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Despite recent improvements in cancer diagnostics, 2%-5% of all malignancies are
still cancers of unknown primary (CUP), for which the tissue-of-origin (TOO)
cannot be determined at the time of presentation. Since the primary site of cancer
leads to the choice of optimal treatment, CUP patients pose a significant clinical
challenge with limited treatment options. Data produced by large-scale cancer
genomics initiatives, which aim to determine the genomic, epigenomic, and
transcriptomic characteristics of a large number of individual patients of
multiple cancer types, have led to the introduction of various methods that
use machine learning to predict the TOO of cancer patients. In this review, we
assess the reproducibility, interpretability, and robustness of results obtained by
20 recent studies that utilize different machine learning methods for TOO
prediction based on RNA sequencing data, including their reported
performance on independent data sets and identification of important features.
Our review investigates the strengths and weaknesses of different methods,
checks the correspondence of their results, and identifies potential issues with
datasets used for model training and testing, assessing their potential usefulness in
a clinical setting and suggesting future improvements.
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1 Introduction

Cancer is the leading cause of death worldwide, and the overall burden of cancer
incidence and mortality is expected to increase due to the growing population, aging
inhabitants, and changes in the prevalence of risk factors (Sung et al., 2021). Key factors in
reducing cancer incidence and improving the survival of cancer patients include prevention,
early detection, and the availability of appropriate treatment. Despite the recent advances in
cancer diagnostics, cancers of unknown primary (CUP), in which the tissue-of-origin (TOO)
cannot be identified at the time of presentation, still constitute approximately 2%–5% of all
malignancies. Since the primary site of cancer determines the choice of optimal treatment,
CUP patients present a significant clinical challenge with limited treatment options.
Although a fraction of CUP patients can be assigned the correct TOO and receive
appropriate treatment based on the analysis of clinical, imaging, or histopathological
data, this is still not the case for the majority of CUP patients, who then face a less
favorable prognosis (Binder et al., 2018; Rassy and Pavlidis, 2020).

The development of array- and next-generation sequencing (NGS)-based whole-genome
profiling techniques has enabled the rapid molecular characterization of cells or tissues,
inspiring the establishment of several large-scale cancer genomics initiatives, such as ICGC
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and TCGA (International Cancer Genome Consortium et al., 2010;
Weinstein et al., 2013). These initiatives aim to describe the
genomic, epigenomic, and transcriptomic characteristics of a
large number of individual patients with multiple types of cancer.
The unprecedented volume of data produced by these techniques
has led to the introduction of various methods that use machine
learning to predict the TOO for cancer patients. This is most
frequently done by analyzing somatic alterations, gene expression,
microRNA expression, or DNA methylation of cancer samples.
Most of the TOO prediction tools currently used in clinical
practice are based on qRT-PCR or microarray measurements of
different features of preselected genes. The accuracy of such tools
typically falls within the range of 54%–100%. While several clinical
trials have demonstrated improved overall survival of CUP
patients who received tumor-type-specific therapy based on
predicted TOO, inconsistencies in the results of randomized
and non-randomized trials suggest that there are opportunities
for improvement in this area of research (Conway et al., 2019;
Rassy et al., 2020).

Various methods that utilize machine learning to predict the
TOO based on NGS data have been developed recently, although the
clinical use of such methods is still limited (Swanson et al., 2023).
Advantages of molecular characterization using NGS approaches, in
comparison to array-based techniques, include increased specificity
and sensitivity, a broader dynamic range, and whole-genome
coverage. Indeed, several recent reviews on the topic of machine
learning and deep learning for cancer classification have reported
the excellent performance of methods that utilize NGS data (Tufail
et al., 2021; Alharbi and Vakanski, 2023). However, the high
dimensionality, sparsity, and heterogeneity of input data, as well
as dataset imbalance, could lead to issues with overfitting and high
variance of the trained models.

In this minireview, we aim to assess the reproducibility,
interpretability, and robustness of different NGS-based TOO
prediction methods, including reported performance on
independent data sets and identification of important features.
Since the accuracy of the models depends on the input data type
(Conway et al., 2019; Rassy et al., 2020), we have limited our survey
to tools developed exclusively on RNA sequencing (RNA-Seq) data.
This decision was made considering that they represent the majority
of studies. We focused on studies developed on pan-cancer data that
include at least nine different cancer types in training data. Our
review investigates the strengths and weaknesses of different
methods, checks the correspondence of their results, and
provides an assessment of their potential usefulness in a clinical
setting.

