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Hematopoiesis is an essential process for organismal development and
homeostasis. Epigenetic regulation of gene expression is critical for stem cell
self-renewal and differentiation in normal hematopoiesis. Increasing evidence
shows that disrupting the balance between self-renewal and cell fate decisions
can give rise to hematological diseases such as bonemarrow failure and leukemia.
Consequently, next-generation sequencing studies have identified various
aberrations in histone modifications, DNA methylation, RNA splicing, and RNA
modifications in hematologic diseases. Favorable outcomes after targeting
epigenetic regulators during disease states have further emphasized their
importance in hematological malignancy. However, these targeted therapies
are only effective in some patients, suggesting that further research is needed
to decipher the complexity of epigenetic regulation during hematopoiesis. In this
review, an update on the impact of the epigenome on normal hematopoiesis,
disease initiation and progression, and current therapeutic advancements will be
discussed.
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1 Introduction

Hematopoiesis is a highly regulated process that sustains the life-long production of
blood cells. All mature lineages are derived from a pool of hematopoietic stem cells (HSCs)
within the bone marrow. HSCs can self-renew or differentiate, leading to a balance between
maintaining an HSC pool throughout life and producing mature cells needed for organism
homeostasis. Hematopoiesis was initially thought to occur in a sequential stepwise hierarchy
where HSCs contribute equally to each lineage (Cheng et al., 2019). Advancements in lineage
tracing and single-cell sequencing experiments have further shed light on the complexity of
lineage commitment. In newly proposed models HSCs are still at the top of the hierarchy.
However, they are more heterogenous, containing pre-existing lineage biases. Thus, if lineage
commitment occurs in a continuum, several extrinsic and intrinsic factors are needed to
guide HSCs through the different phases of development. Extrinsically, cues from the niche,
including cytokines, growth factors, and nutrients, provide a mechanism to maintain HSC
quiescence and prompt differentiation. To complement this network, intrinsic regulators,
including transcription factors (TF) and epigenetic regulators, help instruct cell fate
decisions. Epigenetics is defined as heritable changes in phenotype or gene expression
independent of changes in DNA sequences. Historically, interactions between regulators of
DNA methylation and histone modifiers have functioned in a network to remodel the
chromatin structure, which in turn determines the gene transcription state (Figure 1). More
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recently, RNA modifications and their binding proteins have been
implicated in playing a homeostatic role in hematopoiesis by
regulating isoform expression and transcript stability leading to
regulatory feedback of gene expression. Thus, epigenetic regulation
balances quiescence, self-renewal, and differentiation in HSCs and,
when disrupted, can aid in developing hematological malignancies.

2 Role of histone modifications in
normal and malignant hematopoiesis

Histone modifications are essential epigenome regulators that
control chromatin structure and gene accessibility. Chromatin in an
open configuration, termed euchromatin, has less condensed DNA
and is readily available for gene expression. In contrast,
heterochromatin is more condensed and results in transcriptional
repression. Open and closed chromatin states are regulated by
directly modifying the chromatin template. Two epigenetic
mechanisms that are essential regulators include covalent histone
modifications and DNA methylation. Early studies have
documented that HSCs have a unique epigenetic footprint

creating a highly coordinated progenitor differentiation process
by activating and silencing genes leading to the preassembly of
transcription factors at lineage-specifying promoters (Weishaupt
et al., 2010). There are at least sixteen histone modifications,
including but not limited to acetylation, methylation,
phosphorylation, ubiquitination, and SUMOylation. Of these
histone modifications, methylation, acetylation, and
ubiquitination are essential for regulating stem cell self-renewal
and differentiation (Weishaupt et al., 2010).

2.1 Histone methylation

The establishment of regulatory element reference maps and
correlating histone methylation and gene expression patterns in
multiple cell types have provided a framework for the identification
and activity of promoters and enhancers (Dunham et al., 2012; Yue
et al., 2014; Kundaje et al., 2015). Histone methylation primarily
occurs at lysine and arginine residues of the core histone protein,
H3. Methylation sites associated with the activation of transcription
include H3K4, H3K36, and H3K79. In contrast, methylation at

FIGURE 1
Chromatin Dynamics are Regulated by DNAMethylation Programs and Histone Modifications. Hematopoiesis is controlled by extrinsic and intrinsic
regulators. Upon receiving cues from the stem cell niche, epigenetic programs tightly regulate the activation or suppression of self-renewal and
differentiation genes. Altering chromatin by covalent histone modifications is one layer of modulation needed to promote or repress transcription. In
normal hematopoiesis, epigenetic writers, readers, and erasers play crucial roles in stem cell self-renewal and lineage specification. Disruption or
mutations in many of these key regulators can lead to an array of hematological malignancies. Loss or gains in DNA methylation at promoters or
enhancers influences the transcription of self-renewal or lineage specific genes. Targeting these key processes has led to the development of histone
deacetylase inhibitors, histone acetyltransferase inhibitors, and hypomethylating agents. Figure made with BioRender.
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H3K9, H3K20, and H3K27 are marks that lead to repressive
heterochromatin.

