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Gastrointestinal (GI) cancer is the leading cause of cancer-related deaths
worldwide. Computed tomography (CT) is an important auxiliary tool for the
diagnosis, evaluation, and prognosis prediction of gastrointestinal tumors.
Spectral CT is another major CT revolution after spiral CT and multidetector
CT. Compared to traditional CT which only provides single-parameter anatomical
diagnostic mode imaging, spectral CT can achieve multi-parameter imaging and
provide a wealth of image information to optimize disease diagnosis. In recent
years, with the rapid development and application of spectral CT, more and more
studies on the application of spectral CT in the characterization of GI tumors have
been published. For this review, we obtained a substantial volume of literature,
focusing on spectral CT imaging of gastrointestinal cancers, including esophageal,
stomach, colorectal, liver, and pancreatic cancers. We found that spectral CT can
not only accurately stage gastrointestinal tumors before operation but also
distinguish benign and malignant GI tumors with improved image quality, and
effectively evaluate the therapeutic response and prognosis of the lesions. In
addition, this paper also discusses the limitations and prospects of using spectral
CT in GI cancer diagnosis and treatment.
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Introduction

Gastrointestinal (GI) cancers represent malignant tumors from the gastrointestinal tract
and the accessory organs of digestion, including esophageal, gastric, colorectal, liver, and
pancreatic cancers, and the colorectal, liver, and gastric cancers are the second to the fourth
most predominant cause of cancer-related mortality worldwide according to the Global
Cancer Statistics 2020 (Sung et al., 2021). A forecast of the global burden of cancer mortality
and morbidity, by 2040, new cases of GI cancer and deaths will increase significantly
according to CANCER TOMORROW (World Health Organization, 2022). Epidemiologic
data indicate a significant increase in the incidence of colorectal cancer in younger
populations in the past three decades. Moreover, recent evidence also demonstrates a
similar trend in gastric, pancreatic, and biliary tract cancers (Ben-Aharon et al., 2023).
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The management of gastrointestinal cancer primarily encompasses
surgical intervention, chemotherapy, radiotherapy, and targeted
biological therapy, thereby facilitating the attainment of curative
intent or optimal tumor control through their synergistic
integration. Due to the early clinical symptoms of GI cancer are
not typical and the degree of malignancy is high. Most patients
diagnosed with digestive GI cancers have been in an advanced stage,
especially pancreatic cancer. Their poor response to treatment
highlights the necessity of early detection, early diagnosis, and
early treatment, which further arises higher requirements for
accurate staging of the disease before surgery besides evaluation
of the efficacy of tumor treatment and prognosis. Endoscopy serves
as the gold standard for diagnosing GI cancers; however, due to its
invasive nature and limited exploratory capabilities, alternative
examination methods are required for adjunctive diagnosis.
Imaging examination is the most important non-invasive
examination method for GI tumors, including computed
tomography (CT), magnetic resonance imaging (MRI), positron
emission tomography (PET), ultrasound (US), and other medical
imaging techniques (Shigeyoshi et al., 2014; Schneider et al., 2016;
Dimitrakopoulou-Strauss et al., 2017), especially CT is widely used
for staging comparison and surgical evaluation before treatment.

CT is considered the greatest invention in medical imaging
since Roentgen’s discovery of X-rays, which divides overlapping
images of the human body into sectional images without structural
overlays. However, traditional CT mainly provides anatomical and
morphological evaluation of organs and tissues for GI cancers, but
cannot accurately evaluates the benign, malignant lesions, and the
true extent of the lesions. The emergence of spectral CT has opened
a new chapter in a revolution, breaking away from the single-
parameter anatomical diagnostic mode in CT imaging diagnosis
and ushering in a new era of multi-parameter diagnosis (Marin
et al., 2014). Spectral CT also called dual-source CT or dual-energy
CT, was first hypothesized in the 1970s (Vetter et al., 1986), but it
took decades for the first spectral CT to become available in the
clinic in 2006 (Flohr et al., 2006). Since then, the evaluation and
application of spectral CT have entered a stage of rapid
development and have been technically mature until recent
years. The main technique approaches currently for spectral

imaging: are rotate-rotate CT (A), Dual Source CT (B), Rapid-
kVp-switching CT (C), Multilayer detector CT (D), and Split-beam
CT (E) (Figure 1) (Adam et al., 2021). Spectral CT can generate
dual-energy data and obtain multiple groups of single-energy
images to realize spatial energy spectrum analysis of data
(McCollough et al., 2015). The clinical application of spectral
CT is mainly realized through energy spectrum tools. Based on
these energy spectrum tools, the original spectral CT data can be
further information mining, multi-modal quantitative parameters
can be obtained, and the composition difference of tissues and
blood supply characteristics can be quantitatively reflected, so as to
achieve a qualitative leap in disease diagnosis.

Spectral CT consists of five primary tools: spectral curves, mono-
energetic images at different keV levels, material decomposition and
quantitative analysis, effective atomic number (Eff-Z) images, and
virtual non-contrast (VNC) images. The first is spectral curves. The
spectral curve is also known as the attenuation curve of CT value,
which means that X-rays decay after passing through materials.
Different keVs correspond to different CT values. Spectral CT (e.g.,
GE Revolution CT) can generate 141 different CT values between
40 and 140 keV, and these values are connected into a curve, which
is the energy spectrum curve (Chen et al., 2019). Different tissues,
organs, and lesions have their own unique spectral curves. The shape
and slope of the energy spectrum curves can be used to judge the
nature of the lesion and the homology of the tumor, it can provide
more valuable information for the clinic. Secondly, the X-ray beam
of a conventional CT scan produces a mixed-energetic image, but
spectral CT can provide multiple sets of mono-energetic images at
different keV levels. Currently, some studies have shown that mono-
energetic images can effectively improve the signal-to-noise ratio
(SNR) and contrast-noise ratio (CNR), especially in obese patients
(Matsumoto et al., 2011; Atwi et al., 2019; Große Hokamp et al.,
2019). Low keV mono-energetic images can increase the contrast
between different tissues, which is conducive to the detection of
small lesions with similar density to parenchymal organs (Parakh
et al., 2018). But the high keV can effectively reduce metal hardening
artifacts, especially when combined with multiple artifact reduction
system (MARS) technologies, which can effectively remove metal
implant artifacts, providing higher image quality for clinical

