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Nucleoporins (NUPs) constitute integral nuclear pore protein (NPC) elements.
Although traditional NUP functions have been extensively researched, evidence of
additional vital non-NPC roles, referred to herein as non-classical NUP functions,
is also emerging. Several NUPs localise at the ciliary base. Indeed, Nup188, Nup93
or Nup205 knockdown results in cilia loss, impacting cardiac left–right patterning
in models and cell lines. Genetic variants of Nup205 and Nup188 have been
identified in patients with congenital heart disease and situs inversus totalis or
heterotaxy, a prevalent human ciliopathy. These findings link non-classical NUP
functions to human diseases. This mini-review summarises pivotal NUP
interactions with NIMA-related kinases or nephronophthisis proteins that
regulate ciliary function and explores other NUPs potentially implicated in cilia-
related disorders. Overall, elucidating the non-classical roles of NUPs will enhance
comprehension of ciliopathy aetiology.
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Introduction

The nuclear pore complex (NPC) resides within the nuclear envelope, merging the inner
and outer membranes to create a channel. The overall NPC structure remains evolutionarily
conserved with eight-fold rotational symmetry, comprising about 30 diverse nuclear pore
proteins called nucleoporins (NUPs) (Fernandez-Martinez and Rout, 2021; Zimmerli et al.,
2021). Comprising four ring scaffolds—the cytoplasmic ring (CR), inner ring (IR), nuclear
ring (NR) and luminal ring (Lin et al., 2016; Beck and Hurt, 2017; Huang et al., 2022a)—the
vertebrate NPC exhibits structural stability. The CR and NR share NUP components (Huang
et al., 2022a), with the IR bridging them (Lin et al., 2016; Huang et al., 2022a; Huang et al.,
2022b), whereas the luminal ring is situated in the ring lumen (Lin et al., 2016). Peripheral
elements, cytoplasmic filaments and the nuclear basket connect to the CR and NR (von
Appen and Beck, 2016).

The NPC’s nomenclature varies across species based on molecular mass. Most NUPs
form robust subcomplexes within the NPC, including Y-complexes (also called the
Nup84 complex in yeast and NUP107 complex in humans), NUP214 complexes (known
as the Nup159 or Nup82 complex in yeast), NUP62 complexes and IR complexes (alo known
as NUP93 complexes in humans) (Beck and Hurt, 2017). Linear motifs in NUPs connect
major NPC modules (Lin et al., 2016; Beck and Hurt, 2017; Huang et al., 2022a). The
structure studies from Xenopus laevis show that the NR comprises 10-member Y-complexes
stabilised by Nup93 and Nup205 (Huang et al., 2022a). Each NR Y-complex has a short arm
(Nup85, Nup43, and Seh1), long arm (Nup160, Nup37 and ELYS) and stem (Sec13, Nup96,
Nup107, and Nup133) (Huang et al., 2022a). The CR contains extra Nup93 and Nup205
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(inner Nup205) molecules, as well as five Nup358 molecules, but
lacks ELYS (Beck and Hurt, 2017; Huang et al., 2022a). The IR
comprises 30 molecules of nine distinct NUPs, including four
Nup93, six Nup155, four channel NUP heterotrimers (Nup62/
Nup58/Nup54) and two each of Nup205, Nup188, NDC1 and
ALADIN (Huang et al., 2022b; von Appen and Beck, 2016;
Stuwe et al., 2015).

In NPCs, NUPs can be divided into scaffold NUPs and
phenylalanine–glycine (FG)-NUPs (Beck and Hurt, 2017).
Scaffold NUPs form the NPC structure, anchoring the
Nup62 complex and other FG-NUPs, and contribute to
cytoplasmic filaments and the nuclear basket (Beck and Hurt,
2017; Fernandez-Martinez and Rout, 2021). FG-NUPs with
phenylalanine–glycine-rich disordered domains interact with
nucleocytoplasmic transport mechanisms (Beck and Hurt, 2017;
Fernandez-Martinez and Rout, 2021), creating a size-selective
diffusion barrier for molecules >40 kDa. They also bind nuclear
transport receptors (Karyopherin and import/export proteins),
facilitating signal-carrying cargo transport through the NPC
(Beck and Hurt, 2017).

