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Aim: Pancreatic cancer (PC) is a devastating malignancy characterized by its
aggressive nature and poor prognosis. However, the relationship of PC with
peripheral metabolites remains not fully investigated. The study aimed to
explore the causal linkage between PC and peripheral metabolite profiles.

Methods: Employing publicly accessible genome-wide association studies (GWAS)
data, we conducted a bidirectional two-sample Mendelian randomization (MR)
analysis. The primary analysis employed the inverse-variance weighted (IVW)
method. To address potential concerns about horizontal pleiotropy, we also
employed supplementary methods such as maximum likelihood, weighted median,
MR-Egger regression, and MR pleiotropy residual sum and outlier (MR-PRESSO).

Results:Weascertained 20genetically determinedperipheralmetaboliteswith causal
linkages to PC while high-density lipoprotein (HDL) and very low-density lipoprotein
(VLDL) particles accounted for the vast majority. Specifically, HDL particles exhibited
an elevated PC risk while VLDL particles displayed an opposing pattern. The converse
MR analysis underscored a notable alteration in 17 peripheral metabolites due to PC,
including branch chain amino acids and derivatives of glycerophospholipid. Cross-
referencing the bidirectional MR results revealed a reciprocal causation of PC and X-
02269whichmight form a self-perpetuating loop in PC development. Additionally, 1-
arachidonoylglycerophosphocholine indicated a reduced PC risk and an increase
under PC influence, possibly serving as a negative feedback regulator.

Conclusion:Our findings suggest a complex interplay between pancreatic cancer
and peripheral metabolites, with potential implications for understanding the
etiology of pancreatic cancer and identifying novel early diagnosis and
therapeutic targets. Moreover, X-02269 may hold a pivotal role in PC onset
and progression.
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1 Introduction

Pancreatic cancer (PC) is one of the most lethal forms of solid
malignancy with a 5-year survival rate lower than 9%, which
poses a formidable challenge to global health (Qin et al., 2020;
Casolino et al., 2021). The annual incidence and mortality rates of
PC are on a steady rise, showing minimal advancements in
overall survival outcomes (Khalaf et al., 2021). The
asymptomatic nature and rapid metastatic spread of PC
contribute to the diagnosis at advanced stages, significantly
limiting treatment options and leading to dismal survival rates
(Huang et al., 2019; Chen et al., 2021). Another reason of PC’s
unfavorable prognosis is that surgery stands as the sole curative
approach. Thus, early diagnosis and novel treatment strategies
for PC are eagerly wanted.

Metabolic reprogramming, recognized as an emerging hallmark
of cancer (Hanahan and Weinberg, 2011), has garnered renewed
attention over the last decades (Leal-Esteban and Fajas, 2020;
Infantino et al., 2021). Metabolites, whether present within the
local tumor or circulating in the peripheral blood, play a
multifaceted role. They not only modulated energy dynamics but
also orchestrated signal transduction among malignant and
nonmalignant cells in tumor microenvironment (Garcia-
Bermudez et al., 2018; Schworer et al., 2019; Pavlova et al., 2022).
Beyond the local tumor site, the intricate reprogramming of tumor
metabolism can exert far-reaching consequences on the host’s
systemic metabolic landscape, and further leads to cachexia and
antitumor immunity deficiency (Porporato, 2016; Drijvers et al.,
2020; DePeaux and Delgoffe, 2021). Indeed, observational studies
have reported associations between specific peripheral metabolites
in PC patients, including branched-chain amino acids (BCAAs),
glycerophospholipids, lipids and lipoprotein (Mayers et al., 2014;
Shu et al., 2018; Stolzenberg-Solomon et al., 2020; Elebo et al., 2021;
Encarnacion-Rosado and Kimmelman, 2021; Wang et al., 2022).
Specifically, elevated plasma levels of BCAAs, including leucine,
isoleucine and valine, are associated with an increased risk of future
PC diagnosis (Mayers et al., 2014). The glycerophospholipids were
preferred to be associated with decreased risk of PC (Shu et al.,
2018). Lipids exhibited various effects on PC. Steroid hormones,
such as androgenic steroids, pregnenolone steroids and
corticosteroids, showed an inverse association with incident PC.
Conversely, fatty acids and glycoursodeoxycholic acid sulfate
displayed a positive association with PC (Wang et al., 2022).
Regarding lipoproteins, various lipoprotein parameters, such as
size, particle number, and lipid concentration (cholesterol and
triglycerides) in the primary classes of lipoproteins, including
very-low-density lipoprotein (VLDL), intermediate-density
lipoprotein (IDL), low-density lipoprotein (LDL), and high-
density lipoprotein (HDL), showed associations with PC. The
size of HDL particles exhibited a positive correlation with PC
stage, whereas HDL cholesterol levels and HDL particles showed
opposite associations (Elebo et al., 2021). However, these findings
originate from observational evidences, which are constrained by
sample size limitations and beset by inherent biases, notably
including reverse causation and confounding factors. Addressing
this causal uncertainty of peripheral metabolites and PC is essential
for understanding the potential therapeutic implications and
identifying novel targets for interventions.