2Machine learning in cancer of unknown
primary classification based on RNA
sequencing

We have conducted a literature search to identify studies that
used RNA-Seq data to train machine learning models for cancer
classification and TOO prediction. Studies that relied exclusively on
miRNA sequencing were excluded from further analysis. Based on
the aforementioned criteria, we selected 20 recently published
studies for analysis.

The majority of studies were based on deep learning, using
neural networks of different architectures (Lyu and Haque, 2018;
Azarkhalili et al., 2019; De Guia et al., 2019; He et al., 2020b; Mostavi
et al., 2020; Zhao et al., 2020; Vibert et al., 2021; Divate et al., 2022;
Hong et al., 2022; Jones et al., 2022; Moiso et al., 2022). Several
studies utilized ensemble learning methods, in which the final
prediction is a combination of multiple predictors (Grewal et al.,
2019; He et al., 2020a; Ramroach et al., 2020; Chen et al., 2021; Liu
et al., 2021). Bavafaye Haghighi et al. (2019) and Galea et al. (2017)
classified different cancer types using hierarchical classification, a
‘top-down’ classification approach in which classificationmodels are
trained at each level of the hierarchy. Additionally, some authors
employed simpler machine learning methods, such as k-nearest
neighbors (Bagge et al., 2018) or stepwise logistic regression (Wei
et al., 2014). Several studies tested their results against additional
classification methods (Azarkhalili et al., 2019; De Guia et al., 2019;
Grewal et al., 2019; Ramroach et al., 2020; Hong et al., 2022), or
compared the performances of various deep learning architectures
(Mostavi et al., 2020; Zhao et al., 2020; Vibert et al., 2021). In cases
where multiple approaches were used in a single study, we limited
our analysis to the best-performing model.

The models were trained on datasets comprising 9 to 40 cancer
types (with a median number of 32 cancer types), and the number of
sample points used for training ranged from 1,960 to 20,918 (with a
median number of 10,116 samples). All of the selected studies
trained their models on either TCGA or ICGC data, with some
studies including cancer sequencing data produced in-house (Wei
et al., 2014) or data from healthy tissues (Azarkhalili et al., 2019;
Grewal et al., 2019; Mostavi et al., 2020; Vibert et al., 2021).

3 Performance of models for tissue-of-
origin prediction

We have compared the classification accuracy of various models,
which we defined as the number of correct predictions divided by
the number of total predictions. In the cases where the classification
accuracy was not reported, we have calculated it from the results
described in the original publication. Cases where no prediction
could be made were counted as incorrect predictions. Accuracy was
the most commonly used measure of predictive performance in the
studies surveyed in this minireview. While this measure can be
influenced by class-imbalanced data, the influence of training
dataset composition on measures of predictive performance is
outside of the scope of this minireview.

In general, the analyzed models achieve high cross-validation
prediction accuracy in the range of 73%–99% (with a median cross-
validation accuracy of 95.5%; Figure 1A). This accuracy does not
seem to depend on the number of training points (Spearman’s
correlation coefficient ρ = 0.0591, p-value = 0.7989). The prediction
accuracy varies by tumor type, with some tumor types being
more frequently mispredicted. Patterns of more frequent
misclassifications among groups of cancers arising from the same
organ (e.g., kidney renal clear cell carcinoma, kidney renal papillary
cell carcinoma and kidney chromophobe carcinoma, or lung
adenocarcinoma and lung squamous cell carcinoma), and/or
among cancers represented by a small number of samples in the
training set (e.g., cholangiocarcinoma, which is frequently predicted
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as liver hepatocellular carcinoma and vice versa), as noted in
multiple studies (Bagge et al., 2018; Lyu and Haque, 2018;
Bavafaye Haghighi et al., 2019; De Guia et al., 2019; Grewal
et al., 2019; Zhao et al., 2020; Vibert et al., 2021; Divate et al.,
2022; Jones et al., 2022; Moiso et al., 2022). All of this implies that the
distribution of different cancer types in the training set is one of the
key factors contributing to the prediction accuracy of the model.