Although NUPs are typically associated with NPC-related roles,
they have been found in other subcellular components, including the
kinetochore, centrosome, cilia base and chromatin (Kee et al., 2012;
Mossaid and Fahrenkrog, 2015; Verhey and Yang, 2016). Notably,
specific NUPs at cilia bases regulate transport between the cilia and
cytoplasm (Kee et al., 2012; Takao et al., 2017). Moreover, mutations
in some NUPs contribute to ciliopathies (Cardenas-Rodriguez
and Badano, 2009; Del Viso et al., 2016). Certain NUPs,
including NUP93, NUP188 and NUP205, play essential roles in

cilia-related cardiac left–right (LR) patterning (Del Viso et al., 2016;
Marquez et al., 2021). Inner and outer ring NUPs contribute
differently to renal development, with dysfunction leading to
nephrotic syndrome (Miyake et al., 2015; Braun et al., 2016)
(Figure 1).

Main text

Roles of NUPs in cilia function

Cilia, conserved organelles extending from cell surfaces,
crucially influence cell development and motor–sensory functions
(Bisgrove and Yost, 2006; Berbari et al., 2009; Breslow et al., 2013).
Distinct ciliary proteins regulate membrane–cytoplasmic transport
at the ciliary gating zone (Breslow et al., 2013; Kee and Verhey, 2013;
Diener et al., 2015). Cilia consist of a microtubule core, the axoneme,
which extends from a modified centriole called the basal body. The
axoneme is usually composed of microtubule doublets. However,
each centriole is a cylinder of nine triplets of microtubules. (Bisgrove
and Yost, 2006). The transition zone at the ciliary base, featuring a
Y-shaped junction, serves as a gateway for proteins to enter and exit
the ciliary compartment (Reiter et al., 2012; Diener et al., 2015). Cilia
are categorised into motile and immotile/primary types based on
movement and structure (Berbari et al., 2009). Regular motile cilia
have a ring of nine peripheral microtubule doublets surrounding a
central pair of single microtubules, i.e., a 9 + 2 microtubule
arrangement, whereas primary or sensory cilia possess a 9 +
0 configuration and are immotile and present on most cell types

FIGURE 1
A comprehensive review of the emerging role of nucleoporins (NUPs) beyond their classical functions in nuclear pore complex assembly, with a
particular focus on their involvement in ciliary processes and their interactions with NEK family in regulating cilium resorption, which link non-classical
NUP functions to human ciliopathy.
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(Kee and Verhey, 2013; Diener et al., 2015). Ciliary protein
disruptions lead to ciliopathies, severe disorders affecting various
organs (Bisgrove and Yost, 2006; Cardenas-Rodriguez and Badano,
2009). Ciliopathies result in diverse syndromes including situs
abnormalities, respiratory infections, congenital heart disease
(CHD), male infertility, nephronophthisis and neonatal
cholestasis (Cardenas-Rodriguez and Badano, 2009; Chen et al.,
2022a).

Interestingly, specific NUPs are suggested to localise to primary
andmotile cilia bases, with kinesin-2 motor KIF17 entry impeded by
NPC transport inhibitors (Kee et al., 2012). Import to the ciliary
compartment involves nuclear trafficking components, including
importins, a Ran-guanosine triphosphate gradient and NUPs (Kee
and Verhey, 2013). Transition zone proteins, including ciliopathy
gene products, e.g., nephronophthisis (NPHP) and Meckel–Gruber
syndrome (MKS) proteins, NUPs and septins, play gating roles
(Takao et al., 2014; Yee et al., 2015). A ciliary pore complex (CPC) at
the base, analogous to the NPC, has been hypothesised (Kee et al.,
2012). Super-resolution imaging shows Nup188 clusters form two
barrels at the cilium base (Del Viso et al., 2016). However,
dimensions and organization of this barrel-like structure is
incompatible with an NPC-like ring. Nanoscale NUP spatial
organisation studies indicated that Nup93 and Nup188 lack the
~100 nm diameter rings, suggesting these NUPs did not form the
NPC-like rings at the cilium base. The clear difference between the
organization of nups at the cilium base and that in the NPC argues
against a proposed CPCmodel (Del Viso et al., 2016). Therefore, the
CPC model remains controversial.