FIGURE 1
Schematic diagram of the operating principles for the different clinical dual-energy CT platforms currently available. (A), Rotate–rotate CT, where
sequential low- and high-energy acquisitions are obtained. (B), Dual Source CT, where low- and high-energy data is acquired using two X-ray source and
detector pairs. (C), Rapid-kVp-switching CT, where the tube potential of a single X-ray source is rapidly switched between low- and high-energies. (D),
Multilayer detector CT, where the front layer of a sandwich detector preferentially absorbs low-energy X-ray photons, while the back layer absorbs
the remaining high-energy X-ray photons. (E), Split-beam CT, where a two-part filter mounted along the patient axis length modulates the X-ray spectra
into a high- and low-energy spectrum for each half of the beam from a single non-switching source (Yeh et al., 2017).
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diagnosis (Bamberg et al., 2011; Meinel et al., 2012; Laukamp et al.,
2018; Kim et al., 2019). The third important spectral CT capability is
material decomposition and quantitative analysis. Spectral CT can
be based on different substances in X-ray absorption, the use of base
substances (such as water, iodine, calcium, uric acid (UA), and
blood, etc.) for material quantitative analysis, can be used to quantify
the iodine concentration (IC) in a given region after enhanced
scanning, so as to assess the blood supply of the lesion
(McCollough et al., 2015; Lu et al., 2019). The fourth is Eff-Z.
The Eff-Z analysis of spectral CT can analyze the components of
inorganic substances, and obtain the effective atomic number of
inorganic substances within the Region of interest (ROI), so as to
make a qualitative diagnosis (McCollough et al., 2015). The last one
is VNC images. VNC images are created by subtracting all contrast
enhancement structures from the acquired image. So VNC images
appear as an alternative to conventional true unenhanced phase
images, which can effectively reduce the radiation dose delivered to
patients (Jamali et al., 2019).

GI cancers specific applications

Esophageal cancer

Esophageal cancer (EC) is a relatively common malignant
cancer of the digestive tract, the incidence rate is the seventh
cancer and the sixth in mortality in the world (Sung et al., 2021).
The pathological types were mainly divided into esophageal
squamous cell carcinoma and esophageal adenocarcinoma.
However, most patients with early EC miss the optimal
treatment period due to the lack of typical clinical
manifestations and are diagnosed in the advanced stages.
Surgery is usually used for early esophageal cancer (T1 and
T2), while neoadjuvant chemotherapy followed by surgery is
recommended for advanced EC (T3 and T4) (Shapiro et al.,
2015). Therefore, accurate preoperative staging is particularly
important for determining the treatment of patients with EC
(Rice et al., 2016; Guo et al., 2020). CT remains the primary
noninvasive method for preoperative T staging in patients with
EC, according to the American Joint Committee on Cancer
(AJCC) guidelines (Edge and Compton, 2010). However,
traditional CT cannot accurately display the boundary of the
lesion, and the preoperative staging is very limited. The number
of studies on EC with spectral CT has been growing, mainly on
the T staging and efficacy evaluation of EC.

T staging
T staging is one of the popular research interests in the field of

EC. Cheng et al. (2023) found that 40 keVmono-energetic images in
the venous phase effectively improved tumor visualization and were
significantly better than conventional mixed-energetic images in T
staging. The agreement between 40 keV mono-energetic images at
the venous phase and pathologic T categories was 81.63%, but the
agreement between conventional mixed-energetic images and
pathologic T categories was 48.97%. 40 keV mono-energetic
images at the venous phase effectively improve the diagnostic
efficiency to identify T1-2 from T3-4 in EC patients. In the
staging of patients with EC, it is important to evaluate the depth

of tumor invasion and the infiltration of extra-esophageal tissue.
Zopfs et al. (2021) research found that for the evaluation of EC
invasion depth, the Likert scores of mono-energetic images in
40–50 keV and iodine overlay images of spectral CT were
significantly higher than those of conventional CT imaging, for
tumor delineation, iodine overlays provided an optimal assessment.
They found that the combination of all spectral data yielded a
sensitivity, specificity, accuracy, positive and negative predictive
value for detection of advanced tumor infiltration (T3/T4) of
42.4% (95 %-CI: 32.2%–53.1%), 82.0% (95 %-CI: 68.5%–91.4%),
56.3% (95 %-CI: 47.8%–64.6%), 81.3% (95 %-CI: 67.4–91.1) and
43.6 (95 %-CI: 33.4–54.2). Although not as accurate as ultrasound
diagnosis of T staging.

Prognosis evaluation
Spectral CT iodine map performed before and after

chemoradiotherapy (CRT) of EC can be used as a traditional
morphological indicator to evaluate the prognosis (Ge et al.,
2018). Ge et al. (2018) evaluated the effect of CRT on EC by IC
of spectral CT and standard CT values. They found that after CRT
treatment, the normalized concentration of iodine (NIC) in arterial
and venous phases and normalized CT (NCT) values of the lesions
in the effective group were lower than before treatment, and the NIC
in venous phase and NCT values in the ineffective group were also
lower than before treatment, confirming the esophageal the
concentration of iodine can functionally assess the efficacy of
CRT. The iodine map can directly reflect the difference in the
concentration of iodine in the tumor and indirectly reflect the
blood supply in the lesion. Quantitative analysis with the
concentration of iodine not only can improve the diagnostic
accuracy, but also specify the target lesions in patients with EC
(Gao et al., 2016).

Gastric cancer

Gastric cancer (GC) is the fifth most common cancer and the
third leading cause of cancer-related deaths worldwide (Sung
et al., 2021). About 95% of GCs are gastric adenocarcinoma
(Dicken et al., 2005). In China, the incidence and mortality rates
associated with gastric adenocarcinoma are both the highest
among all malignant tumors of the digestive tract (Wong
et al., 2004). Most of the patients with GC are initially
diagnosed as an advanced disease and only 25% are resectable
at presentation, with limited 5-year survival to 20% (Song et al.,
2017). Therefore, early diagnosis and treatment are particularly
important for patients with GC. In clinical practice, the gold
standard to obtain the diagnosis of GC is still through
preoperative endoscopic biopsy, but endoscopic biopsy is an
invasive examination, and there is inevitable sampling bias in
the process of endoscopic biopsy (Liu et al., 2017). So, CT with
multiplanar reconstruction still is currently the most common
and effective method to stage GC, including assessing
locoregional tumor invasion and discovering adjacent and
distant metastases (Filippone et al., 2004; Edge and Compton,
2010; Makino et al., 2011). The application of spectral CT in GC
has been a promising area for research with a rising number of
relevant studies published every year.
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Diagnosis
An important preoperative topic of GC is the diagnosis,

