, (G) E11L, (H) E13L, (I) H6R, (J) poly-A polymerase large subunit, (K) profilin, and (L) thymidine
kinase.
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BepiPred-2.0 linear epitope prediction algorithm predicted 23 B-cell
epitopes present in the E6R protein and 22 such epitopes in the
DdRp subunit rpo132. MHC-I epitopes of the proteins were
retrieved using the NetMHCpan EL4.1 (Reyn et al., 2020)
algorithm against HLA-A*02:01,9, HLA-B*15:01,9, HLA-A*02:
06,10, HLA-A*03:01,9, HLA-B*54:01,10, and HLA-B*51:02,9,
thereby choosing epitopes from the 0.2 percentile of top-binding
epitopes. Strongly binding MHC-II epitopes, on the other hand,
were predicted using the NetMHCIIpan 4.1 EL method against the
alleles of H2-IAb, HLA-DPA1*01/DPB1*04:01, HLA-DRB1*01:01,
HLA-DRB1*13:01, HLA-DRB1*03:01, HLA-DRB1*04:01, HLA-
DRB1*07:01, HLA-DRB3*01:01, HLA-DRB1*08:01, HLA-
DRB1*11:01, HLA-DRB3*02:02, HLA-DRB5*01:01, HLA-
DRB4*01:01, and HLA-DRB1*15:01. All predicted MHC-I and
MHC-II epitopes were then subjected to antigenic evaluation
using the VaxiJen 2.0 server. The filtration further resulted in
16 MHC-I and six MHC-II highly antigenic epitopes from the
E6R protein, in addition to 18 MHC-I and five MHC-II antigenic
epitopes present in the DdRp subunit rpo132. The epitopes were
then ranked, and only the ones with the highest immunogenic values
were chosen.

4.3 Designing of the multi-target, multi-
epitope vaccine peptide

The final vaccine structure consisted of four main domains—the
beta-defensin 2 adjuvant, the B-cell epitopes, the MHC-I epitopes,
and the MHC-II epitopes. The tertiary model structure (Figure 4A)
prepared by trRosetta by its de novo modeling algorithms was
evaluated for its structural viability, and it was revealed to have a
high ERRAT score of 95.8647 and composed of 94.75%
Ramachandran-favored residues (Laskowski et al., 2013)
according to the SWISS-Model Structural Assessment tool
(Figure 4B).

4.4 Physiochemical characteristics of the
vaccine

The vaccine candidate weighed 33.8 kDa, and its cytosolic half-
life was found to be 30 h in mammalian reticulocytes, more than
20 h in yeast, and more than 10 h in E. coli. The vaccine was found to
be stable, with an instability index of 22.72 and an aliphatic index of
94.07. Additionally, the GRAVY (grand average of hydropathy)
value was reported to be −0.156. As reported by VaxiJen 2.0, the
overall antigenicity of the vaccine was as high as 0.8197.
Furthermore, it was found to be non-allergenic by AllerTOP and
scored −1.024 in VirulentPred analysis, which is indicative of its
avirulent nature. In addition, ElliPro revealed seven different
conformational B-cell epitopes present in the vaccine structure
(Supplementary Figure S2).

4.5 Interaction of the vaccine to immune
receptors

To understand the biophysical basis of immunogenicity of the
vaccine at the cytosolic level, the peptide was first docked to the
surface immune receptor of the TLR2 receptor using ClusPro, and
strong binding poses were determined, with the highest scoring
being −1472.6. The interface of this complex was explored, which
revealed the orchestration of the binding interactions by different
residues from the TLR2 as well as the vaccine peptide (Figure 4C).
Glu383, Ser329, Asp327, Tyr332, Pro352, Leu350, Val351, Asn379,
Tyr376, Glu375, Phe325, Val373, Arg316, His398, Tyr323, Asn345,
Leu371, Phe349, Lys347, Leu317, Ile319, His318, and Arg321 of
TLR2 were found to offer binding interactions to the vaccine
residues of Lys166, Arg2, Val3, Met1, Tyr5, Leu4, Leu7, Phe8,
Asn108, Ala140, Asn137, Leu119, Ser136, Arg122, Lys112,
Ser134, Asp123, Tyr132, Ile126, Phe130, Tyr129, and Gln131
(Table 1).