NUP mutations and ciliopathies

Cilia dysfunction contributes to various ciliopathies, including
hydrocephalus, polycystic kidney disease, retinal dystrophy and
CHD (Bisgrove and Yost, 2006; Cardenas-Rodriguez and Badano,
2009; Marquez et al., 2021). In vertebrates, cilia-driven LR
asymmetry in the heart is crucial during gastrulation, initiated by
the ciliated LR organiser (LRO) (Fakhro et al., 2011; Blum et al.,
2014). Both motile and immotile cilia break symmetry, ensuring
organelle placement and vascular network development (Koefoed
et al., 2014). Nodal signalling triggered by motile cilia’s leftward
extracellular fluid flow and subsequent gene expression cascade
establish LR asymmetry (Blum et al., 2014; Koefoed et al., 2014).
The establishment of LR asymmetry defects leads to visceral
malformations, termed heterotaxy (Htx) (Shiraishi and Ichikawa,
2012; Boskovski et al., 2013), often accompanied by severe CHDs
(Shiraishi and Ichikawa, 2012). Cilia dysfunction is implicated in
cystic kidney disease (Cardenas-Rodriguez and Badano, 2009; Chen
et al., 2022a) and steroid-resistant nephrotic syndrome (SRNS), a
common cause of chronic kidney disease, necessitating dialysis or
transplantation due to progressive end-stage renal disease (Braun
et al., 2016). Over 50 monogenic genes contribute to podocyte
dysfunction in SRNS, indicating the involvement of multiple
pathogenic signalling pathways (Braun et al., 2018).

Human genomics have advanced ciliopathy gene identification,
and NUPs have gained prominence (Fakhro et al., 2011; Braun et al.,
2018). IR nucleoporins, e.g., NUP93 and NUP188, participate in
right LR patterning through cilium roles crucial for the heart’s LR

asymmetry (Del Viso et al., 2016). Bi-allelic NUP205 mutations,
likely NUP188 paralogs, are associated with CHD (Chen et al.,
2019). Recessive NUP205 and NUP93 variants are linked to SRNS
(Braun et al., 2016). Additionally, collaborations between NUPs and
other proteins contribute to ciliopathies. Inherited polycystic kidney
diseases (PKDs), including ADPKD, ARPKD, and NPHP, are linked
to ciliopathies (Bisgrove and Yost, 2006). NPHP, recessive cystic
kidney disease and MKS, characterised by renal–hepatic cysts and
central nervous system malformations, involve transition zone
localisation and interactions with certain NUPs (Bisgrove and
Yost, 2006; Takao et al., 2017; Blasius et al., 2019).
Nek2 expression in Xenopus LRO and kidneys links it to
ciliopathies, with Nup98 interaction affecting cilium resorption
(Fakhro et al., 2011; Endicott et al., 2015). Multiple NUPs found
at cilia bases and mutations in NUPs are associated with nephrotic
syndrome (Kee et al., 2012; Braun et al., 2018). Given the established
connection of NUPs with cilia, investigating other NUPs’ roles in
ciliopathies remains important.