mainly the histological types of GC, benign and malignant
differentiation, and preoperative T staging. Li et al. (2018a)
found through a retrospective study that the values of IC at
the arterial phase (ICAP), IC at the portal venous phase (ICPP),
normalized IC at the arterial phase (NICAP), and normalized IC
at the portal venous phase (NICPP) were significantly higher in
the poorly-differentiated group than those in the well-
differentiated group. And the AUC values of ICAP, NICAP,
ICPP, and NICPP in discriminating poorly and well-
differentiated gastric adenocarcinoma were 0.756, 0.919, 0.851,
and 0.684, respectively, especially NICAP demonstrated the
greatest ability in discriminating the histological types of
gastric adenocarcinoma. For differentiating between benign
and malignant GC, the values of the ICAP, NICAP, ICPP, and
NICPP in the GC group were significantly higher than those in
the benign gastric wall lesions group. Of note, NICPP
demonstrated the greatest ability in discriminating GC, and
the optimal cut-off values of NICPP was 0.364, the sensitivities
and the specificities were 91.95% and 87.96%, respectively. By
comparing the accuracy of spectral CT mono-energetic images
and conventional mixed-energetic images for the T stages of GC,
Xie et al. (2018) found that the diagnostic accuracy of mono-
energetic images was higher than that of conventional mixed-
energetic images, especially for the T3 and T4 stages of GC. Liu

et al. (2020) also revealed that the 40 keV mono-energetic images
were better for identifying the invasion depth in advanced GC
(T2-4), for which the T staging accuracy was increased by 28.6%
(Figure 2).

Lymph node status
Accurate prediction of the lymph node (LN) status of GC,

which is a remarkable prognostic factor, is important to
determine the appropriate treatment. Xie et al. (2018) found
that for LN staging, the general accuracy of the mono-energetic
group and the conventional mixed-energetic group was 70.4%
and 64.8%, respectively. Li et al. (2018b) developed and
internally validated a spectral CT-based nomogram to predict
LN metastasis in patients with GC. They found that the
nomogram was significantly associated with LN status, and
the tumor thickness, Borrmann classification, and the IC at
the venous phase were independent predictors of LN
metastasis, which can be used to facilitate the preoperative
individualized prediction of LN metastasis in patients with
GC. Li et al. (2020) built a spectral CT imaging-based
radiomics nomogram by deep learning method for LN
metastasis prediction in GC. According to the experimental
results, the spectral CT radiomics signature was associated
with LN metastasis in the arterial phase (AP) and venous
phase (VP), and an achieved area under the ROC curve
(AUC) of 0.71 for AP and 0.76 for VP in the test set.

FIGURE 2
Gastric cancer patients with 120 kVp polyenergetic images and 40–70 keV VMIs. (A) Sagittal MPR images showed a small superficial elevated lesion
at the antrum of the stomach, which was approved as T1 by pathology. The lesion was visualized better from 40–60 keV for increased lesion attenuation,
compared with traditional 120 kVp images. (B) Coronal MPR images showed local gastric wall thickening with hyperenhancement at the antrum of the
stomach, which was approved as T2 by pathology. The infiltration depth was determined more easily and confidentially in the 40–60 keV VMIs, of
which the enhanced lesion was evidently illustrated to be confined in gastric wall without abutting on the outer contour. (C) Axial images showed diffuse
gastric wall thickening with hyper-enhancement at the posterior wall of the stomach, which was approved as T4a by pathology. The perigastric fat
infiltration is visualized more clearly in the 40–60 keV VMIs compared with the traditional 120 kVp images. Of all three images, 40 keV VMIs performed
the best. Abbreviations: VMI, virtual monoenergetic images; PEI, polyenergetic images; MPR, multiplanar reconstruction (Liu et al., 2020).
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Treatment response
Many studies focused on the prediction of the treatment

response of patients. Wang et al. (2021) developed and validated
an iodine map radiomics model, which was superior to the
radiomics model built by conventional mixed-energetic images,
the AUC was 0.940 and 0.953, respectively. Indicating the
discrimination value of iodine from spectral CT for serosal
invasion in GC patients after neoadjuvant chemotherapy. Liu
et al. (2021) build and assess a pre-treatment spectral CT-based
clinical-radiomics nomogram for the individualized prediction of
clinical response to systemic chemotherapy in advanced GC. They
found that clinical stage and IC value were independent clinical
predictors of response to chemotherapy for advanced GC. The
multi-energy radiomics model predicting response probability
was superior to two monochromatic radiomics models and the
clinical model, the AUCs of them were 0.934, 0.914, and 0.774,
respectively. So radiomics combined whit spectral CT may serve as a
promising technique for predicting the response to treatment in
patients with advanced GC.

Other related factors of GC have also been investigated in
previous studies. The expression of the Ki-67 antigen is
considered to be associated with clinicopathological
characteristics of gastric adenocarcinoma. Cheng et al. (2018)
found that IC, NIC, and the curve slope values were found
significantly different among the low-, medium- and high-level
Ki-67 expression groups in VP and delayed phase (DP), and the
higher grades of Ki-67, the bigger values of these parameters. For
further analysis, they found the correlation between Ki-67 grade and
IC, NIC, and the curve slope values. Zhao et al. (2021) developed and
evaluated a spectral-based nomogram for noninvasive identification
of the status of human epidermal growth factor receptor 2 (HER2)
expression in GC. They found that the IC at the venous phase
(ICVP) and the normalized IC at the venous phase (NICVP) were
significantly lower in the group with HER2-positive GC than in the
group with HER2-negative GC. The newly built nomogram was a
promising tool for noninvasive stratification of HER2 status, which
could provide strong clinical evidence for HER2-directed therapy
and personalized patient management in a short period of time.

Colorectal cancer

Colorectal cancer (CRC) is the third most common kind of
cancer and the second leading cause of cancer-related fatalities
worldwide (Sung et al., 2021). It is crucial to carry out research
on the diagnosis, treatment response prediction, and survival
prediction of CRC, which can improve the prognosis of patients
and significantly reduce the social and medical burden. In recent
years, promising research results have emerged in the preoperative,
intraoperative, and postoperative stages of CRC using spectral CT,
covering the entire process of CRC diagnosis and treatment.

Diagnosis
Spectral CT has unique advantages in the diagnosis of CRC.