FIGURE 3
(A) E6R protein bound to the TLR4–MD2 complex. (B) DNA-dependent rna polymerase subunit Rpo132 bound to the TLR2 receptor.
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FIGURE 4
(A) Multivalent vaccine presented in its surface form, with its backbone visibly illustrated. (B) The Ramachandran plot for the vaccine. (C) Its
interactions with the TLR2 receptor.

TABLE 1 Interaction strength of the vaccine peptide with the TLR2 receptor protein.

Immune receptor bound
to the vaccine peptide

Interacting residues Binding free
energy (MM-GBSA)

Immune receptor Vaccine peptide

TLR2 Glu383, Ser329, Asp327, Tyr332, Pro352, Leu350,
Val351, Asn379, Tyr376, Glu375, Phe325, Val373,
Arg316, His398, Tyr323, Asn345, Leu371, Phe349,
Lys347, Leu317, Ile319, His318, and Arg321

Lys166, Arg2, Val3, Met1, Tyr5, Leu4, Leu7, Phe8,
Asn108, Ala140, Asn137, Leu119, Ser136, Arg122,
Lys112, Ser134, Asp123, Tyr132, Ile126, Phe130,
Tyr129, and Gln131

−130.8138 kcal/mol
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4.6 Molecular dynamics simulations and
MM-GBSA calculations

Molecular dynamics simulations have proven to be instrumental
in guiding the process of experimental validation. The simulation
studies facilitate the examination of conformational alterations,
stability fluctuations, and the holistic progression of complex
systems when replicated under conditions mimicking the cellular
cytosol environment. They enable the comprehensive assessment of
critical parameters, such as RMSD, RMSF, Rg, and SASA. In this
comprehensive study for determining the stability of the

vaccine–TLR2 complex, we first simulated the native
TLR2 receptor. Furthermore, under the same conditions, we
simulated the evolution of the vaccine–TLR2 complex,
consequently obtaining a comparative view.

RMSD stands as a pivotal quantifiable metric characterizing the
stability of the protein structure. Elevated RMSD values correlate
with diminished anticipated protein stability, whereas reduced
values of RMSD are indicative of heightened stability. The native
TLR2 structure has an average RMSD of 3.27 Å (Figure 5A);
however, when bound to the vaccine construct, it exhibited a
similar RMSD of 3.32 Å (Figure 5C). Interestingly, increased

FIGURE 5
Molecular dynamics simulation studies. The dynamics of the natural (unbound) TLR2 receptor is exhibited in terms of (A) RMSD and (B) RMSF. This is
compared with the dynamics of the TLR2 receptor when bound to the vaccine. (C), (D) RMSD and RMSF, respectively. (E), (F) Visualization of the same
parameters for the bound vaccine. (G) The evolution of the radius of gyration (Rg) of the vaccine–TLR2 complex; (H) the same in terms of the solvent-
accessible surface area.
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stability of the TLR2 in the bound pose is, essentially, perceived from
the 70th ns to the 90th ns in the course of the simulation. The
vaccine construct remained stable during the whole simulation and
had an average RMSD of 7.75 Å (Figure 5E).

The RMSF parameter is commonly used in molecular dynamics
simulations to investigate the flexibility and fluctuations of the
protein backbone at the residue level. The simulation revealed
that the TLR2 bound to the vaccine has a mean RMSF of 1.49 Å
(Figure 5B), which is slightly lower than that of the native
TLR2 having an average RMSF of 1.66 Å (Figure 5D). Similarly,
the vaccine construct had a 3.06 Å mean RMSF (Figure 5F). These
findings are indicative of the enhanced stability of the complex.

The observed stability of the complex can be elaborated by other
different parameters as well.Rg defines the compactness of the complex.
The average Rg of the vaccine–TLR2 complex was found to be 53.4 Å
throughout the trajectory (Figure 5G). On the other hand, SASA
measures the area of a protein’s surface that is accessible to solvent
molecules. The complex has an average SASA of 21243.11 Å2, and
simulation reveals a mild but gradual reduction in SASA until the 100th
ns, further reflecting heightened stability (Figure 5H).