Out of the studies included in this minireview, only seven tested
the performance of the developed models on an independent test set.
Overall, the predictive accuracy of models on independent test data
was lower than the cross-validation accuracy calculated on the data
used for training the model, with only two studies attaining a
prediction accuracy on an independent test set that was
comparable to or higher than the one obtained with cross-
validation (Figure 1B). Jones et al. (2022) used 277 primary
kidney cancer samples from the CPTAC consortium to test their
convolutional neural network-based models, which were trained on
17 or 32 primary cancer types. They achieved prediction accuracies
of 100% and 99.63%, respectively. An ensemble of neural networks
developed by Grewal et al. (2019) correctly predicted the primary
cancer type for 96.73% of 211 samples from the independent
Genentech Mesothelioma dataset. However, both of those models
were tested on independent data comprising a single primary cancer
type, which may not necessarily reflect the putative prediction
accuracy on a pan-cancer dataset. In fact, the accuracy of the
Grewal et al. (2019) model decreased to 79.60% when tested on
an additional independent test set of 201 patients spanning
26 different cancer types. These patients were sequenced as part
of the Personalized OncoGenomics project at the BC Cancer Agency
and presented with metastatic disease that no longer responds to
treatment. The remaining studies used independent test sets
consisting of 5–18 cancer types and showed a reduction in
prediction accuracy ranging from 5.8% to 26.47% compared to
cross-validation (with a mean reduction in accuracy of 13.32%). Out
of these, two studies used metastatic samples (Bavafaye Haghighi

et al., 2019; Zhao et al., 2020), two used a mixture of primary and
metastatic samples (Bagge et al., 2018; Divate et al., 2022) and one
did not report the exact source of the independent test set (Chen
et al., 2021).

Interestingly, when testing the accuracy of the same model on
test sets composed of both primary and metastatic samples,
metastatic samples showed a lower prediction accuracy. For
example, Divate et al. (2022) reported 88.10% accuracy for
metastatic samples compared to 92.13% for primary samples.
Bagge et al. (2018) found 53.84% accuracy for metastatic samples
compared to 96.67% for patient-derived xenografts of primary
cancer and 100% for primary cancer. However, this difference
could also be attributed to the distribution of the primary cancer
types from which the metastases arose in the test set and their
potential underrepresentation in the training data.

Furthermore, Zhao et al. (2020) used three different
independent test sets in their research, including two datasets
obtained by RNA-Seq of formalin-fixed paraffin-embedded
(FFPE) metastatic cancer samples. The FFPE-based datasets
showed a lower prediction accuracy (86.96% for the JAX clinical
dataset, which included 23 samples across 6 cancer types, and
72.46% for the Melbourne clinical dataset, which encompassed
69 samples across 18 cancer types) compared to RNA-Seq
conducted on fresh frozen tissue samples (92.64% for the TCGA,
which included 394 samples across 11 cancer types). This suggests
that the methods used for tissue processing and storage could impact
the results obtained from different sample types.

4 Identification of informative gene sets
for cancer classification

Several methods employed feature selection approaches to
identify the most informative sets of genes for TOO prediction
using different strategies to choose relevant genes. Two studies

FIGURE 1
Prediction accuracy of machine learning models for tissue-of-origin prediction based on RNA sequencing data. (A) Cross-validated prediction
accuracy for all models. (B) Comparison of cross-validated prediction accuracy and accuracy measured on an independent test set.
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utilized various subsets of top-selected genes based on the Gini index
from Random Forest models (He et al., 2020a; Ramroach et al.,
2020). Similarly, neural networkmodels selected a certain number of
top-ranked genes, either based on the highest weights for the tumor
class (Grewal et al., 2019) or by calculating Shapley additive
explanation values in deep neural network models (Divate et al.,
2022). Wei et al. (2014) employed univariate transcript analysis with
stepwise logistic regression to select the top N transcripts. Their

approach achieved high AUC prediction values using only a smaller
number of genes. However, the results of two randomizations of the
feature selection process show that, although the number of selected
genes was similar, the correspondence between the two
randomizations was low, with a cosine similarity of 0.53. Another
approach was to select highly variable genes across various cancers
and either use the top N genes for modeling (Moiso et al., 2022) or
perform dimensionality reduction on them before training machine