Recognized for its robustness, Mendelian randomization (MR)
leverages genetic variants as instrumental variables (IVs) to unravel
causal associations within observational datasets. In this study, we
present a comprehensive bidirectional two-sample MR analysis to
disentangle the reciprocal effects between peripheral metabolites
and pancreatic cancer development. We identified 20 peripheral
metabolites as potent contributors to PC while 17 were regulated by
PC. Notably, our results revealed mutually positive causal
relationship of X-02269 and PC, highlighting that they might
form a vicious circle in PC onset and development. Through this
investigation, we endeavor to unravel novel insights into the
dynamic interplay between peripheral metabolites and PC,
contributing to the broader understanding of PC etiology. The
identified metabolites hold promise for the development of early
diagnosis and targeted interventions for PC, thus mitigating the
burden imposed by this formidable malignancy.

2 Materials and methods

2.1 Study design

We employed a bidirectional two-sample MR analysis (Figure 1)
to investigate the causal relationship between PC and 842 peripheral
metabolites in European-ancestry datasets. The genetic instruments
utilized in our study met the three essential assumptions of MR
analysis. Firstly, the selected genetic variations, serving as
instrumental variables (IVs), exhibited significant associations
with the exposure of interest. Secondly, these genetic variations
were independent of both known and unknown confounding
factors. Lastly, the genetic instruments were specifically associated
with the outcome, establishing a plausible causal pathway.

2.2 Data source

Genetic associations pertaining to human peripheral metabolites
were extracted from three distinct research studies (Shin et al., 2014;
Kettunen et al., 2016; Borges et al., 2020), which were accessible
through MRC Integrative Epidemiology Unit (IEU) OpenGWAS
project (https://gwas.mrcieu.ac.uk/). Correspondingly, genetic
associations concerning pancreatic cancer were acquired from the
FinnGen database (R8 level), encompassing a sample size of
1249 cases and 259583 controls. It is noteworthy that all
conducted GWAS involved participants of European ancestry.
The comprehensive specifics regarding the sourced GWAS
datasets are meticulously outlined in Table 1.

2.3 Mendelian randomization analysis

In preparation for the MR analysis, a meticulous selection
process was meticulously undertaken to identify genetic IVs in
adherence to specific criteria. Initially, the selection criterion
mandated that single nucleotide polymorphisms (SNPs)
demonstrate a statistically significant association with the
exposure at the genome-wide significance threshold.
Subsequently, an extensive range of tests spanning from 5 × 10−8
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to 1 × 10−6 were meticulously performed to discern the optimal
p-value threshold for peripheral metabolites and pancreatic cancer,
respectively. The chosen thresholds, 5 × 10−8 for peripheral
metabolites and 5 × 10−6 for pancreatic cancer, were primarily
grounded in the abundance of informative SNPs. Furthermore,
SNPs with a limited association strength with telomere length
(F-statistic ≤10) were judiciously excluded from consideration.
The F statistic was calculated employing the equation: F � (betase )2.
Finally, the chosen SNPs were subjected to stringent scrutiny for
conditional independence and absence of linkage disequilibrium
(r2 < 0.001), bolstered by a minimum clump distance exceeding
10,000 kb. These rigorous selection criteria were meticulously
applied employing the European 1000 Genomes Project reference
panel.