Extramural vascular invasion (EMVI), one of the most important
therapy evaluation goals, is related to tumor microcirculation. Gao
et al. (2023) held that iodine quantification using spectral CT,
especially the NIC to the aorta of the tumor, differs between the

EMVI-positive and EMVI-negative groups and seems to help
predict the EMVI of rectal cancer. Kang et al. (2018) also found
quantitative IC from spectral CT are significantly correlated with
PCT parameters, with better Intra- and interobserver agreements
and lower radiation doses, indicating that the clinical applicability of
spectral CT might be expanded to assess the hemodynamic status
of CRC.

Microsatellite instability (MSI) function is a predictive
biomarker for clinical outcomes and predicts responses to
adjuvant 5-fluorouracil and immunotherapy in CRC. Multiple
parameters in spectral CT imaging combined by Wu et al.
(2019a) provides relatively high diagnostic accuracy for
discriminating MSI, with AUC of 0.886. A radiomics model
based on iodine-based material decomposition images derived
from spectral CT imaging was also created by them, achieved a
high AUC (training: 0.961; validation: 0.918; testing: 0.875), which
was deemed to aid in locating individuals who might benefit from
chemotherapy or immunotherapy (Wu et al., 2019b).

Based on multi-keV of spectral CT, virtual monoenergetic
imaging (VMI) is usually used to improve image quality. Lenga
et al. (2020) demonstrated that 40 keV VMI improves the
reliability (ICC: 0.88) and diagnostic accuracy (89.1%) for the
detection of colorectal liver metastases (CRLM), and their further
study concluded that 40 keV VMI combined with noise
optimization could better display lesion contours in CRLM
(Lenga et al., 2018).

Efficacy evaluation
Spectral CT is also applied for early evaluation of

chemotherapy efficacy in patients with CRLM. Although MRI
and PET/CT have good performance in the early response
evaluation of chemotherapy for CRLM, the high cost of them
precludes their use in most patients with CRLM, because of
multiple imaging examinations during chemotherapy. Li et al.
(2023) showed that IC of spectral CT, as independent risk
factor for overall survival (OS) in CRLM patients (hazard ratio
[HR]: 1.238), could well predict the early response of first-line
chemotherapy combined to CRLM, using IC cutoff values of 4.75
(100ug/cm3) (AUC: 0.916), which meant that spectral CT could
replace MRI and PET/CT to monitor the chemotherapy efficacy of
CRLM in early stage.

Lymph node status
LN metastasis, which is a key prognostic factor for CRC, is

among the other study topics of CRC. Sato et al. (2019) calculated
NIC in the largest pararectal LNs (PRLN) and lateral pelvic LNs
(LPLN) in patients with rectal cancer and demonstrated that NIC
reduction is helpful in predicting positive metastasis of PRLN and
LPLN. In studies of preoperative diagnosis of regional LNs in CRC
by combining NIC and Eff-Z, Yang et al. (2019) found that the
combination of the two can further improve the accuracy of
predicting LN metastasis (Figure 3), while Qiu et al. (Yang et al.,
2021) believes that Eff-Z is not significantly helpful in judging
metastatic and non-metastatic LNs. Wang et al. (2022a) used the
radiomics to conduct feature selection and diagnostic analysis of
spectral CT images and obtained that the feature based on 120 kVp-
like images (AUC: 0.922) and iodine (water) image (AUC: 0.866)
had good diagnostic performance in predicting CRC LN metastasis.
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By combining spectral CT parameters and clinical factors, Cao et al.
(2021) developed a spectral CT nomogram with an AUC of 0.876 in
the training cohort and 0.852 in the validation cohort. It shows that
this column diagram has good efficacy in clinical applications. All of
these studies have shown that spectral CT has good performance in
the prediction of LN metastasis.

Liver cancer

Primary liver cancer is the sixth most prevalent form of
cancer and the third most lethal cancer globally, and the first and
second major pathological types are hepatocellular carcinoma
(HCC) and intrahepatic cholangiocarcinoma (ICC) (Sung et al.,
2021). The incipient symptoms of primary liver cancer are
usually a typical, so many patients are at Barcelona clinic
liver cancer stage-C at diagnosis and have lost the
opportunity for curative surgery (Park et al., 2015; Bruix
et al., 2016). Early diagnosis, individual assessment, and
prognosis prediction are very important in clinical practice.
With the gradual maturity of spectral CT, research on the
diagnosis and treatment of liver tumors has emerged one
after another.

Diagnosis
Spectral CT can effectively identify the pathological types of liver

tumors before surgery. Mahmoudi et al. (2022) found through a
retrospective study that the ICAP, normalized iodine uptake (NIU),
and a fat fraction (FF) between HCC and ICC had significant
differences. The ICAP to differentiate HCC and ICC revealed the
highest ability, the AUC was 0.93, and NIU followed (AUC: 0.87).
For ICAP, the optimal threshold of 2.33 mg/dL to discriminate
between HCC and ICC with a sensitivity of 89.36% and specificity of
76.6%. Kaltenbach et al. (2018) also found the NIU of the HCC was
higher than that of the hepatic neuroendocrine tumors (NET)
metastases. The optimal threshold of NIU was 0.22, the
sensitivity was 100%, and the specificity was 90%.

In recent years, the combination of deep learning and spectral
CT has been used more and more in the diagnosis of liver cancer.
Bae et al. (2023) through combined low monoenergetic images
and deep learning denoising, could obtain high conspicuity of
HCC and acceptable image noise while lowering the amount of
contrast medium. They thought that the findings on
noninferiority for the 50 keV deep learning denoising images
in terms of image quality and lesion conspicuity, compared with
model-based iterative reconstruction images of the standard-
contrast-dose group, may contribute to the wider clinical use