The calculation of binding free energy is a critical parameter in
elucidating the molecular recognition process. We used the MM-

GBSA for the purpose as it combines the classical force field method
with the generalized Born continuum solvent model and offers us a
good estimate of the binding energy. Between 50th ns to 100th ns of
the simulation, the complex exhibited an average ΔG of −130.81 kcal/
mol with minima and maxima of −72.94 and −178.28 kcal/mol,
respectively.

The overall results of the MD simulations suggest that the
vaccine construct forms stable and consistent complexes with
immune receptors under the emulated microenvironmental
conditions, indicating its strong immunostimulatory potency.

4.7 Prediction and analyses of the
immunostimulatory dynamics

In order to assess the effectiveness of a vaccine peptide, it is
crucial to simulate the natural immune reactivity before proceeding
to further trials. The C-ImmSim simulation platform that uses
Miyazawa and Jernigan protein–protein potential measurements
was used for this purpose. The simulation began by administering
the vaccine dose in the first hour of a 35-day-long stimulation period
(Figure 6). The immune response observed during this simulation

FIGURE 6
(A) Titers of immunoglobulins and the immunocomplexes after vaccination. (B) Levels of B-cell population after vaccination. (C) Levels of plasma
B-cell after vaccination. (D) Levels of helper T-cell population after vaccination. (E) Levels of cytotoxic T-cell population after vaccination. (F) Levels of
NK-cell population after vaccination. (G)Concentration of cytokines and interleukins after vaccination. (H) Epithelial cell levels. (I) Levels of MA population
after vaccination.
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demonstrated elevated levels of IgM and IgG antibodies, which
together compose the primary immune response. Subsequently,
there was a gradual increase in the concentrations of IgM, IgG1,
and IgG2 antibodies, accompanied by a decrease in antigen titers.
Moreover, we observed robust secretion of cytokines, specifically
IFN-y and IL-2. These findings collectively indicate the superior
immunogenic capacity of the novel vaccine peptide.

4.8 In silico cloning of the vaccine

Efficient and fast manufacturing of the vaccine candidate poses a
significant step toward herd immunity, one that is achieved through
cloning the vaccine codons into highly optimized expression vectors.
Hence, the vaccine peptide sequence was first reverse-translated
through the E. coli K12 codon table using EMBOSS Backtranseq,
which revealed a transcript with a GC of 52.23. It indicates optimal
processivity and expression in E. coli systems. Finally, the SnapGene
ver.6.1 software was used to clone it into a pET-28a (+) expression
plasmid vector (Figure 7).

5 Discussion

The preceding year has seen the monkeypox disease making a
concerning shift from its usual patterns and spreading
simultaneously across multiple countries (Islam et al., 2022).
Ongoing research against the disease has claimed the possible
efficacy of some conventional antiviral drugs, as well as
therapeutic peptides. Unfortunately, the claims await validation,
and as of now, no effective treatments or preventive measures are
available for MPX infections, underscoring the urgent need for a