FIGURE 2
Comparison of important genes identified by various feature selection methods. (A) The intersection plot shows overlaps between genes detected
as important by different studies. Numbers of genes identified by individual studies are displayed as horizontal bars on the lower left corner of the image.
Intersection sizes are shown as individual bars on the top of the plot. Specific studies involved in each intersection are identified with connected solid
black circles under the vertical bars, with unconnected circles representing genes that are detected exclusively in the corresponding study. (B)
Number of occurrences of different GeneOntology terms in studies that employed feature selection. (C)Number of occurrences of different hallmarks of
cancers in studies that employed feature selection. (D) Proportion of druggable genes among all genes that were selected by feature selection in each
study.
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learning models like variational autoencoders (Vibert et al., 2021).
Furthermore, feature selection could be performed by selecting the
most important genes in each cancer type. Zhao et al. (2020) did this
by selecting the top N differentially expressed genes in each cancer
type to create a unique list of genes. A similar approach, based on the
Pearson correlation algorithm, was employed by He et al. (2020b).
Other approaches involved the selection of genes based on prior
knowledge, such as choosing clinical oncopanel genes tested in
routine clinical cancer care (Moiso et al., 2022) or a catalog of
somatic mutations in cancers (COSMIC) list of genes harboring
somatic mutations (Grewal et al., 2019).

To estimate the correspondence of informative gene sets
identified by various studies, we extracted gene lists provided by
the studies that employed feature selection on the primary dataset.
Studies selected between 36 and 4,861 unique genes, with the highest
number of overlapping genes found between gene lists identified by
Divate et al. (2022), Zhao et al. (2020), and Vibert et al. (2021), which
collectively chose the highest number of genes among all the
analyzed studies (Figure 2A). No genes were found to be selected
by all studies.

We mapped the extracted gene lists to hallmarks of cancer
(Dolgalev, 2022) and Gene Ontology terms (Wu et al., 2021) and
analyzed the number of occurrences of each hallmark or term among
the different studies. The majority of selected genes belonged to specific
pathways such as embryonic organ development, gland development,
hormone metabolic processes, reproductive system development, and
morphogenesis of an epithelium. These pathways were observed in
more than 10 studies (Figure 2B). The most frequently occurring
hallmarks of cancer, found in the majority of studies, were
reproductive system hallmarks such as estrogen late response,
androgen response, and spermatogenesis (Figure 2C). We also
examined which genes in each study were druggable according to
The Drug Gene Interaction Database (Beerenwinkel et al., 2016;
Wagner et al., 2016), following the method proposed by Ramroach
et al. (2020), and found that all studies selected at least 25% druggable
genes (Figure 2D).

We further examined genes proposed by different studies as
potential cancer signatures. Well-known prostate cancer signatures,
includingKLK3, a serine protease used as a serummarker in prostate
cancer screening and disease monitoring, and PRAC, a highly
expressed gene in prostate cancer (Edwards et al., 2005), have
been selected by 7 and 3 studies, respectively. Another protein
selected by 7 studies is the lung biomarker NAPSA, an aspartic
proteinase expressed in type II pneumocytes. Its expression can be
used to distinguish pulmonary lesions originating from primary
lung adenocarcinoma or other primaries (Ueno et al., 2003).
Additionally, 5 other studies identified IGFBP1, a hepatocyte-
derived secreted protein required for normal liver regeneration
by inhibiting proapoptotic signals (Borlak et al., 2005), as an
important feature, particularly for the identification of
hepatocellular carcinoma, in which it is overexpressed.

Wei et al. (2014) identified additional potential cancer signatures
not previously associated with the cancer types of interest. Some of
those genes, such as DPYS, were also identified by three more recent
studies (Zhao et al., 2020; Vibert et al., 2021; Divate et al., 2022) as
important for TOO prediction, especially for kidney cancer. Other
genes proposed byWei et al. (2014), such as the potential new ovarian
biomarker BEST1 and new prostate and gastric biomarker SI, were

either not found by other studies or were only identified by Vibert
et al. (2021), despite having implications in other cancer types.