FIGURE 3
42-year-old man with poorly differentiated pathologic T3N2 rectal adenocarcinoma. (A–D) is a representative dual-energy CT examination of
metastatic lymph node. Dashed line indicates location of inserts. Inserts show HAP (red), PVP (blue), and EP (yellow) images. (A), PVP 70 keV
monochromatic contrast-enhanced CT images show largest metastatic lymph node (arrow) around superior rectal artery with short-axis diameter of
12.1 mm. ROI (oval) was drawn to cover entire lymph node; area is 59.2 mm2. (B), Graph shows spectral attenuation curves of metastatic lymph
node. Slopes of attenuation curves are 1.70 in HAP, 3.36 in PVP, and 3.15 in EP. (C), PVP contrast-enhanced iodine-based material decomposition CT
images show iodine concentrations are 0.81 ± 0.72 mg/cm3 in HAP, 1.70 ± 0.67 mg/cm3 in PVP, and 1.58 ± 0.75 mg/cm3 in EP. Arrow indicates largest
metastatic lymph node. (D), PVP contrast-enhanced Eff-Z CT images show Eff-Zs are 8.08 ± 0.45 in HAP, 8.61 ± 0.36 in PVP, and 8.54 ± 0.43 in EP. Arrow
indicates largest metastatic lymph node. 63-year-old man with moderately differentiated pathologic T2N0 rectal adenocarcinoma. (E–H) is a
representative dual-energy CT examination of nonmetastatic lymph node. Dashed line indicates location of inserts. Inserts show HAP (red), PVP (blue),
and EP (yellow) images. (E), PVP 70 keV monochromatic contrast-enhanced CT images show largest, metastatic lymph node (arrow) around superior
rectal artery with short-axis diameter of 6.7 mm. ROI (oval) was drawn to cover entire lymph node; area is 23.6 mm2. (F), Graph shows spectral
attenuation curves of nonmetastatic lymph node. Slopes of attenuation curves are 4.86 in HAP, 5.97 in PVP, and 5.53 in EP. (G), PVP contrast-enhanced
iodine-based material decomposition CT image shows iodine concentrations are 2.45 ± 0.77 mg/cm3 in HAP, 3.02 ± 0.81 mg/cm3 in PVP, and 2.81 ±
0.67 mg/cm3 in EP. Arrow indicates largest metastatic lymph node. (H), PVP contrast-enhanced Eff-Z CT images show Eff-Zs are 9.02 ± 0.37 in HAP,
9.26 ± 0.36 in PVP, and 9.18 ± 0.30 in EP. Arrow indicates largest metastatic lymph node. Abbreviations: HAP, hepatic arterial phase; PVP, portal venous
phase; EP, equilibrium phase; Eff-Z, effective atomic number (Yang et al., 2019).
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of low monoenergetic images for contrast dose reduction. Narita
et al. (2023) evaluated the clinical application of HCC by iodine
map generated from deep learning-based spectral CT imaging,
and they found that it could effectively improve the contrast-to-
noise ratio of hepatic arterial stage images and effectively evaluate
the vascular distribution of HCC in an arterial stage. Wang et al.
(2022b) designed a new deep learning model called MVI-Mind,
which consists of a lightweight transformer for segmentation and
a convolutional neural network for predicting microvascular
invasion, and used several deep learning techniques to
compare the proposed methods. The AUC values of MVI-
Mind in arterial phase, portal vein phase, and delayed phase
CT images were 0.9223, 0.8962, and 0.9100, respectively, which
significantly improved the prediction accuracy compared with
other deep learning segmentation algorithms.

Efficacy evaluation
Accurate evaluation of the patient’s treatment effect is

essential to achieve individualized treatment for different
stages of HCC. Yue et al. (2021) found that NICAP and
NICPP have high sensitivity and specificity in distinguishing
tumor active area (TAA), adjacent normal hepatic parenchyma
(ANHP), and tumor necrotic area (TNA), and could reflect the
perfusion information of liver tissue. The quantitative
parameters of spectral CT may help physicians to better judge
the effect of treatment and provide quantitative information as a
supplement to mRECIST and LI-RADS, to make correct clinical
decisions. Choi et al. (2021) quantified iodized oil retention in
tumors after transarterial chemoembolization using spectral CT
imaging in patients with HCC, and evaluate its performance in
predicting 12-month tumor responses. They found that the
presence of suspected residual tumors was the only significant
factor associated with a non-complete response, with an odds
ratio of 72.0.

Pancreatic cancer

Pancreatic cancer, with its low incidence but high mortality rate,
is the seventh most deadly cancer worldwide (Sung et al., 2021).
Surgical resection constitutes the only means that can lead to
prolongation of life (Witkowski et al., 2013). However, most
patients have already lost the opportunity for surgery because
they are already at an advanced stage or have metastases.
Therefore, the early diagnosis of the disease is very important
and urgent. In recent years, with the wide application of spectral
CT, the diagnosis and survival prediction of pancreatic cancer have
been discussed.

Diagnosis
Pancreatic ductal adenocarcinoma (PDAC) is the most common

pathological type of pancreatic cancer, resulting in a high mortality
rate (Sung et al., 2021). Achieving an accurate diagnosis of PDAC
contributes significantly to avoiding false predictions and improving
patient survival outcomes. For distinguishing between PDAC and
benign pancreatic lesions (e.g., pancreatic simple cyst, cystadenoma
and intraductal papillary mucinous neoplasm (IPMN)) using
spectral CT scans, Ebrahimian et al. (2022) found that when

IPMN and mucinous neoplasms were grouped with the
malignant lesions, both the spectral CT radiomics and
quantitative features had high AUCs (0.92 and 0.85, respectively).
For distinguishing between PDAC and chronic pancreatitis, Yin
et al. (2015) retrospective study showed a significantly higher iodine
concentration in chronic mass-forming pancreatitis compared with
PDAC on both arterial and pancreatic phase images (mean NIC,
0.07 ± 0.02 mg/mL vs. 0.28 ± 0.04 mg/mL; 0.26 ± 0.04 mg/mL vs.
0.53 ± 0.02 mg/mL, respectively).

Preoperative accurate localization of PDAC, tumor scope,
and accurate identification of blood supply arteries are also
important. Nagayama et al. (2020) study demonstrated that
the mono-energetic images quality of spectral CT is obviously
better than that of traditional mixed-energetic images, the
40 keV mono-energetic images provides the best quality for
PDAC evaluation because it has high pancreatic tumor
contrast and vascular opacity without the associated increase
in image noise. Low keV mono-energetic images are significantly
superior to traditional mixed-energetic images in tumor
conspicuity, margin delineation and visualization of
peripheral blood vessels, and have great advantages for early
diagnosis and local staging of PDAC. Liang et al. (2022) also
found that low keV on spectral CT effectively improved the
visualization of pancreatic supplying arteries, and a clearer
display of the anatomy and variation of these arteries was
essential for intraoperative guidance.

Lymph node status
LN metastasis also has a high prognostic value in pancreatic

cancer, especially the early accurate prediction of its status is
particularly important. An et al. (2022) developed a deep
learning model that extracted different radiomic features from
spectral CT scans to predict LN metastasis using a pre-trained
ResNet-18 model. Compare the effects of different approaches by
adding key clinical features to the experiment. The combined model
combining deep learning features and key clinical features had the
highest AUC at 0.92 and an accuracy of 86%.

