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Background: Early diagnosis of inherited metabolic diseases (IMDs) is important
because treatmentmay lead to reducedmortality and improved prognosis. Due to
their diversity, it is a challenge to diagnose IMDs in time, effecting an emerging
need for a comprehensive test to acquire an overview of metabolite status.
Untargeted metabolomics has proven its clinical potential in diagnosing IMDs,
but is not yet widely used in genetic metabolic laboratories.

Methods:We assessed the potential role of plasma untargeted metabolomics in a
clinical diagnostic setting by using direct infusion high resolution mass
spectrometry (DI-HRMS) in parallel with traditional targeted metabolite assays.
We compared quantitative data and qualitative performance of targeted versus
untargeted metabolomics in patients suspected of an IMD (n = 793 samples)
referred to our laboratory for 1 year. To compare results of both approaches, the
untargeted data was limited to polar metabolites that were analyzed in targeted
plasma assays. These include amino acid, (acyl)carnitine and creatine metabolites
and are suitable for diagnosing IMDs across many of the disease groups described
in the international classification of inherited metabolic disorders (ICIMD).

Results: For the majority of metabolites, the concentrations as measured in
targeted assays correlated strongly with the semi quantitative Z-scores
determined with DI-HRMS. For 64/793 patients, targeted assays showed an
abnormal metabolite profile possibly indicative of an IMD. In 55 of these
patients, similar aberrations were found with DI-HRMS. The remaining
9 patients showed only marginally increased or decreased metabolite
concentrations that, in retrospect, were most likely to be clinically irrelevant.
Illustrating its potential, DI-HRMS detected additional patients with aberrant
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metabolites that were indicative of an IMD not detected by targeted plasma
analysis, such as purine and pyrimidine disorders and a carnitine synthesis disorder.

Conclusion: This one-year pilot study showed that DI-HRMS untargeted
metabolomics can be used as a first-tier approach replacing targeted assays of
amino acid, acylcarnitine and creatine metabolites with ample opportunities to
expand. Using DI-HRMS untargeted metabolomics as a first-tier will open up
possibilities to look for new biomarkers.

KEYWORDS

untargeted metabolomics, inherited metabolic diseases, direct-infusion high resolution
mass spectrometry, biomarker, diagnostics, genetic diseases

1 Introduction

Inherited metabolic diseases (IMDs) are a phenotypically
heterogenous group of genetic diseases, now comprising
1881 diseases (IEMbase, 05-08-2023). Early diagnosis of IMDs is
important, because disease-specific treatment may lead to reduced
mortality and improved prognosis (Saudubray et al., 2006; Hoytema
van Konijnenburg et al., 2021) and because it enables genetic
counseling of families. It is a challenge to diagnose this diverse
spectrum of diseases in a timely manner.

Current practice for diagnosing IMDs in genetic metabolic
laboratories includes a selection of targeted metabolite platforms
in blood and/or urine samples, the choice of which depends on the
clinical description of the patient. Examples of commonly used
platforms are amino acid and acylcarnitine analysis in plasma and
organic acid analysis in urine. Although this targeted approach
provides reliable results with accurate quantification, it lacks the
flexibility to easily look beyond its established, fixed set of
metabolites. In addition, multiple assays, each with their own
sample preparation, are time consuming and labor intensive and
can lead to long turnaround times. Given the increasing number of
known IMDs and the concurrently expanding number of reported
biomarkers needed for diagnosis (IEMbase), there is an emerging
need for a comprehensive test to acquire a complete view of
metabolite status.

Untargeted metabolomics encompasses an unbiased approach
to measure all small molecules in a certain sample, within the
limitations of the method, such as solubility and ionizability of
the molecules. In recent years, the attention for untargeted
metabolomics in diagnosing IMDs has been increasing and its
clinical potential has been proven by several research groups
using different approaches such as DI-HRMS (Haijes et al.,
2019a; Haijes et al., 2019b), LC-QTOF-MS (Coene et al., 2018;
Steinbusch et al., 2021), LC-HRMS (Bonte et al., 2019) or a
combination of GC and LC approaches in parallel (Miller et al.,
2015; Almontashiri et al., 2020; Liu et al., 2021) While
chromatography based methods can separate metabolites with
identical masses, direct-infusion approaches are faster, technically
uncomplicated, need a very small amount of material, are robust,
have a great potential for high-throughput analysis and bypass the
need to create an experimental library of metabolite masses and
retention times. Untargeted metabolomics can integrate a large
number of metabolites into a single assay, reducing the
complexity of sample preparation, increasing the number of
metabolites assessed and eventually improving turnaround time.