Upon the harmonization of exposure and outcome summary
data, the central MR analysis was conducted employing the inverse
variance-weighted (IVW) MR to elucidate the potential causal link
between peripheral metabolites and pancreatic cancer (Burgess et al.,
2013). Additional methods were applied to assessed potential
violations of MR assumptions, including maximum likelihood
(Burgess et al., 2016), weighted median (Bowden et al., 2016),
and MR-Egger (Bowden et al., 2015). The primary method
employed was the IVW approach, which assumed the validity of
all SNPs used as instrumental variables. In cases where a minimum
of 50% of the weight was derived from valid instrument variants, the
weighted median (WM) method was employed to ensure consistent

estimations. For the evaluation of causal effects while accounting for
potential horizontal pleiotropy, the MR-Egger regression method
was utilized, albeit with a potential trade-off in precision.
Simultaneously, the simple mode method was also utilized,
positing a direct causal link between genetic variants associated
with the exposure and the outcome, without accommodating the
intricacies or biases intrinsic to more intricate MR methodologies.
Comprehensive explanations of these methodologies can be
obtained from previous scholarly publications (Burgess et al.,
2013; Burgess et al., 2016; Bowden et al., 2015; Bowden et al.,
2016). To explore the causal relationship between peripheral
metabolites and pancreatic cancer, the Steiger test was employed
(Hemani et al., 2017).

To verify the robustness of our findings, several sensitivity analyses
were executed. Initially, the Cochran’s Q test was applied to evaluate the
presence of heterogeneity within the data (Bowden et al., 2019).
Subsequently, MR-Pleiotropy Residual Sum and Outlier (MR-
PRESSO) methodology were employed to detect and eliminate SNPs
with potential horizontal pleiotropic outliers, thus mitigating the
potential impact of pleiotropy on the causal estimations (Verbanck
et al., 2018). In cases where significant horizontal pleiotropy was
detected in the MR-PRESSO global test, SNPs identified as outliers
(with a significance level of p < 0.05) were excluded, and the remaining
SNPs underwent re-analysis. Furthermore, the MR-Egger regression
intercept was employed to assess potential pleiotropy in the SNPs, with
a p-value ≥0.05 indicating the absence of horizontal pleiotropy.

FIGURE 1
Study design of exploring the causal relationship between pancreatic cancer and peripheral metabolites by bidirectional two-sample Mendelian
randomization. COPD, chronic obstructive pulmonary disease; SNPs, single-nucleotide polymorphisms.

TABLE 1 The collected GWAS datasets of peripheral metabolites and pancreatic cancer.

Trait Database Label Metabolites Sample size

Peripheral Metabolites MRC IEU OpenGWAS met-a 452 7284

Peripheral Metabolites MRC IEU OpenGWAS met-c 249 115078

Peripheral Metabolites MRC IEU OpenGWAS met-d 123 24925

Pancreatic Cancer FinnGen FinnGen_C3_PANCREAS_EXALLC 260832
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Additionally, we conducted a two-sample MR analysis on each
individual SNP. Lastly, a leave-one-out analysis was carried out to
detect any pleiotropy stemming from each individual SNP. All these
analytical procedures were performed utilizing the TwoSampleMR
packages. The outcomes were presented in terms of odds ratios
(OR) alongside their corresponding 95% confidence intervals (CI).
All p-values reported were two-sided, and statistical significance was
defined at the 5% threshold.