NUP205 and ciliary function

NUP205, a scaffold nucleoporin and NUP93 subcomplex
member, resides in the IR of the NPC and is implicated in ciliary
roles (Beck and Hurt, 2017; Huang et al., 2022b). Studies have
highlighted NUP205’s potential significance in ciliary function
(Chen et al., 2019; Marquez et al., 2021) (Table.1). Bi-allelic
missense mutations (p.Thr1044Met and p. Pro1610Arg; NM_
015135) in NUP205 were identified in a patient with situs
inversus totalis (Chen et al., 2019). These mutations reduced
protein interaction with NUP93 in patient-derived induced
pluripotent stem cells (Chen et al., 2019). Nup205-silenced
embryos showed disrupted cilia number and length in the retina,
with around 30% displaying cardiac LR asymmetry defects (Chen
et al., 2019). Subsequent research byMarquez et al. used morpholino
oligos and CRISPR-based knockout in Xenopus, revealing abnormal
cardiac LR patterning upon Nup205 depletion (Marquez et al.,
2021). Morphants exhibited a 40% reduction in cilia number in
the LRO, and two-cell stage embryos displayed cilia loss in
multiciliate cells (MCCs) on the Nup205 MO-injected side
compared with the control MO-injected side (Marquez et al.,
2021). Additionally, GFP–NUP205 overexpression was localised
in the cilium base in the Xenopus LRO (Marquez et al., 2021).
Transmission electron microscopy confirmed mispositioned basal
bodies in Nup205-depleted embryos (Marquez et al., 2021). Notably,
NUP205 p. Pro1610Arg failed to rescue cilia loss, suggesting that it
may be a loss-of-function allele (Marquez et al., 2021). Moreover,
NUP205 p. Thr1044Met impacted protein stability, allowing
overexpressed p. Thr1044Met to restore cilia levels (Chen et al.,
2019; Marquez et al., 2021).

Beyond cardiac involvement, NUP205 influences kidney
development. A homozygous missense mutation (p.Phe1995Ser)
in NUP205 was linked to early-onset SRNS (Braun et al., 2016).
Depleted Nup205 in embryos caused dysfunctional pronephric
development and cilia loss (Marquez et al., 2021). Collectively
supported by genetic evidence (biallelic or homozygous
mutations of NUP205), cilia-related phenotypes (LR asymmetry
defects and SRNS), the role of ciliogenesis (disrupted cilia number

Frontiers in Molecular Biosciences frontiersin.org03

Chen et al. 10.3389/fmolb.2023.1278976

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1278976


and length upon NUP205 depletion) and subcellular localisation at
the cilium base (Braun et al., 2016; Chen et al., 2019; Marquez et al.,
2021), previous findings underscore NUP205’s role in cilia bases and
human ciliopathy. Moreover, NUP205’s potential interactions with
two memers of NIMA (never in mitosis A)-related kinases,
NEK2 and NEK3, vital for cilia-related abnormal cardiac LR
patterning (Chen et al., 2019; Zhang et al., 2020), warrant further
exploration. Notably, numerous NIMA paralogs are associated with
ciliary function.

NUP188 and ciliary function

The NUP93 subcomplex, comprising NUP93, NUP35,
NUP188 and NUP205, forms a pivotal part of the inner ring of
the NPC (Huang et al., 2022b). NUP188, likely a paralog of NUP205,
establishes an exclusive direct interaction with NUP93. Initial insights
into NUP188’s ciliary connection emerged from the study of Fakhro
et al., who identified aNUP188 duplication in a ciliopathy patient with
CHD and Htx (Fakhro et al., 2011). Depletion of Nup188 using
morpholino oligos led to abnormal pitx2c expression, inducing
cardiac looping defects akin to the Htx phenotype (Del Viso et al.,
2016). Nup188 knockdown resulted in cilia loss in the LRO during
embryonic development, although NPC function was largely
preserved (Del Viso et al., 2016). Notably, overexpressing Xenopus
or human NUP188 replicated a Htx-like phenotype in ~15% of
embryos, indicating that Nup188 overexpression mimics its loss of
function (Del Viso et al., 2016). Endogenous Nup188 localisation at
cilia bases reinforces their direct ciliary role. As mentioned earlier,
contrary to the CPC hypothesis, super-resolution imaging exposed
Nup188’s barrel-like structures at the cilium base, contrasting with
NPC-like ring formation (Del Viso et al., 2016). Studies have
positioned NUP188 below the transition zone as a constituent of
pericentriolar material (PCM), directly interacting with CEP152, a
PCM component (Del Viso et al., 2016; Vishnoi et al., 2020).