Unlike the traditional targeted approaches, untargeted
metabolomics enables new biomarker discovery, both in
established (Broeks et al., 2019; Haijes et al., 2019c; Kennedy
et al., 2019; Engelke et al., 2021; van Outersterp et al., 2021) and
in newly discovered IMDs (Mochel et al., 2009; van Karnebeek et al.,
2016; Rodan et al., 2018). Finding newmarkers for established IMDs
may be of great interest in relation to disease severity and
progression, as well as in assessing treatment response (Pillai
et al., 2020; Schoen and Singh, 2022; Tallis et al., 2022). In
addition, analysis of a broad spectrum of metabolites will
facilitate a better understanding of disease pathology, a higher
diagnostic yield, and the possibility to look into interactions

FIGURE 1
Overview of pilot study. Schematic view of pilot study comparing
DI-HRMS untargetedmetabolomics to targetedmetabolic assays. The
middle part (darker shade) represents assays and yield included in the
pilot. The outer part (lighter shade) represents additional assays
and yield. The lower part gives an overview of suspected diagnosis
based on metabolite analysis, these are not (all) patients with
confirmed diagnosis. *CTX is detected by both targeted and
untargeted approaches, but based on different metabolites, therefore
depicted here twice.
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betweenmetabolic pathways (Jans et al., 2022). However, integrating
a diverse spectrum of chemically different metabolites into one
platform is analytically challenging.

We and others have previously shown the clinical potential of
untargeted metabolomics in cohorts of patients with IMDs (Miller
et al., 2015; Coene et al., 2018; Haijes et al., 2019a; Haijes et al.,
2019b; Bonte et al., 2019; Almontashiri et al., 2020; Steinbusch et al.,
2021). We now present the results of a one-year unbiased pilot study
directly running untargeted metabolomics in parallel with
traditional targeted metabolic assays, for all patients suspected of
an IMD referred to our laboratory. We compared quantitative data
and qualitative performances of the two approaches and focus on
metabolites in the amino acid, acylcarnitine and creatine
metabolism, covering biomarkers for many of the disease groups
described in the international classification of inherited metabolic
disorders [ICIMD, (Ferreira et al., 2021)].

2 Materials and methods

2.1 Patient inclusion

Heparinized plasma samples of patients referred to our genetic
metabolic laboratory for symptomatic diagnostic screening of IMDs
during a period of 1 year (2021) were included (n = 793). Samples
received for disease monitoring, treatment follow-up or for
confirmation of a specific disease, e.g., based on a newborn
screening referral or for biochemical validation of a reported
gene mutation, were excluded. Traditional targeted metabolic
screening and untargeted metabolomics were always performed
in parallel using plasma from the same vial for each sample
(overview of pilot study in Figure 1).

2.2 Targeted metabolic analyses

Based on the symptoms of the patient, provided by the
requesting physicians, a panel of targeted metabolite analyses was
performed. The assays performed in this cohort were validated
according to ISO standards and included assays for amino acids,
acylcarnitines, methylmalonic acid and homocysteine,
intermediates of cholesterol biosynthesis, oxysterols and very
long-chain fatty acids. Analyses of creatine, guanidinoacetate and
succinyl acetone were only performed in specific cases. Only amino
acid, acylcarnitine, creatine and guanidinoacetate data were used for
comparison with untargeted metabolomics.

Briefly, amino acids were quantified without derivatization using
HILIC (hydrophilic interaction liquid chromatography) MS/MS
(tandem mass spectrometry) as described in (Prinsen et al.,
2016). Carnitine and acylcarnitines were analyzed by flow
injection UHPLC (ultra-high performance liquid
chromatography) MS/MS. MRM (multiple reaction monitoring)
transitions of butyl ester derivatives of acylcarnitines and internal
standards were analyzed in positive electro spray ionization (de
Sain-van der Velden et al., 2013). Creatine and guanidinoacetate
were analyzed using UHPLC-MS/MS with column separation. The
typical turnaround time for one targeted assay is 1–2 days, the

turnaround time for the total of metabolite assays for one patient
is typically 2 weeks.