3 Results

3.1 Causal effects of the peripheral
metabolites on PC

The GWAS data of peripheral metabolites was obtained from
three previously published study, which contained 7824, 24925, and
115078 samples of European ancestry, respectively. Supplementary
Table S1 contains comprehensive information on the peripheral-
metabolite-associated SNPs, including beta values, standard errors,
effect alleles, other alleles, etc. The F-statistic values of selected SNPs
ranged from 22.81 to 4176.17, supporting the absence of weak
instrument bias.

We first performed MR analysis to investigate the causal effects of
peripheral metabolites on PC. The IVW-MR results demonstrated
5 and 15 metabolites which were positively and negatively causal
associated with PC, respectively (Figure 2). Leucine (OR 114.74, 95%
CI 1.42–9266.7, p = 0.034), X-11469 (OR 5.22, 95% CI 1.78–15.29, p =
0.003) and X-02269 (OR 4.61, 95% CI 1.69–12.57, p = 0.003) were the
top three metabolites indicating an increasing PC risk. Remarkably, the
HDL andVLDL particles occupied 45% of all significant 20metabolites.
Specifically, cholesterol esters in largeHDL (OR 1.29, 95%CI 1.05–1.59,

p = 0.017), total cholesterol in large HDL (OR 1.26, 95% CI 1.02–1.56,
p = 0.031) and free cholesterol in large HDL (OR 1.25, 95% CI
1.02–1.55, p = 0.036) were associated with an elevated risk of PC
whilst free cholesterol in large VLDL (OR 0.74, 95% CI 0.55–0.99, p =
0.043), triglycerides in very large VLDL (OR 0.71, 95%CI 0.51–0.99, p =
0.044), phospholipids in very large VLDL (OR 0.71, 95% CI 0.51–0.99,
p = 0.042), total lipids in very large VLDL (OR 0.7, 95%CI 0.5–0.99, p =
0.046), total lipids in chylomicrons and largest VLDLparticles (OR 0.66,
95% CI 0.46–0.95, p = 0.023) and concentration of chylomicrons and
largest VLDL particles (OR 0.64, 95% CI 0.44–0.94, p = 0.023)
demonstrated the opposite trend. In addition, omega-3 fatty acids
(OR 0.66, 95% CI 0.47–0.91, p = 0.013), docosahexaenoic acid (22:
6) (OR 0.64, 95% CI 0.45–0.92, p = 0.017), X-12063 (OR 0.53, 95% CI
0.32–0.87, p = 0.012), 3-Hydroxybutyrate (OR 0.47, 95% CI 0.26–0.86,
p = 0.014), acetoacetate (OR 0.38, 95% CI 0.16–0.92, p = 0.031), 1-
arachidonoylglycerophosphocholine (OR 0.25, 95% CI 0.07–0.94, p =
0.041), 1-arachidonoylglycerophosphoinositol (OR 0.18, 95% CI
0.04–0.86, p = 0.032) and uridine (OR 0.01, 95% CI 0–0.76, p =
0.038) were related to reduced PC risk.

Next, potential violations of MR assumptions were assessed by
performing additional MR analyses using three alternative methods:
maximum likelihood, weighted median andMR Egger (Supplementary
Table S2). The overall trends of the effects of peripheral metabolites on
PC analyzed by the additional methods mentioned above remained
consistent, although some of them did not reach statistical significance
(Supplementary Tables S2, S3). In contrast, MR-Egger regression
yielded that leucine (OR 1.45e-05, 95% CI 1.73e-17-1.22e+7), X-
02269 (OR 0.19, 95% CI 6.30e-5-564.38) and uridine (OR 1.41, 95%
CI 1.20e-9-1.65e+11) was in the opposite direction of the IVW
estimation, but it also did not reach statistical significance.