Treatment response
Treatment response is also important for the prognosis of

pancreatic cancer. Noda et al. (2018) compared the maximum
diameter, CT number, IC, mean CT number (△HU), and mean
IC (△IC) of PDACs between those who response and non-
response group to chemotherapy. They found that the
maximum diameter, CT number and IC of the response group
were smaller than those of the non-response group, but the△HU
and △IC of the responsive group were significantly higher than
those of the non-responsive group, and the AUC and sensitivity
of all the diagnostic factors of IC were the highest (0.889, 97.7%,
respectively). Fukukura et al. (2020) though obtained iodine
density images from equilibrium-phase spectral CT for derived
extracellular volume (ECV) fractions. It was an independent
predictor of progression-free survival and overall survival in
patients with stage 4 PDAC treated with chemotherapy on
multivariate analysis. The spectral CT quantitative parameters
involved in preoperative diagnosis, differentiation, LN status, and
treatment response of all types of gastrointestinal cancer are
summarized in Figure 4.
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Limitations of the application of
spectral CT in GI cancers

Although spectral CT is widely used in gastrointestinal tumors,
it still has some limitations. This article will elaborate on the
limitations of the current application of spectral CT in
gastrointestinal tumors from the characteristics of the
gastrointestinal structure, scanning equipment, and application of
deep learning and radiomics.

Gastrointestinal structure

Firstly, the gastrointestinal tract is a hollow structure
comprising of mucosa, submucosa, muscular layer, and outer
membrane. In contrast to solid organs like the liver and kidney,
its carcinogenesis primarily originates from the innermost
mucosa and submucosa layers. When lesions are very small or
in early stages, tumors tend to be smooth with minimal density
variation compared to surrounding normal tissue. Consequently,
spectral CT is still exhibit lower diagnostic sensitivity than
endoscopy in such cases. Therefore, diagnosis of
gastrointestinal tumors continues to rely on endoscopy as well
as pathological puncture or resection. Secondly, it has been
discovered that the degree of cancer cell invasion in
gastrointestinal tumors is not solely determined by the display
effect of imaging technology but also closely associated with the
extent of lumen filling. Contraction of the lumen wall results in
incomplete lumen filling, rendering layer identification
challenging, while dilation of the lumen wall leads to excessive
thinning, making early tumor invasion depth estimation
impossible. Therefore, achieving optimal dilation of the

gastrointestinal tract’s lumen wall and maximizing the
potential role of spectral CT are crucial tasks in
gastrointestinal CT examinations. Additionally, inhibiting
peristalsis poses a significant challenge during gastrointestinal
CT examinations. Peristalsis-inhibiting drugs can only partially
slow down or inhibit gastrointestinal tract activity without
completely halting its movement. This slight peristaltic activity
may introduce certain interference when examining fine
structures or performing dynamic assessments.

Scanning instrument

Firstly, although CT scanning is highly valuable in medical
diagnosis and treatment, the utilization of X-ray radiation may
potentially induce adverse effects on the human body. Spectral
CT presents a reduced radiation dose compared to conventional
spiral CT; however, clinicians must engage in long-term
repetitive follow-up observations to comprehensively
investigate tumor development and progression. Additionally,
multiple post-treatment evaluations are necessary for tumor
patients to assess efficacy. The frequent implementation of CT
scans escalates patient radiation risks, thereby limiting the
applicability of spectral CT in longitudinal studies or follow-
up examinations. Secondly, spectral CT essentially belongs to
dual-energy CT and is implemented based on dual-energy
technology. Using different dual-energy technologies, various
manufacturers have developed different dual-energy CT
systems (such as single-source dual-beam energy CT, dual-
source dual-energy CT, dual-layer spectral detector CT, single-
source instantaneous tube voltage switching dual-energy CT,
photon counting CT). In addition to different CT systems,

FIGURE 4
Spectral CT quantitative parameters for preoperative diagnosis, differentiation, LN status and treatment response of different types of
gastrointestinal tumors, including low-keV virtual monoenergetic imagies (low-keV VMI), iodine map, iodine concentration (IC), normalized
concentration of iodine, effective atomic number (Eff-Z), normalized iodine uptake (NIU).
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scanner, kVp settings, and other parameter settings may vary
depending on the manufacturer and system. It may yet be
explored whether the same results can be obtained when
different studies use DECT systems with different Settings.
Thirdly, although the resolution of spectral CT is greatly
improved compared with that of traditional CT, it still has
certain limitations in tumor edge identification. In related
spectral CT studies, the judgment of tumor ROI is still based
on the subjective intuition of the delineator. Although these
contours are achieved by knowledgeable and experienced
radiologists, this non-objective judgment also causes a certain
bias to the research results. Finally, different spectral CT studies
may involve different scanning protocols, such as virtual non-
contrast scan instead of conventional non-contrast scan,
intravenous injection of asodamine to obtain optimal gastric
distension, and ventilation of the esophagus to achieve full
filling of the esophageal wall, as well as different contrast
agent injection protocols and different brands of contrast
agent, which may cause differences in the results of these studies.

Deep learning and radiomics

Firstly, deep learning requires a large amount of annotated
data for training, however, the acquisition and annotation of
spectral CT images is a complex and time-consuming task.
Since spectral CT technology is relatively new, the available
annotated data is relatively limited, which limits the application
of deep learning algorithms. Secondly, the samples of
gastrointestinal tumors are diverse, and the number of different
types of tumors may be unbalanced. This will lead to poor learning
effect of deep learning algorithms on samples of a few categories
during training. Moreover, the selection and extraction of features
may be affected by factors such as tumor location, shape, and size,
thus affecting the accuracy of their diagnosis in gastrointestinal
tumors. Thirdly, although deep learning algorithms perform well
on training data, generalization performance on new, unseen data
remains problematic. This means that the algorithm may perform
differently on different datasets of gastrointestinal tumors or on
different machines, requiring further validation and optimization.
Finally, the black-box nature of deep learning algorithms limits the
interpretability and interpretability of their results. This can be a
challenge for doctors and patients, as they need to understand how
the algorithms make diagnostic decisions.