Prior research has highlighted the collaborative cilia-rescuing
potential of Nup188 and Nup205, which may reciprocally restore

cilia loss from Nup205 mutations or Nup188 morphants, implying
their partially overlapped functions in MCC cilia (Marquez et al.,
2021). Although NUP93 binds to either NUP205 or NUP188, they
cannot be simultaneously bound, as shown in vitro reconstitution
studies (Amlacher et al., 2011; Beck and Hurt, 2017). Nup188’s role
in mitotic chromosome alignment has been documented (Itoh et al.,
2013; Vishnoi et al., 2020). Importantly, patients harbouring
recessive NUP205 and NUP188 mutations exhibited diverse
clinical phenotypes. Bi-allelic truncating NUP188 variants
manifested remarkably similar symptoms in six affected
individuals, encompassing congenital cataracts, hypotonia,
prenatal ventriculomegaly, white-matter anomalies, hypoplastic
corpus callosum, CHDs and central hypoventilation (Muir et al.,
2020). These individuals succumbed due to respiratory failure, with
five not surviving their first year of life. Notably, CRISPR-mediated
NUP188 knockout in Drosophila led to motor deficits and
susceptibility to seizures (Muir et al., 2020), partially mirroring
neurological symptoms observed in affected patients, suggesting that
NUP188 and NUP205 may not be interchangeable in certain
contexts.

Role of NUP93 in cilia

As a pivotal member of the NUP93 subcomplex,
NUP93 orchestrates the assembly of the CR/IR/NR through
direct interactions with numerous NUPs. The presence of
Nup93 at the cilium base has been reported (Kee et al., 2012).
Engineered Nup93 versions, aimed at assessing interactions with
transiting ciliary proteins, exhibited engagement at the cilium’s base
and tip with cytosolic proteins, yet failed to interact with axoneme-
associated motor KIF17 or transmembrane protein SSTR3. This
localisation pattern indicates that Nup93 occupies a central niche in
the inner–outer axis of the ciliary gating zone (Takao et al., 2017).
Similar to NUP205 and NUP188, Nup93 depletion leads to cilia loss
in the LRO, precipitating aberrant cardiac LR patterning in Xenopus
(Del Viso et al., 2016). In nup93 morphants, pitx2c expression and

TABLE 1 The key components of the IR, including Nup205, Nup188, and Nup93, have been investigated in relation to cilia.

Nups NPC Localization in cilium Genetic evidence from human
diseases

Cilia-related phenotypes after knockdown

NUP205 IR Base Marquez et al. (2021) Bi-allelic missense mutations (Thr1044Met and
Pro1610Arg) in situs inversus Chen et al. (2019)

Defects in LR asymmetry and heart-looping formation in
zebrafish Chen et al. (2019); Reduced cilia length in human
RPE cells Chen et al. (2019); Abnormal LR patterning and
Dysfunctional pronephric development in XenopusMarquez
et al. (2021); Loss of cilia number in the LRO, epidermis, and
pronephros in Xenopus Marquez et al. (2021)

Homozygous missense mutation (Phe1995Ser) in
SRNS Braun et al. (2016)

NUP188 IR Base Del Viso et al. (2016) Rare copy number variations (gain of copy) in Htx
Fakhro et al. (2011)

Abnormal LR cardiac morphologies in Xenopus Del Viso
et al. (2016); Loss of cilia in mammalian cell lines and the
LRO of Xenopus Del Viso et al. (2016)

Bi-allelic LoF variants in patients with neurologic,
ocular, and cardiac abnormalities Muir et al.