To evaluate heterogeneity and identify potential outliers, we
conducted Cochran’s Q test and MR-PRESSO test, respectively. The

FIGURE 2
The effect of genetically determined peripheral metabolites on the risk of pancreatic cancer in the IVW results. OR, odds ratios; CI, confidence
interval; IVW, inverse variance-weighted.
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results (Supplementary Table S3) indicated no significant
heterogeneity (PQ > 0.05) and no outliers were detected.
Additionally, all p-values from the MR-Egger intercept test were
greater than 0.05, suggesting the absence of horizontal pleiotropy.
Steiger filtering revealed that all genetic instrumental variables used
for PC explained more variance in peripheral metabolites than in PC
(Supplementary Table S2). To further assess the robustness of our
findings, we employed several additional analyses. Firstly, we
visually examined the forest plot (Supplementary Figure S1).
Secondly, we utilized four methods to assess the results of the
MR analysis, and a scatter plot specifically for PC was generated
(Supplementary Figure S2). Finally, leave-one-out analysis further
confirmed the robustness of our main results (Supplementary
Figure S3).

3.2 Causal effects of the PC on peripheral
metabolites

We incorporated a total of 11 independent SNPs as IVs for PC
from the FinnGen database (Infantino et al., 2021). The detailed
information of selected SNP was presented in Supplementary Table
S4. No bias of weak instrument was confirmed by F statistics, which
ranged from 20.87 to 32.06.

The IVW-MR analysis demonstrated a significant causal
relationship of PC with 17 peripheral metabolites (Figure 3).
Specifically, PC was associated with increasing of X-12007 (OR
1.05, 95% CI 1.01–1.1, p = 0.019), valine (OR 1.04, 95% CI 1.01–1.08,
p = 0.009), X-02269 (OR 1.04, 95% CI 1–1.08, p = 0.044), guanosine
(OR 1.04, 95% CI 1–1.08, p = 0.035), X-12544 (OR 1.04, 95% CI
1–1.07, p < 0.05), isoleucine (OR 1.03, 95% CI 1–1.07, p = 0.038), 1-
arachidonoylglycerophosphocholine (OR 1.02, 95% CI 1.01–1.04,

p = 0.005), 2-linoleoylglycerophosphocholine (OR 1.02, 95% CI
1–1.04, p = 0.033), pyruvate (OR 1.02, 95% CI 1–1.04, p = 0.026) and
1-docosahexaenoylglycerophosphocholine (OR 1.02, 95% CI
1–1.03, p = 0.044); while decreasing of propionylcarnitine (OR
0.99, 95% CI 0.98–1, p = 0.038), isovalerate (OR 0.98, 95% CI
0.97–1, p = 0.036), X-13553 (OR 0.98, 95% CI 0.97–1, p = 0.025),
beta-hydroxyisovalerate (OR 0.98, 95% CI 0.96–0.99, p = 0.003), X-
12847 (OR 0.97, 95% CI 0.94–1, p = 0.043), aspartylphenylalanine
(OR 0.96, 95% CI 0.94–0.99, p = 0.004) and ursodeoxycholate (OR
0.95, 95% CI 0.92–0.98, p = 0.001) (Figure 3A).

The additional analyses using the maximum likelihood, weighted-
median and MR Egger methods consistently yielded a comparable
consistent trend of PC on peripheral metabolites to the IVW method
(Supplementary Table S5). TheMR-Egger results demonstrated that PC-
related metabolites, including X-02269 (OR 0.39), guanosine (OR 0.83),
X-12544 (OR 0.48), 2-linoleoylglycerophosphocholine (OR 0.57), 1-
docosahexaenoylglycerophosphocholine (OR 0.99), propionylcarnitine
(OR 1.58), X-13553 (OR 1.05), X-12847 (OR 1.27),
aspartylphenylalanine (OR 3.08) and ursodeoxycholate (OR 3.98),
were contrast to IVW results although neither of them reached
significant. The MR-Egger intercept test suggested no evidence of
pleiotropy and MR-PRESSO global test indicated the absence of
horizontal pleiotropic (Supplementary Table S6). No significant
heterogeneity was observed based on Cochran’s Q statistics when
considering non-outlier single IVs within the PC cohort. Scatter plots
present the individual SNP effect and combined effect from eachmethod
for each outcome dataset (Supplementary Figure S4). The leave-one-out
analyses confirmed the stability of the results even after removing one
SNP at a time (Supplementary Figure S5). Steiger filtering indicated that
the selected genetic IVs for PC exhibited a higher degree of variance
explanation in PC compared to peripheral metabolites (Supplementary
Table S5).