2.3 Untargeted metabolomics by DI-HRMS

Untargeted metabolomics analysis including sample
preparation and data analysis was performed as described in
(Haijes et al., 2019b). Samples were analyzed in 46 technical
runs, resulting in an almost weekly analysis. Control samples in
each run consisted of 30 randomly selected samples from a batch of
60 anonymized samples of patients in whom an IMD was excluded
after performance of a thorough diagnostic metabolic screening. The
batch of control samples was composed of patients varying in age
and sex. Hemolytic plasma samples and samples from patients with
specific diets (e.g., ketogenic diet) were not included as control.
Three IMD positive controls (patients with lysinuric protein
intolerance, phenylketonuria and propionic acidemia) were
included, chosen because of diagnostic metabolites with different
chemical properties and covering analysis in both positive and
negative ion mode. Semi-quantitative data for each metabolite in
each patient was obtained by calculating Z-scores (number of
standard deviations from controls) as described in (Haijes et al.,
2019b). The total turnaround time for one sample batch was
approximately 2 days.

2.4 Metabolite selection

To be able to compare results from both approaches, we limited
the untargeted data to polar metabolites that were also measured in
targeted plasma analysis: amino acids, (acyl)carnitines, creatine and
guanidinoacetate. Succinyl acetone was not included because of the
low number of data points. Homocysteine was not included because
targeted plasma homocysteine analysis involves DTT treatment
leading to quantification of total homocysteine while methanol-
based sample extraction as performed in DI-HRMS only captures
the unbound fraction of homocysteine resulting in incomparable
data (Haijes et al., 2019b). Although we have previously shown that
our method correctly captures and annotates methylmalonic acid,
enabling identification of patients with methylmalonic aciduria
(Haijes et al., 2019b), we chose to exclude it for this study since
Z-scores obtained by DI-HRMS correlate poorly in the lower
concentration range (Supplementary Figure SF1) due to presence
of isomeric metabolites (e.g., succinic acid) in high concentrations.
This untargeted metabolomics approach including sample
preparation is not suitable for large lipophilic metabolites such as
very long chain fatty acids, oxysterols and cholesterol intermediates.

2.5 Statistical analyses

Z-scores of the selected metabolites were compared to
concentrations measured by quantitative, targeted analyses
performed as part of the traditional metabolic screening. The
correlation between Z-scores and quantitatively derived
concentrations was assessed using Pearson’s correlation coefficient.
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3 Results

3.1 Description of pilot study

3.1.1 Cohort characteristics
During the period of 1 year, our genetic metabolic laboratory

received 793 plasma (or blood) samples from unique patients
referred for symptomatic diagnostic screening of IMDs. These
patients have a median age of 4 years and 10 months, ranging
from 0 to 82 years old. The cohort is skewed towards male
individuals (57% male). Most of the patients are children; 81%
were younger than 18 years and 18% were younger than 1 year old
(Figure 2A).

3.1.2 Phenotypes
The phenotypic variability observed in IMDs is reflected by the

number of clinical symptoms that are present in the cohort. We
converted the symptoms reported by the referring physicians into
corresponding HPO (Human Phenotype Ontology, (Kohler et al.,
2021)) terms. In total 327 unique HPO terms were used. The most
frequent HPO terms were intellectual disability and developmental
delay, present in 175 and 157 patients respectively. Most of the

patients with these symptoms were children (96%). The third most
frequently seen clinical symptom was abnormal muscle physiology,
mostly seen in adults (54%). Figure 2B gives an overview of the
frequency of the most observed HPO terms (top 20).

3.1.3 Targeted metabolic analyses
The most frequently performed combination of targeted

analyses in our cohort are the assays of plasma amino acids,
acylcarnitines and methylmalonic acid and homocysteine. This
panel of analyses is performed in all children with intellectual
disability and/or development delay, as recommended in the
guideline of the Dutch pediatric association (NVK, 2018), and
therefore reflects the large percentage of children with these
clinical symptoms in our cohort. In a relatively large proportion
of patients (7%), the targeted metabolic screening was limited to
only the analysis of very long-chain fatty acids. This group consists
of adult patients with spasticity in whom X-ALD (X-linked
adrenoleukodystrophy) is investigated as a treatable cause of
adult-onset hereditary spastic paraplegia. An overview of the
frequencies of metabolic analyses performed in the cohort is
displayed in Supplementary Figure SF2. In addition to analysis of
metabolites (but not part of the scope of this paper) we performed

FIGURE 2
Description of pilot study. (A) Age and gender of patient population referred for symptomatic diagnostic screening of IMDs. (B) Most observed
phenotypes in patient population referred for symptomatic diagnostic screening of IMDs, according to HPO systematic.