competent vaccine. One promising avenue is the development of a
multi-epitope vaccine based on reverse vaccinology. Some
preliminary studies have attempted and proposed few designs of
such vaccine candidates based upon an approach where the
construct is composed of a few epitopes for several MPX
proteins, resulting in the development of dispersed immune
memory. Due to limitations of scope, however, the studies lacked
any investigation into the structural basis of immunogenicity of the
viral proteins, upon which the reverse vaccinology computation
stands (Akhtar et al., 2022; Bhattacharya et al., 2022; Jahantigh et al.,
2023; Rcheulishvili et al., 2023; Waqas et al., 2023). The design
presented in this article, nonetheless, relies on proteins that can
exhibit high immunogenicity and activate primary innate immune
cascades. We examined the interactions between the viral proteins
and TLR2 and TLR4. Molecular docking studies elucidated that
TLR2 strongly recognizes the DdRp subunit Rpo132, while TLR4 is
highly sensitive toward the E6R protein. Combining T-cell and
B-cell epitopes in polypeptide-based vaccines has been shown to
significantly enhance immunogenicity compared to using these
epitopes individually. Hence, the DdRp subunit Rpo132 and E6R
were analyzed for the prediction of B-cell as well as both forms of
T-cell epitopes, i.e., MHC-I and MHC class II epitopes.
Furthermore, only highly antigenic epitopes were selected after a
wide screening process. Beta-defensin 2 was chosen as the primary
adjuvant molecule, and the different components of the vaccine were
amalgamated using EAAAK, AAY, KK, and GPGPG linkers. Upon
analyzing the predicted biophysical and biochemical characteristics
of the vaccine construct, it revealed promising attributes of
antigenicity, safety, stability, thermostability, and hydrophilicity.
The construct also demonstrated appropriate solubility upon
expression. Certainly, allergies have been a concern regarding
new vaccine candidates; however, our construct was evaluated to
be non-allergenic. These encouraging findings designate it as an
excellent vaccine candidate; hence, it was subjected to further in-
depth analysis and evaluation. The molecular docking analysis
indicated that the multi-epitope vaccine exhibits robust binding
affinities with TLR2. This finding confirms the vaccine’s ability to be
recognized by the innate immune pathways, leading to the induction
of stable and potent immune responses. The stability of the
vaccine–TLR2 complex under diverse microenvironmental
conditions, encompassing pressure, temperature, and motion, was
assessed through molecular dynamics simulation analysis. Initial
trajectory evaluations, including calculations of RMSD, Rg, RMSF,
and hydrogen bonds, consistently demonstrated the high stability of
the vaccine–TLR2 complex. Additionally, the MM-GBSA
calculations revealed strong negative values for the binding free
energy, indicating the ability of the complex to maintain stability
under natural conditions. In general, the processing and
presentation of cytotoxic T-cell and helper T-lymphocyte
epitopes occur through distinct pathways, specifically,
proteasomal degradation (endogenous) for cytotoxic T-cell
epitopes and endo-lysosomal degradation (exogenous) for helper
T-lymphocyte epitopes. The multi-epitope vaccine is classified as an
extracellular antigen. Once injected into the host body, the vaccine
primarily triggers the activation of CD4+ T cells through the
exogenous pathway, thereby inducing adaptive immunity.
Subsequently, B cells are activated to generate humoral
immunity. In the realm of synthetic peptide vaccines, the direct

FIGURE 7
Map of the cloned pET-28a (+) plasmid vector, with the vaccine
sequence highlighted in red.
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injection of synthetic peptides or their loading onto DC cells has
shown relatively limited efficiency in producing clinical benefits.
Instead, the focus has shifted toward using complete proteins or long
peptides to activate cellular immunity via cross-presentation. The
multi-epitope vaccine designed, as exemplified in this study, falls
within the category of long peptides. Consequently, the CTL
epitopes within the vaccine can be cross-presented by DCs,
leading to the activation of CD8+ T cells and the subsequent
generation of cellular immunity, as demonstrated in the immune
simulations. It is clearly suggestive of the competency of the vaccine
construct in eliciting a strong immunization response. However,
further in vitro and in vivo experimentation is necessary to verify the
efficacy of the vaccine construct.

6 Conclusion

MPX is a highly infectious disease and has spread to
112 countries, yet no safe and specific treatment or vaccine exists
against it. In this study, we used structure-guided methods to screen
two highly immunogenic proteins from the viral proteome and
constructed a novel vaccine candidate against these proteins. It was
found to be a promising vaccine design, given the immunological
and physiochemical analyses. The molecular docking and MD
simulation analyses confirmed that the construct can form stable
interactions with immune receptors and, thereby, trigger effective
immune responses against MPX. Furthermore, outcomes from
immune simulation indicate toward a novel vaccine candidate
that can evoke innate as well as antibody-mediated immunity.
However, in vitro and in vivo studies are warranted to assess the
efficacy of the candidate in native conditions.
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