(2020)

NUP93 IR Base Kee et al. (2012); Del Viso et al.
(2016); Takao et al. (2017)

Homozygous missense mutations (Gly591Val and
Tyr629Cys) in SRNS Braun et al. (2016)

Reductions in both cilia density and length in Xenopus Del
Viso et al. (2016); The loss of cilia in mammalian cell lines
and the LRO of Xenopus Del Viso et al. (2016); Significantly
altered cardiac looping in Xenopus Del Viso et al. (2016)

NUP35 IR Base Kee et al. (2012) - -
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classical LR signalling markers, such as COCO (also known as
DAND5 or CERL2), exhibited notably abnormal patterns
compared with control embryos (Del Viso et al., 2016). Pitx2, a
homeodomain transcription factor, is important in regulating LR
asymmetry of the internal organs. COCO is a Nodal antagonist
involved in the establishment of the LR body asymmetry (Del Viso
et al., 2016). Although these outcomes strongly support the
functional involvement of NUP93 in cilia, no direct evidence yet
substantiates the connection between NUP93 variations and human
ciliopathies. Bi-allelic NUP93 gene missense mutations have been
identified in families with SRNS and congenital ataxia (Braun et al.,
2016). These mutations decrease NUP205 levels in the NPC, disrupt
NPC assembly and impair interaction with SMAD4 protein (a TGF-
β signalling transcription factor) (Braun et al., 2016). However, the
key cilia-related parameters, such as beating frequency and
ultrastructure, in individuals bearing NUP93 mutations have not
been investigated, despite nephrotic syndrome commonly being
associated with ciliopathies.

Roles of NUP62 and NUP98 in cilia

The NUP62 complex comprises NUP62, NUP54 and NUP58,
categorized as FG-NUPs (Beck and Hurt, 2017). Positioned at the
central channel of the NPC, FG-NUPs establish a selective
nucleocytoplasmic barrier alongside scaffold NUPs (Beck and
Hurt, 2017; Huang et al., 2022b). NUP62–EGFP constructs
indicate the presence of NUP62 at the cilium, as confirmed by
specific antibody detection at the ciliary base of epithelial cells (Kee
et al., 2012). Within the ciliary gating zone, certain NUPs, as well as
NPHP and MKS proteins, serve as essential components,
orchestrating specialised gating mechanisms to regulate protein
transit between the cilium and cytoplasm (Takao et al., 2014;
Takao et al., 2017). The involvement of the channel nucleoporin
Nup62 in facilitating ciliary entry of the cytosolic kinesin-2 motor
KIF17, which directly engages with doublet microtubules of the
axoneme, has been reported (Takao et al., 2017). This interaction
leads to KIF17 relocating Nup62 to the cilium tip, spatially
positioning Nup62 within the inner region of the ciliary gating
zone (Takao et al., 2017). Notably, forced NUP62 dimerisation
disrupts ciliary entry of most cytosolic proteins, whereas
membrane protein gating remains unaffected (Takao et al., 2014).
The dynamic nature of Nup62 within the ciliary gating zone, as
established through FRAP assays, mirrors its behaviour in the NPC,
indicating the structural and compositional adaptability of both
nuclear and ciliary barriers (Sakiyama et al., 2016; Takao et al.,
2017).

Nup98 is distinguished by its multiple FG sequences.
Localization of Nup98 at the ciliary base has been reported,
where it participates in regulating cilia length (Endicott and
Brueckner, 2018). Employing a fluorescence-based diffusion trap
system, it was demonstrated that Nup98 curbs the diffusion of
soluble molecules exceeding 70 kDa into the cilium in cultured
mammalian cells, signifying its role in restricting the influx of
soluble macromolecules (Endicott and Brueckner, 2018).
Although Nup98 knockdown does not disrupt the overall
architecture of the NPC or the transition zone, it accelerates the
diffusion rate of molecules exceeding 100 kDa into the cilium,

consequently leading to reduced cilia length, which becomes
more responsive to alterations in cytoplasmic soluble tubulin
levels (Endicott and Brueckner, 2018).