Ramroach et a. (2020) stated that the majority of the top
40 genes selected by their study belong to the olfactory receptor
family, keratin-associated proteins, or the defensin beta family.
Interestingly, although it was claimed that the olfactory receptor
family plays a significant role in cancer, those genes were not
detected by any other study. Genes belonging to keratin-
associated proteins were only identified by Vibert et al. (2021).
From the defensin beta family, only theDEFB1 gene was detected by
four different studies (Grewal et al., 2019; Zhao et al., 2020; Vibert
et al., 2021; Divate et al., 2022), however, this particular gene was not
included in the top 40 genes selected by Ramroach et al. (2020).

5 Conclusion and future improvements

In this minireview, we analyzed 20 recent studies that employed
machine learning to predict the TOO of cancers based on NGS data.
Our goal was to assess their performance, reproducibility,
interpretability, and robustness. We found that all of the analyzed
methods exhibited very high prediction accuracy, ranging from 73%
to 99%. This performance represents an improvement over currently
used microarray-based methods, which have a prediction accuracy of
54%–100% (Conway et al., 2019; Rassy et al., 2020). These findings
suggest that these machine learning approaches have the potential to
bring about significant advancements in the diagnosis and treatment
of cancers of unknown primary.

However, while the overall prediction accuracy of the models is
high, it varies by tumor type, with tumors originating from the same
organ or tumors that are underrepresented in the training set being
more frequently mispredicted. This suggests that the accuracy
depends more on the composition of the training set than on the
method used for training the model. Researchers should, therefore,
aim to assemble balanced datasets for model training and include as
many samples of rare and underrepresented cancers as possible.

Furthermore, most of the analyzed studies did not employ an
independent test set, and the ones that did mostly showed a reduction
in accuracy, especially for test sets obtained from metastatic patients
or FFPE samples. Since CUP patients are, by definition, metastatic
patients and FFPE tissues are still the most commonly available
sample type for RNA-Seq, due to the cost-effectiveness of storage
(Zhao et al., 2019), bothmetastatic samples from asmany cancer types
and FFPE samples should be included in independent test sets to
support the claims of potential clinical use of NGS-based approaches
to cancer classification. Additional factors, such as data quality and
tumor purity, should also be investigated to determine their potential
impact on model accuracy.

Identification of features important for prediction, implemented
by several of the analyzed studies, could lead to novel biomarker
discovery and discovery of genes whose expression is dysregulated in
cancer, expand our current knowledge of mechanisms of cancer
development and progression, identify potential actionable targets,
and inspire novel treatment strategies. Indeed, most of the studies
that employed feature selection identified at least 25% of actionable
targets among their set of selected genes and showed that some of
those genes are already known cancer signature genes. However, the
overlap of gene lists provided by different studies is quite low,
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indicating that these results should be interpreted with caution. It is
important to note that the majority of the analyzed studies employed
filter methods, which select relevant features based on their intrinsic
characteristics. Some used wrapper methods, where features are
added or removed iteratively and scored based on their impact on
the machine learning model’s performance, or embedded
approaches, which combine properties of both filter and wrapper
methods.

Filter methods, while computationally less demanding, typically
do not consider the subsequent classification model, often resulting
in inferior performance compared to wrappers. In contrast,
wrappers can be susceptible to overfitting and sensitive to
parameter adjustments (Zanella et al., 2022). Recently, various
nature-inspired algorithms, such as those based on swarm
intelligence and evolutionary principles, have been applied as
metaheuristic search methods for wrapper-based feature selection
problems and show significant potential in the identification of
relevant genes for cancer classification using microarray gene
expression measurements (Pham and Raahemi, 2023; Yaqoob
et al., 2023).

For example, in a study using ten microarray datasets for cancer
classification, Gene Selection Programming (Alanni et al., 2019), a
method for selecting relevant genes based on Gene Expression
Programming (Ferreira, 2002), demonstrated the highest accuracy
and the fewest selected genes in the majority of cases, outperforming
swarm-based algorithms and more traditional methods like support
vector machines. This suggests that the application of such methods
to RNA-Seq datasets could lead to more accurate and robust gene
selection for cancer classification. Furthermore, the availability of
additional sequencing data and the investigation of possible biases
that could influence modeling results could further enhance the
clinical applicability of methods described in this minireview and
similar tools.
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