Frontiers in Molecular Biosciences frontiersin.org04

Willems et al. 10.3389/fmolb.2023.1283083

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1283083


screening for congenital disorders of glycosylation by transferrin
isoelectric focusing in most of the plasma samples and
chitotriosidase activity as a general lysosomal marker based on
specific symptoms. Also, additional metabolic tests in urine and/
or dried blood spot were performed in most patients.

3.2 Quantitative performance

Pearson correlation analysis shows a significant (p < 0.05)
positive correlation between plasma concentrations measured
with targeted metabolic assays and Z-scores determined with
untargeted metabolomics for all amino acids, most
acylcarnitines, creatine and guanidinoacetate. Exceptions are
C4-DC-carnitine, C5-OH-carnitine, C12-DC-carnitine, C14-
OH-carnitine, C16-OH-carnitine and C18-OH-carnitine, these
metabolites show no (significant) positive correlation
(Supplementary Figures SF3–SF5; Supplementary Tables
ST1–ST3). Due to the DI approach without chromatography,
isomeric metabolites such as leucine and isoleucine cannot be
separated. However, the semi-quantitative Z-score for the m/z
corresponding to leucine/isoleucine correlated well with both the
quantitative concentration of leucine, as well as of isoleucine
(Supplementary Figure SF3). Supplementary Table ST4 includes
all intensity and Z-score data as detected by DI-HRMS that were
used for the comparisons.

3.3 Qualitative performance

3.3.1 Samples with abnormal metabolites
The result of a targeted metabolic diagnostic screening has

traditionally been composed of quantitative data compared to
reference ranges and an interpretation of these data in relation to
the patients’ clinical symptoms by a laboratory specialist. The
traditional targeted assays revealed aberrant metabolites in 83%
(658/793) of plasma samples (Figure 3). This includes all metabolites

(in amino acid, carnitine and creatine metabolism) elevated or
decreased when strictly compared to the reference range used in
patient diagnostics in our laboratory. These reference ranges are
either based on literature or have been determined in-house,
depending on the analysis; some of them are age-dependent.
Z-scores calculated from untargeted metabolomics data showed
at least one aberrant metabolite in 95% (756/793) of plasma
samples (Figure 3). Upper and lower limits were set at Z = 2 and
Z = −1,5 respectively for increased and decreased Z-scores. Upper
and lower limits were used for amino acids, carnitine, creatine and
guanidinoacetate. For acylcarnitines, we used only upper limits.

3.3.2 Samples with possible indications for IMDs
To assess whether our untargeted approach would detect all

aberrations that are relevant to diagnosing IMDs, we selected all
patients with metabolite aberrations that may be indicative of IMDs
reported on targeted metabolic screening. In 8% (64/793) of the
samples, targeted metabolic assays revealed metabolite aberrations
that could be an indication of an IMD.

This group includes patients with very clear clues for a specific
IMD (e.g., urea cycle defect, glutaric aciduria, defect in ketone body
metabolism, tyrosinaemia) and patients with aberrations that could
be well explained by an IMD but could also be caused by exogenous
factors (mainly acylcarnitines indicative of fatty acid oxidation
defects or riboflavin defects). In addition, it includes a large
group of patients with non-specific metabolites that could
possibly be explained by mitochondrial disorders or secondary
mitochondrial dysfunction, mainly elevated alanine and proline.
Supplementary Table ST5 shows an overview of these samples. Most
of the aberrations found in targeted assays were also reflected in data
from the untargeted approach. In 9 plasma samples, untargeted
metabolomics did not detect potentially relevant aberrant metabolite
levels that were reported in targeted metabolic assays, possibly
because these aberrations were very mild. These aberrations
included a slightly elevated C18:1-carnitine and mild aberrations
of proline, alanine and citrulline in the context of possible
mitochondrial dysfunctions.