Despite an accumulation of evidence highlighting the roles of
NUP62 and NUP98 in cilia, there are as yet no direct indications
from human diseases or model organisms to establish a clear link
between NUP62/98 and ciliopathies. Depleting representative
components of the central transport channel (Nup62) has no
discernible effect on cardiac looping in Xenopus (Marquez et al.,
2021). Although mutations in NUP62 and NUP98 have been
identified in patients with autosomal recessive infantile bilateral
striatal necrosis and Rothmund–Thomson-like spectrum (olombo
et al., 2023; Basel-Vanagaite et al., 2006), evidence of a cilia-related
connection to these diseases has not been reported.

Potential roles of other NUPs in cilia

Apart from the aforementioned NUPs, NUP35 (an IR NUP),
NUP37 and NUP133 (both outer ring NUPs) also exhibit
localisation at the ciliary base (Kee et al., 2012). The presence of
Nup85 is essential for the localisation of Nup98 at the ciliary base
and for regulating cilia length (Endicott and Brueckner, 2018).
Mutations in NUP107, NUP85, NUP133 and NUP160, encoding
components of the outer ring subunits of the NPC, have been
associated with SRNS, akin to Galloway–Mowat syndrome
(Miyake et al., 2015; Rosti et al., 2017; Braun et al., 2018).
However, despite nephrotic syndrome being a prevalent type of
ciliopathy, the fundamental cilia-related parameters in affected
patients remain unexamined.

Interaction of NUPs with NEKs in cilia

Among primary cilia-related signalling pathways, NIMA-related
kinases (Nek1–Nek11), a family of serine–threonine kinases, are
implicated in diverse cellular processes (Fry et al., 2012). Although
the precise roles of mammalian Nek proteins remain largely unclear,
their frequent association with cilia is conspicuous. Nek1, Nek3 and
Nek8 have been linked to primary cilium formation (Shalom et al.,
2008; Manning et al., 2013; Chen et al., 2019). Rare genomic copy
number variations in NEK2 have been identified in patients with
Htx (Fakhro et al., 2011). Notably, Nek2 functions as a pivotal switch
governing cilia biogenesis, crucial for normal LR patterning
(Endicott et al., 2015). Loss of Nek8 in homozygous null mice
results in randomised LR asymmetry (Otto et al., 2008). Remarkably,
our previous research underscores the potential involvement of
protein interactions between NUP205 and NEKs in disease onset
and progression (Chen et al., 2019; Zhang et al., 2020). Other studies
have revealed the significance of the Nek2–Nup98 interaction in
regulating cilium resorption (Endicott et al., 2015). Mechanistically,
the phosphorylation of NUP98 by various kinases, mainly NEK2/6/
7, is crucial for NPC disassembly upon mitotic entry (Laurell et al.,
2011) (Figure 1). Nup53’s phosphorylation diminishes its
interaction with partner NUPs (Linder et al., 2017). Initiation of
NPC disassembly can be mimicked by a blend of mitotic kinases,
including NIMA, suggesting that phosphorylation-triggered
nucleoporin dissociation is a key concept underpinning mitotic
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nuclear envelope permeabilisation (Linder et al., 2017). The activity
of Nup205 is regulated through self-phosphorylation under normal
physiological circumstances (Lu et al., 2014). Given the numerous
potential phosphorylation sites on Nup205, its dynamics may be
modulated by signalling- or cell cycle-dependent kinases, possibly
including NEKs. Previously, we found that NUP205
(p.Thr1044Met) influences its own protein stability (Chen et al.,
2019), prompting a deeper exploration into possible
Nup205 phosphorylation and its implications for the regulation
of cilia-related functions (Figure 1). Besides NEKs, NPHP proteins
interact with NUPs at the base of primary cilia (Blasius et al., 2019).
Disruption of NPHP genes impairs the anchoring of transition zone
structures to the ciliary membrane and results in abnormal ciliary
protein composition (Williams et al., 2011; Kee et al., 2012).
Interaction analyses have revealed that Nup62 and the C-termini
of NPHP4 and NPHP5 interact with the axoneme-associated
kinesin-2 motor KIF17, while the N-termini of NPHP4 and
NPHP5 interact with the transmembrane protein SSTR3 (Takao
et al., 2017). Therefore, elucidating the potential effects of these
interactions on protein activities that contribute to disease aetiology
could be a promising strategy for achieving a deeper mechanistic
understanding.