Others

Firstly, in most studies, tumor ROI delineation was performed
based on CT images of a single layer rather than the entire tumor
volume, which ignores the potential spatial heterogeneity of the
tumor. In addition, the ROI based on a certain level of the tumor
cannot match the pathological specimen completely, which causes
some deviations in the research results to a certain extent. Secondly,
most of the studies were retrospective and had small sample sizes.
Therefore, retrospective studies may have sample selection bias and
cannot truly reflect the distribution of clinical cases. And too small a
sample size may exaggerate the consequences of the association,

with some studies including no more than 20 patients, so the
statistical significance is questionable. All these affect the
accuracy of the experimental results. Thirdly, most of the articles
we collected focused on relatively single pathological types of
gastrointestinal tumors, and most of them focused on common
pathological types, such as esophageal squamous cell carcinoma,
gastric adenocarcinoma, HCC, PDAC, colorectal adenocarcinoma,
etc., without considering patients with other histological types of
gastrointestinal tumors and case types with different degrees of
differentiation. Last but not least, almost all of the studies are single-
center studies, and the acquisition parameters of spectral CT images
in each research center are quite inconsistent, which leads to the
question of repeatability. Most of the findings require large
multicenter independent cohort studies to verify the accuracy of
the experimental results.

Application prospect of spectral CT in
GI cancer

The development of spectral CT is considered a milestone in
CT diagnosis, multi-parameter imaging of spectral CT provides
rich imaging data for the diagnosis of GI cancer. Among them,
mono-energy imaging and substrate imaging (the most widely
used is IC) have certain effects on improving the detection rate of
early GI cancer, differential diagnosis of advanced GI cancer,
evaluating the type, grade, and stage of GI cancer, evaluating
the chemotherapy effect of GI cancer, and reducing the dosage
of contrast agents and radiation dose of patients, greatly improving
the detection rate and qualitative accuracy of lesions. The following
is the future application prospect of spectral CT in gastrointestinal
diseases.

Photon-counting CT

Photon-counting CT (PCCT) uses a photon-counting detector
(PCD) to detect the energy of photons in X-rays and count the
number of them, and then dissociate different single-energy images.
Unlike conventional CT, which uses scintillation crystals as detector
materials, PCCT detectors use semiconductor materials such as
cadmium telluride. This semiconductor material can directly
convert X-rays into photons while distinguishing the energy of
the X-rays and counting the number of photons (Kreisler, 2022).
PCCT is the most advanced version of CT known.

Traditional spectral CT can realize simultaneous identification
and quantitative analysis of up to two substances based on dual-
energy imaging. The analog calculation can obtain iodine maps,
calcium maps, VNC imaging, virtual mono-energy image, and so on
for clinical diagnosis. By setting multiple thresholds (T0, T1, T2, T3),
PCCT can simultaneously read CT data in different energy domains.
This multi-energy imaging method provides the possibility for
specific material imaging and multi-material decomposition
(Mauro et al., 2021). For example, the simultaneous separation of
two different contrast agents: iodine and gadolinium, iodine and
bismuth, or other heavy elements (tungsten and nano-gold, etc.)
enables simultaneous imaging of multiple contrast agents and
targeted molecular imaging. In addition, the CNR of images can
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be further improved by optimizing the weighting of different energy
domains, especially in enhanced CT. In addition, it can record
spectral information, provide color images and multi-information
images, and the image resolution is higher, but also can greatly
reduce the radiation dose, and the noise is lower when working.

The higher resolution and more accurate material separation of
PCCT can better provide the detection rate of gastrointestinal
tumors, improve the accuracy of tumor localization, qualitative
and staging diagnosis, and better evaluate the tumor efficacy.
However, how it can provide a more advantageous diagnosis for
early, small, and hidden gastrointestinal cancers needs more
research to further explore. Lower radiation dose imaging with
PCCT is important for long-term follow-up and screening of
intestinal tumors, which can reduce radiation dose and risk to
patients.

Molecular image probe

The molecular imaging probe plays a pivotal role in molecular
imaging using CT, representing the most crucial component.
Typically, CT molecular imaging probes consist of materials with
high X-ray absorption capacity, enabling imaging through the
measurement of X-ray absorption and scattering. Although
iodine is commonly employed as a CT probe, its toxicity to the
human body poses concerns. Lowmolecular weight iodine is rapidly
eliminated by the kidneys, resulting in very short contrast times;
moreover, X-rays catalyze ionization of iodine ions, potentially
causing additional harm to humans. The integration of novel
nanomaterials and biotechnology can address these limitations
and enhance the capabilities of CT probes.

Gold nanoparticles (AuNP) are extensively utilized due to
their excellent biocompatibility and physicochemical properties.

Notably, their chemical inertness, photoelectric characteristics
(such as Raman scattering, fluorescence, and surface plasmon
resonance (SPR)), modifiability of the surface, and strong
interaction with mercapto compounds offer significant
potential in tumor diagnosis and therapeutic applications
(Figure 5) (Yeh et al., 2017). Besides gold, other metallic
elements such as 56Ba, 73Ta, 74W, 83Bi, 64Gd, and 70Yb
(Wang et al., 2019) can also serve as CT probes for CT
imaging by modifying them owing to their high X absorption
coefficients. Furthermore, emerging molecular probes like
germanium compounds (Nampi et al., 2021; Wang et al.,
2023), yttrium compounds (Bychkova et al., 2022), ferrite
nanoparticles (Litjens et al., 2017), oxygen sensors, etc., have
been explored for CT imaging. Additionally, different types of
molecular probes can be combined to achieve multimodal
imaging using multimodal probes; for instance fluorescence-
spectral CT dual-mode probes enable simultaneous
fluorescence imaging and spectral CT imaging while nuclide-
spectral CT dual-mode probes allow both nuclide imaging and
spectral CT imaging.

The combination of molecular probes and spectral CT holds
promising prospects for the application in gastrointestinal tumors.
Molecular probes can effectively label specific molecular markers
expressed by gastrointestinal tumor cells, such as HER2 in gastric
cancer. By combining spectral CT with molecular imaging probes,
targeted identification and localization of tumors can be achieved.
Moreover, when combined with molecular probes, spectral CT
enables the labeling of specific molecular markers in tumor blood
vessels, facilitating a comprehensive evaluation of tumor blood
supply and angiogenesis to provide a more accurate basis for
treatment selection. Additionally, molecular probes can label
specific metabolites within tumor cells which, when combined
with spectral CT, further allows for an assessment of metabolic

FIGURE 5
AuNP have been widely developed as contrast agents, therapeutic diagnostic platforms, andmolecular imaging probes. This popularity has resulted
in a large number of AuNP designs with different sizes, shapes, surface functionalization, and assembly, including novel structural AuNP, targeted AuNP
for cancer imaging, and other AuNP, all to very closely match the requirements of various imaging applications. Thus, AuNP-based molecular imaging
probes allow the use of CT, fluorescence, optical, and surface-enhanced raman imaging, photoacoustic spectroscopy, and MRI, as well as other
novel technologies.
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activity in tumors to monitor and evaluate therapeutic response and
efficacy.