FIGURE 3
Qualitative performance Number of plasma samples with aberrant (amino acid, acylcarnitine and creatine)metabolites based on reference range for
targetedmetabolic assays and based on Z-score limits Z = 2 and Z = −1,5 for untargetedmetabolomics. Number of plasma samples that showed aberrant
(amino acid, acylcarnitine and creatine) metabolites possibly indicative of an IMD.
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3.4 Other indications for IMDs

Our cohort included patients’ samples that in the untargeted
approach showed potentially relevant abnormal levels of metabolites
that were not included in our targeted plasma assays (Figure 1). For
example, our cohort included four patients with abnormal
concentrations of purine or pyrimidine metabolites in urine,
which were also clearly detected by DI-HRMS in plasma. Also,
the cohort included two patients with high levels of plasma bile acids
that were detected by DI-HRMS. Analysis of total plasma bile acids
is traditionally performed by routine clinical laboratories and
therefore not part of specific IMD screening. In addition, we
found a patient with a suspected ε-N-trimethyllysine hydroxylase
(TMLHE) defect by DI-HRMS, that could not be detected by our
targeted plasma screening. An abnormal bile acid profile in a patient
suspected to have CTX (Cerebrotendinous Xanthomatosis) was
detected both by targeted bile acid screening in urine and DI-
HRMS in plasma. Our cohort included also patients’ samples
with potentially relevant abnormalities that could not be detected
by DI-HRMS (Figure 1), such as abnormal lipophilic metabolites
that were indicative of Niemann-Pick B disease (oxysterols) and
X-ALD (very long chain fatty acids). As explained, these metabolites
are not compatible with our DI-HRMS assay due to the sample
preparation. Lastly, the cohort included one patient with Gaucher
disease that was not detected based on metabolite assays but based
on enzymatic screening (abnormal plasma chitotriosidase and dried
blood spot glucocerebrosidase activity).

4 Discussion

In this one-year pilot study we have run DI-HRMS untargeted
metabolomics in parallel with traditional targeted metabolite assays
in plasma of patients suspected of an IMD. Unlike previous studies
mainly focusing on cohorts with patients already diagnosed with an
IMD (Miller et al., 2015; Coene et al., 2018; Haijes et al., 2019a;
Haijes et al., 2019b; Bonte et al., 2019; Almontashiri et al., 2020;
Steinbusch et al., 2021), we aimed to compare data from both
approaches in a representative cohort in daily metabolic
laboratory practice, aspiring partial replacement of targeted
plasma metabolite assays by initial screening by DI-HRMS.

One of the well-recognized advantages of untargeted
metabolomics compared to targeted metabolite assays is
reduction of time and labor. The turn-around-time of DI-HRMS
untargeted metabolomics for one batch of samples in this pilot was
typically 2 days, including sample preparation, runtime, data
analysis and interpretation. While some individual targeted
metabolite assays can be faster, running several targeted assays in
parallel with one untargeted platform promptly shows the benefits of
the latter in terms of number of technicians, hands-on time and
amount of equipment needed. In some emergency situations,
targeted assays as a first-tier may remain the method of choice,
while in other emergency situations untargeted metabolomics may
result in faster diagnosis because the simultaneous analysis of
multiple metabolites is required. From this pilot study we can
conclude that DI-HRMS untargeted metabolomics application as
part of a first screen for diagnosing IMDs is practically feasible and
does not delay metabolic screening. In the future, expanding the

number of included metabolites in DI-HRMS untargeted
metabolomics will reduce the number of targeted analyses that
need to be performed in parallel, thereby reducing total
turnaround time and labor per patient.

One of the limitations of most untargeted metabolomics
approaches, including ours, is that it generates semi-quantitative
data. Since a potentially very large number of metabolites can be
analyzed, it is not feasible to include internal standards for all
metabolites of interest. Also, highly abundant ions suppress the
signal of ions with lower abundance, so the intensity measured for
one metabolite is dependent on the presence of other metabolites.
Taking these limitations in account we aimed to assess the
correlation between quantitative concentration analyzed by
targeted assays versus semi-quantitative Z-score analyzed by DI-
HRMS for amino acid, acylcarnitine and creatine metabolites. We
used Z-scores as a read-out for semi-quantitative intensity data to be
able to include data from different analytic runs.