Discussion

In this mini-review, we have summarised the latest research
progress on the non-classical functions of NUPs that extend beyond
their role in NPC assembly. In comparison to NUPs constituting
other vital NPC components, such as the Y-complex, nuclear basket,
cytoplasm and central channel, the key components of the IR,
including Nup205, Nup188 and Nup93, have been extensively
investigated in relation to cilia. Their subcellular localisation,
contributions to ciliogenesis in model organisms and genetic
evidence from population studies have provided insights into
their involvement. Although direct evidence is lacking, certain
components of the outer rings of the NPC, including
NUP133 and NUP37, have been implicated in ciliary processes.
However, not all NUPs localise to the ciliary base, e.g., NUP153 and
NUP210. Thus, generating a high-resolution architecture of the
cilium base in humans could effectively address debates surrounding
the CPC model and provide insights into the specificity of NUPs in
ciliary function.

Although ciliopathies can impact various organ systems, NUP-
related diseases seem to preferentially affect cardiology and renal
systems (Miyake et al., 2015; Braun et al., 2016; Braun et al., 2018;
Chen et al., 2019; Burdine et al., 2020). Unlike many recessive loss-
of-function mutations identified in classical cilia-related genes, e.g.,
DNAH and NKE family members, most pathogenic NUPmutations
(excluding NUP188) in patients with SRNS or CHD are missense
mutations (Miyake et al., 2015; Braun et al., 2016; Braun et al., 2018;
Chen et al., 2019; Muir et al., 2020; Chen et al., 2022b). Nevertheless,
five out of six affected individuals carrying NUP188 mutations died
within their first year of life due to respiratory failure (Muir et al.,
2020). This may be attributed to the crucial roles that most NUPs
play in maintaining fundamental life activities, making them
susceptible to loss-of-function mutations. We generated a
Nup205 knockout mouse model and found that blocking

Nup205 function resulted in severe developmental defects.
Through external fertilisation, all homozygous Nup205 KO
embryos arrested at the blastocyst stage, providing insight into
why patient-identified NUP205 mutations are primarily missense
(Braun et al., 2016; Chen et al., 2019). This observation is
corroborated by loss intolerance probability (pLI) scores in the
GnomAD database (Karczewski et al., 2020), where pLI signifies
the probability of a gene belonging to the haploinsufficient class,
with pLI >0.9 indicating extreme loss-of-function intolerance.
NUP205 and NUP188 both exhibit haploinsufficiency with pLI
scores of 1.00 and 0.95, respectively, whereas NUP93,
NUP133 and NUP107 are fully tolerant to loss-of-function
variants with pLI scores of 0. This finding indicates that
NUP205 and NUP188 possess more pivotal biological functions
from an evolutionary perspective compared with other NUPs.

Ultimately, the identification and characterisation of NUPs at
the ciliary base will provide novel insights into the precise
mechanisms underlying cardiac and renal pathologies.
Establishing the causal relationship between NUP variants and
cilia-related disorders represents a crucial step toward developing
advanced therapeutic strategies that enhance patient longevity and
quality of life. In summary, this mini-review reinforces not only the
role of NUPs in the context of cilia but also the importance of these
functions in human diseases.
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