Artificial intelligence

In recent years, artificial intelligence (AI) has emerged as a
prominent research area in computer-aided diagnosis, wherein
medical image data is processed and analyzed using advanced AI
techniques to extract valuable information that aids doctors inmaking
accurate diagnoses and treatment decisions. Among various AI
technologies, deep learning (DLR) based on convolutional neural
network (CNN) has gained significant popularity for medical image
analysis due to its ability to accomplish tasks such as image
classification, object detection, segmentation, and reconstruction.
By training deep learning models with extensive medical image
datasets, the inherent features and patterns within images can be
automatically learned, enabling precise identification and analysis of
diseases and abnormalities. Additionally, generative adversarial
network (GAN), reinforcement learning (RL), multimodal fusion
techniques, along with natural language processing (NLP), are also
pivotal for the application of artificial intelligence in the field of
medical imaging.

In spectral CT, artificial intelligence technology is primarily
utilized in two key areas: spectral data analysis and image
reconstruction and enhancement. By harnessing the power of
artificial intelligence, a vast amount of spectral data acquired
through spectral CT can be thoroughly explored and accurately
analyzed, enabling the extraction of disease-specific spectral
characteristics and composition information. Through meticulous
screening, training, and validation of these features, more precise
disease diagnosis and prediction can be achieved. Furthermore,
given the substantial volume of data involved in spectral CT
imaging, employing advanced techniques such as DLR allows for
improved image resolution, reduced noise levels and artifacts, as well
as enhanced image contrast.

The integration of AI and spectral CT holds significant
implications for enhancing the accuracy of diagnosis and
treatment for gastrointestinal tumors. With advancements in
algorithms and computing power, AI surpasses human
limitations in disease discrimination. The luminal structure of the
gastrointestinal tract poses a constraint on human observation. In
spectral imaging, where multiple parameters and subtle differences
are present, energy data may not be discernible to humans but can be
effectively learned by AI models to identify tumor boundaries,
invasion patterns, and other intricate features with greater
precision than humans.

Multimodal imaging

Individual imaging modalities are limited in their ability to
collect comprehensive medical information. For instance, CT and
X-ray images provide anatomical and rigid structure information,
while MRI images offer structural details along with some
functional insights. On the other hand, single photon emission
computed tomography (SPECT) and functional-MRI images
primarily reveal detailed functional information. Due to these

limitations, medical experts often face challenges in diagnosing
diseases when relying solely on a single imaging modality.
Consequently, the concept of multimodal imaging has been
introduced to address this issue. Traditional multimodality
involves integrating multiple modalities through fusion
algorithms to generate detailed synthetic images. Common
combinations include CT-MRI, MRI-SPECT, MRI-PET, X-ray-
US, and MRI-US (Xu et al., 2020).

Spectral CT holds significant potential for multimodal imaging of
gastrointestinal tumors. It represents a novel form of CT technology
that not only provides structural information like traditional CT, but
also enables analysis of X-ray beams with varying energies to acquire
valuable insights into tumor blood supply, angiogenesis, and
metabolism. By leveraging spectral CT, the limitations associated
with single structure imaging in conventional CT can be overcome,
thereby achieving comprehensive multimodal imaging of
gastrointestinal tumors. Furthermore, when combined with other
imaging modalities such as SPECT, MRI, PET, US, etc., spectral CT
can offer a more comprehensive and accurate assessment of
gastrointestinal tumors by complementing and validating
information from different imaging techniques to enhance the
precision and reliability of diagnostic results.

Besides, advances in multimodal imaging have paralleled advances
in multimodal probes, especially activable multimodal imaging probes
that can produce concurrent switching of signals fromdifferent imaging
modalities when interacting with molecular targets. For instance,
upconversion nanoparticles doped with lanthanide elements can be
utilized to create a straightforward multimodal imaging probe with
enhanced image quality by adjusting the Lu3+ content, which can
significantly enhance contrast performance imaging in both in vitro
upconversion luminescence and in vivo CT (Liu et al., 2018). Using
multimodal probes, multimodal imaging of the gastrointestinal tract
can also be achieved, which is very promising for gastrointestinal tumor
imaging.

Conclusion

The high incidence of GI tumors has attracted intensive attention
worldwide. For the diagnosis and treatment of GI tumors, early
identification of small cancers, clarifying and staging the lesions and
their boundaries, assessing preoperative lymph node metastasis, and
evaluating the efficacy of postoperative treatments are the most
preferential concerns but remain unsolved. Endoscopy is the most
common and popular diagnosis method for the gastrointestinal tract.
However, its limited visual range and invasiveness remain to be replaced
by improved examination methods. Notably, spectral CT provides one
effective imaging method for GI tumors, and its multi-parameter
imaging and quantitative analysis serve as essential references for
diagnosis and treatment. Mono-energy images and basal material
quantification are the most widely used means. Previous studies
suggested that the unique cavity structure of the gastrointestinal
tract and different imaging systems of spectral CT resulted in
remarkable differences in the same type of gastrointestinal tumors.
Although volume quantitative analysis is considered to be an easy way
to obtain the lesion volume (Zhong et al., 2023), in most deep learning
and radiomics combined with spectral CT studies, the extraction of ROI
is still limited to two-dimensional level. The limitations in the
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application of spectral CT in GI tumor diagnosis, with the emergence of
a new generation of CT technology, it is only a matter of time before
solving these problems. In recent years, metabolic imaging and targeted
therapy have become a focus for GI cancer profiling. Thus, molecular
imaging probes and multimodal imaging of spectral CT are newly
emerging urgent needs, which also can help the early detection of small
tumors in the gastrointestinal tract. Furthermore, artificial intelligence is
another future direction for spectra CT imaging of a huge data volume.
With a powerful algorithm model, the boundaries around tumors can
be accurately distinguished, and three-dimensional image features can
be quickly extracted, which may be essential for evaluating invasion
degrees, classification, and differentiation of gastrointestinal tumors.We
firmly believe that through the continuous advancement of spectral CT,
molecular imaging, and artificial intelligence, computed tomography
(CT) has the potential to provide comprehensive and precise diagnosis
for gastrointestinal cancer while accurately assessing treatment response
and predicting prognosis.
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