For most metabolites, semi-quantitative Z-scores obtained by
untargeted metabolomics correlated well with concentrations
analyzed by targeted platforms. For some metabolites (C4-DC-
carnitine, C5-OH-carnitine, C12-DC-carnitine, C14-OH-
carnitine, C16-OH-carnitine and C18-OH-carnitine) no or a less
pronounced correlation was found. This may have various reasons.
First, these metabolites are present in very low concentrations in
plasma, close to the limit of detection. This results in the exclusion of
several samples for quantitative comparison of these metabolites,
because they were not detected (Supplementary Table ST2). In
addition to the lower number of data points, this also leads to
data that is grouped in a small number of distinct outcomes, instead
of a continuous range of concentrations (C12-DC-carnitine and
C18-OH-carnitine represent extreme examples, but the
phenomenon can be seen in all acylcarnitines with a
concentration range roughly below 0,1 μM, Supplementary Figure
SF4). Also, unknown ions with identical m/z ratio that are present in
plasma samples in higher abundance than these low abundant
acylcarnitines may results in erroneously high Z-scores. This
effect may be larger than in some other untargeted metabolomic
approaches, because due to the direct infusion approach metabolites
cannot be separated based on retention time. Secondly, the variation
in acylcarnitine concentrations within the cohort is limited. For
most acylcarnitines all data points are in the normal or only mildly
elevated range (Supplementary Figure SF4). Addition of patients
with clinically relevant elevated concentrations of these metabolites
will increase correlation. For example, in samples from patients with
3-methylcrotonylglycinuria Z-scores for C5-OH-carnitine were up
to 478 and in samples from patients with methylmalonic aciduria
Z-scores for C4-DC-carnitine were up to 40 (data not shown, these
patients were not is this cohort). In short, we conclude that
quantitative concentrations of amino acid, acylcarnitine and
creatine metabolites measured by targeted assays correlate well
with semi-quantitative Z-scores obtained by DI-HRMS. Some
acylcarnitines that are normally present in very low
concentrations in plasma do not correlate well and may show
false positives, illustrating the necessity to confirm untargeted
data by quantitative assays.

To assess whether DI-HRMS untargeted metabolomics can be
used as a first-tier approach instead of targeted assays of amino
acids, acylcarnitines and creatine metabolites we investigated if
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samples showed metabolite abnormalities, both objectively (when
compared to reference ranges) and by expert interpretation.

The targeted assays, in which metabolite concentrations are
compared to reference ranges, revealed a lower percentage of plasma
samples with abnormalities than the untargeted assay in which semi-
quantitative Z-scores were used. This phenomenon can be easily
explained. First, the effect of multiple testing is larger in the
untargeted data than in quantitative targeted data, since we
analyzed all selected metabolites in all patients by untargeted
metabolomics while targeted assays were only performed if
clinical phenotypes or other indications gave rise to it. Second,
the limits of −1,5 to 2 will statistically generate more aberrant
metabolites than the use of a reference range, which is mostly
the mean ± 2SD, assuming that the data have a normal
distribution. Third, the number of samples exceeding the
reference range is strongly dependent on the size of the
population in which a reference range is established. For targeted
analyses, this population is usually larger (and thus more diverse)
than the 30 control samples that are included in each untargeted
metabolomics run.

We conclude that untargeted metabolomics with Z-score limits
of Z = 2 and Z = −1,5 results in a large percentage of samples with
aberrant metabolites. Future experience will reveal whether adjusted
Z-score limits per metabolite can reduce the number of positive
samples, without missing IMD diagnoses. However, because
metabolite levels are subject to external factors such as age,
nutrition, medication, and health status, a wide variation can be
observed and deviation from the reference range is not always
significant in itself. Therefore, like for quantitative data, an expert
interpretation (and/or a diagnostic algorithm) will remain necessary
for translation of semi-quantitative results to a meaningful
conclusion.