FIGURE 3
The effect of genetically determined pancreatic cancer on the alternation of peripheral metabolites in the IVW results. OR, odds ratios; CI,
confidence interval; IVW, inverse variance-weighted.
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We next compared the bi-causal relationships of PC and peripheral
metabolites to find out the existence of positive feedback in PC
development. Interestingly, X-02269 and PC formed a positive
causal relationship pair (Figure 4), highlighting that X-02269 and
PC might form a vicious circle in PC progression. We also found
that 1-arachidonoylglycerophosphocholine indicated a lower risk of PC
while PC demonstrated a higher level of it (Figure 2 and Figure 3). The
result implied that 1-arachidonoylglycerophosphocholine might serve
as a negative feedback node in PC development.

4 Discussion

PC stands as an ongoing challenge to global health due to its
aggressive behavior and bleak prognosis (Qin et al., 2020; Casolino et al.,
2021). The systemic metabolic status might play a crucial role in both
PC development and non-neoplastic organ function. Despite
advancements in cancer research, the intricate interplay between PC
and peripheral metabolites remains largely unexplored. To illuminate
the causal relationships between PC and peripheral metabolite profiles,
we applied a comprehensive bidirectional tow-sample MR analysis. In
our investigation, we discerned a spectrum of 20 peripheral metabolites
intricately linked with the risk of PC. Furthermore, our study unveiled
dynamic alterations in the levels of 17 metabolites in response to PC,
thereby offering promising avenues for both early diagnostic strategies
and therapeutic interventions. Notably, leucine, exhibiting the highest
OR for PC causation in our analysis, has been previously reported to
stimulate the growth of pancreatic cancer (Otsuru et al., 2019).
Conversely, studies have reported that the restriction of leucine
intake can suppress PC cells growth through the induction of
apoptosis (Kamphorst et al., 2015). The detailed mechanisms
underlying leucine’s promotion effect on PC may involve the
activation of mTOR signaling and the promotion of tumor-related
inflammation (Liu et al., 2014; Otsuru et al., 2019).

Interestingly, our findings underscore the role of lipid metabolic
dysregulation as a significant regulator in PC progression. HDL particles
exhibited an augmented PC risk, while VLDL particles demonstrated the
converse trend. Cholesterol and cholesterol esters (CEs) within large
HDL emerged as indicators of heightened PC risk in our analysis. This
observation is corroborated by studies suggesting that HDL-mediated

cholesterol depletion from PC cells restrains tumor development both in
vivo and in vitro (Oberle et al., 2022). Moreover, the overexpression of
SR-B1, a physiologically pertinent HDL receptor, in numerous tumors,
including PC, has been implicated in promoting tumor growth (Rajora
and Zheng, 2016; Oberle et al., 2022). This occurred through its binding
to lipoproteins on the surface of HDL and facilitating lipid delivery, as
well as the uptake of HDL-CE into the cell via a pore formed by SR-B1
(Valacchi et al., 2011). In contrast, the causal relationship of VLDL
particles with PCwas reversed compared to HDL particles in our results.
VLDL, originating in the liver, facilitates the transfer of triglycerides from
the liver to peripheral tissues. During its transit in the bloodstream,
triglycerides are progressively removed, leading to the conversion of
VLDL to intermediate-density lipoprotein (IDL) and subsequently to
LDL. Despite this, scant research has focused on VLDL as opposed to
LDL in PC. Some studies have suggested that genetically elevated LDL-
cholesterol levels are associated with pancreatic cancer, and inhibiting
LDLR in PC cells considerably reduces cholesterol uptake and alters its
distribution, leading to decreased cancer cell proliferation (Jung et al.,
2021; Yin et al., 2022). These observations may underscore the potential
pathological significance of the transformation fromVLDL to LDL in PC
development. In conclusion, these results highlighted the pronounced
heterogeneity of the HDL and VLDL particle pool and their interaction
with PC cells or non-malignant cells in the context of disease progression,
warranting further in-depth exploration.

