AUTHOR=Moreno-Blanco Ana , Pluta Radoslaw , Espinosa Manuel , Ruiz-Cruz Sofía , Bravo Alicia TITLE=Promoter DNA recognition by the Enterococcus faecalis global regulator MafR JOURNAL=Frontiers in Molecular Biosciences VOLUME=10 YEAR=2023 URL=https://www.frontiersin.org/journals/molecular-biosciences/articles/10.3389/fmolb.2023.1294974 DOI=10.3389/fmolb.2023.1294974 ISSN=2296-889X ABSTRACT=

When Enterococcus faecalis is exposed to changing environmental conditions, the expression of many genes is regulated at the transcriptional level. We reported previously that the enterococcal MafR protein causes genome-wide changes in the transcriptome. Here we show that MafR activates directly the transcription of the OG1RF_10478 gene, which encodes a hypothetical protein of 111 amino acid residues. We have identified the P10478 promoter and demonstrated that MafR enhances the efficiency of this promoter by binding to a DNA site that contains the −35 element. Moreover, our analysis of the OG1RF_10478 protein AlphaFold model indicates high similarity to 1) structures of EIIB components of the bacterial phosphoenolpyruvate:carbohydrate phosphotransferase system, and 2) structures of receiver domains that are found in response regulators of two-component signal transduction systems. However, unlike typical EIIB components, OG1RF_10478 lacks a Cys or His residue at the conserved phosphorylation site, and, unlike typical receiver domains, OG1RF_10478 lacks a conserved Asp residue at the position usually required for phosphorylation. Different from EIIB components and receiver domains, OG1RF_10478 contains an insertion between residues 10 and 30 that, according to ColabFold prediction, may serve as a dimerization interface. We propose that OG1RF_10478 could participate in regulatory functions by protein-protein interactions.