Based on this expert opinion, we selected all patients with
abnormal concentrations of amino acid, acylcarnitine and
creatine metabolites in plasma that could point to an IMD and
compared the concentration of these metabolites to the semi-
quantitative Z-score obtained by DI-HRMS. All aberrant
metabolites that specifically and clearly indicated an IMD
diagnosis were also detected with DI-HRMS (Supplementary
Table ST5). Abnormal metabolites that could be well explained
by an IMD but could also be caused by exogenous factors were also
detected with DI-HRMS, with the exception of a single mildly
elevated C18:1-carnitine. Although theoretically this could be
indicative for CPT2 (Carnitine palmitoyltransferase 2) deficiency,
this is unlikely for this patient because of the mild elevation and the
normal concentration of other acylcarnitines (de Sain-van der
Velden et al., 2013). A large part of the IMD-related abnormal
metabolites were non-specific metabolites that could be explained by
mitochondrial disorders or secondary mitochondrial dysfunction.
The elevated mitochondrial markers were almost all detected with
DI-HRMS. However, in 7 patients mild elevations of alanine and/or
proline and in 1 patient mildly decreased citrulline were not found.
To the best of our knowledge, none of these patients has been
diagnosed with a mitochondrial disorder to date. These type of
abnormalities are observed frequently and are often subtle, non-
specific and normalize over time, generally not leading to an IMD
diagnosis. Within the limitations of our pilot study it is impossible to
assess to which extent these mild amino acid aberrations are

clinically relevant and therefore we cannot determine whether
replacing targeted amino acid analysis by untargeted
metabolomics would lead to missed patients with mitochondrial
dysfunction or to reduced ‘false positives’ (Forny et al., 2021).

We conclude that DI-HRMS untargeted metabolomics can be
used as a first-tier approach instead of targeted assays of amino
acids, acylcarnitines and creatine biosynthesis metabolites without
the risk of missing clear IMD diagnoses. Confirmation of diagnoses
by targeted analysis will remain needed because the semi-
quantitative nature of untargeted metabolomics may lead to false
positives.

For the purpose of comparison, we limited all (including
untargeted) data in this report to amino acid, acylcarnitine and
creatine metabolites. However, additional (not confirmed)
diagnoses in the cohort already illustrate the possibilities of
expanding beyond these metabolite groups. We found 4 patients
with purine or pyrimidine defects and 1 patient with CTX by
abnormal purine/pyrimidine metabolites and bile acids in plasma,
respectively, as analyzed by DI-HRMS. These metabolites are
traditionally analyzed in targeted urine assays. The detection of
high amounts of plasma bile acids by DI-HRMS also identified
patients with PFIC1 and PFIC2, diseases that cannot be diagnosed
by determining bile acid profiles in urine. In addition, we diagnosed
a patient with ε-N-trimethyllysine hydroxylase (TMLHE) defect by
DI-HRMS, that could not be detected by our targeted plasma
screening.

On the other hand, DI-HRMS untargeted metabolomics will
never completely replace targeted metabolic assays. One of the
underlying reasons comprises the large variation in molecular
structure of metabolites, illustrated by patients with Niemann-
Pick B disease and X-ALD in our cohort. These patients were
diagnosed based on elevated oxysterols and very long chain fatty
acids, respectively; lipophilic metabolites that are not compatible
with our sample work-up for the DI-HRMS platform. A different
sample preparation approach, a specific lipidomics platform (Vaz
et al., 2015) or a set of targeted assays for these metabolites will
remain necessary to cover this part of the IMD spectrum.
Additional methods may also remain necessary for other
metabolites that require specific sample preparation (such as
DTT treatment for total homocysteine) and for quantitative
treatment monitoring in diagnosed patients, specifically for
metabolites with endogenous or exogenous isomers that can
be present in high amounts in human samples. Examples
include separation of leucine and isoleucine in patients with
amino acid disorders and analysis of moderately elevated
methylmalonic acid such as in patients with cobalamin
disorders or vitamin B12 deficiency. In addition, the semi-
quantitative nature of DI-HRMS will always require
confirmation with a targeted, quantitative assay.

In conclusion, a one-year pilot study showed that DI-HRMS
untargeted metabolomics can be used as a first-tier approach
replacing targeted assays of amino acid, acylcarnitine and
creatine metabolites. Future studies will focus on expanding the
number of validated diagnostic metabolites, thereby drastically
reducing the number of patients for whom targeted assays of
polar metabolites will be necessary. In addition, future research
will focus on an integrated untargeted platform to analyze large
lipophilic molecules, to further reduce time and labor. This future
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parallel untargeted approach opens up possibilities to easily look for
new biomarkers across the entire IMD spectrum.
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