The interplay between PC and peripheral metabolites was further
substantiated through reverse MR analysis. Seventeen metabolites
displayed altered levels in response to PC. Notably, two BCAAs,
valine and isoleucine, displayed heightened levels under PC influence,
contrary to prior studies reporting BCAA inhibition in PC, even though
serum BCAA levels were found to be elevated in PC rats compared to
those with chronic pancreatitis (Fang et al., 2007; Li et al., 2021).
Moreover, enhanced BCAA catabolism by BCAT2 plays a pivotal role
in the development of PC, and this role is further exacerbated by KRAS
mutations (Li et al., 2020). Another significantmetabolite type elevated by
PC was derivatives of glycerophospholipids, including 1-
arachidonoylglycerophosphocholine, 2-linoleoylglycerophosphocholine,
and 1-docosahexaenoylglycerophosphocholine. Targeting
glycerophospholipid synthesis has been suggested as a potential
strategy to enhance cytotoxic drug sensitivity (Kaoutari et al., 2021).
Furthermore, HIF-1 has the capacity to promote lipid droplet

FIGURE 4
The Venn plot of positive (left) and negative (right) bidirectional two-sample Mendelian randomization IVW results. Met2PC represents the effect of
peripheral metabolites on pancreatic cancer; PC2Met represents the effect of pancreatic cancer on peripheral metabolites.
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accumulation and enhance cancer cell viability under hypoxic conditions
by directly targeting AGPAT2, an enzyme crucially involved in the
glycerophospholipid/triacylglycerol biosynthesis pathway (Triantafyllou
et al., 2018). The notable activity of pyruvate kinase typeM2, culminating
in pyruvate synthesis in PC, aligns with our findings of increased
peripheral pyruvate levels (Cameron et al., 2018).

By cross-referencing the results of the bidirectional two-sampleMR
analysis, we identified two shared metabolites—X-02269 and 1-
arachidonoylglycerophosphocholine. The mutual causation observed
between X-02269 and PC implies their potential involvement in a
vicious circle in PC onset and progression. Unfortunately, X-02269
remains inadequately investigated as a novel metabolite. Additionally,
1-arachidonoylglycerophosphocholine indicated a reduced PC risk and
an increase under PC influence, possibly serving as a negative feedback
regulator. However, there is a lack of research on 1-
arachidonoylglycerophosphocholine and its relationship with PC, as
far as we know, indicating the need for further studies in this area.

Despite the comprehensive nature of our MR analysis in
elucidating the causal links between peripheral metabolites and
PC, several limitations warrant consideration. Firstly, our
conclusions are solely derived from MR analysis, necessitating
experimental validation. Secondly, while we focused on the
relationship between PC and peripheral metabolites, the role of
local metabolites within the PC tissue remains unexplored. Thirdly,
although we established causal connections between PC and
metabolites, the underlying mechanisms necessitate further
investigation, particularly regarding specific cell types and
signaling pathways. Lastly, our study’s confinement to a single
cancer type and dataset prompts us to acknowledge the potential
for intriguing revelations through systematic analyses across diverse
cancer types and cohorts.

5 Conclusion

The bidirectional MR analysis uncovers the intricate interplay
between peripheral metabolites and PC, offering novel insights into
PC etiology. Our findings contribute to the broader understanding
of PC biology and may guide the development of innovative
strategies for early diagnosis and intervention. Further research is
warranted to elucidate the precise molecular mechanisms
underlying the observed causal relationships and to explore the
clinical implications of the identified metabolites.
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