H3K4 methylation is one of the marks of actively transcribed
genes (Yang and Ernst, 2017). H3K4 trimethylation (H3K4me3) is
typically found over transcription start sites whereas
H3K4 dimethylation (H3K4me2) can be enriched at enhancers,
transcription start sites, and gene bodies (Orford et al., 2008;
Benayoun et al., 2014). Six histone methyltransferases (HMTs)
can modify H3K4: MLL1, MLL2, MLL3 MLL4, SETD1A, and
SETD1B. Each HMT has a unique function in hematopoiesis.
Mll1 expression is important for primitive and definitive
hematopoiesis and Hox gene expression (Yu et al., 1995; Hess
et al., 1997; Ernst et al., 2004). In adult HSCs, Mll1 regulates the
expression of key hematopoietic transcription factor genes including
Hoxa9, Pbx1, andMecom (Jude et al., 2007). Loss of Mll2 expression
is associated with inflammatory gene expression defects in
macrophages (Austenaa et al., 2012). Hematopoietic specific
knockouts of Mll3 or Mll4 have shown roles for both of these
genes in HSC differentiation into HSPCs, engraftment and
protection from oxidative stress (Chen C. et al., 2014; Santos
et al., 2014). Setd1a expression is important for erythroid and
B-cell differentiation (Tusi et al., 2015; Li et al., 2016) whereas
Setd1b loss is associated with impaired trilineage maturation and
myeloid skewing in conditional knockout mice and self-renewal
defects in long term hematopoietic stem cells (LT-HSCs) and
lymphoid primed progenitors after transplantation (Schmidt
et al., 2018).

HMTs may function as oncogenes or tumor suppressors in
leukemogenesis. MLL1, located on chromosome 11q23 in humans,
is a frequent chromosome translocation partner present in over 70%
of infant B-cell acute lymphoblastic leukemia (B-ALL) and 5%–10%
of acute myeloid leukemia (AML) (Gu et al., 1992; Tkachuk et al.,
1992). MLL translocations are the product of in-frame fusions of the
5′ end of the MLL gene with the 3’ end of one of more than
70 translocation partners, most commonly AF4 and AF9. MLL1
translocations lead to the overexpression of HOX cluster genes and
the HOX cofactor MEIS1 (Neff and Armstrong, 2013). MLL3 and
MLL4 are tumor suppressors in leukemia. MLL3 is located on
chromosome 7q, which is commonly deleted in AML (Chen C.
et al., 2014). MLL4 is mutated in 30%–90% of diffuse large B-cell
lymphomas (DLBCL) and follicular lymphomas (Morin et al., 2011;
Pasqualucci et al., 2011).

Another commonly mutated epigenetic regulator in follicular
lymphomas is the H3K27 methyltransferase, enhancer of zeste
homolog 2 (EZH2) (Bodor et al., 2013). EZH2 is the catalytic
subunit of polycomb repressive complex 2 (PRC2), which
negatively regulates transcription via trimethylation of histone
three at lysine 27 (H3K27me3). EZH2 and other core
components of the PRC2 complex including EZH1, SUZ12, and
EED are important for adult stem cell self-renewal and maintenance
of pleuripotency (Shen et al., 2008). Overexpression of
EZH2 preserves stem cell potential and prevents exhaustion in
serial transplantation assays (Kamminga et al., 2006). Deletion of
EZH2 in adult murine bone marrow led to comparable wildtype
reconstitution of stem cells; however, decreased differentiation of
lymphoid cells was observed (Mochizuki-Kashio et al., 2011).
Sequencing studies have identified both loss of function and gain
of function mutations of EZH2 in various hematologic malignancies

suggesting that it acts as both a tumor suppressor and an oncogene.
Furthermore, using murine models of AML, Basheer et al. identified
diametrically opposed roles of EZH2 during AML induction (tumor
suppressor) and maintenance (oncogene) (Basheer et al., 2019). A
study examining the impact of inactivating Ezh2 mutations in
myeloid malignancies in mice reported that mice developed
myelodysplastic disorders that were transplantable and led to the
development of myelodysplastic syndrome (MDS), lymphoma, and
lymphoproliferative disease (Mochizuki-Kashio et al., 2015). In
MDS and T-ALL sequencing studies, EZH2 mutations appear to
disrupt the catalytic SET domain resulting in the loss of function of
the gene (Ernst et al., 2010; Nikoloski et al., 2010; Zhang et al., 2012).
Overexpression of EZH2 has been linked to tumor cell
aggressiveness and poor prognosis in multiple myeloma (Pawlyn
et al., 2017). Gain-of-function mutations (Y641, A682, and A692) in
the catalytic SET domain increases H3K27 methylation resulting in
the inhibition of plasma cell differentiation and oncogenesis in B-cell
lymphoma.

2.2 Bivalent genes

Global analysis of human and murine HSPCs has shed light on
the crucial players that help shape multilineage gene priming (Cui
et al., 2009; Weishaupt et al., 2010). For instance, studying the
features of histone marking led to the identification of the role of
bivalent genes in hematopoietic development. Bivalent genes are
marked by both active (H3K4me3) and repressive (H3K27me3)
histone marks (Azuara et al., 2006; Bernstein et al., 2006). Around
40% of bivalent genes were found to be shared between human and
murine HSPCs (Cui et al., 2009; Weishaupt et al., 2010). The most
significant number of bivalent promoters were found in HSCs, and a
reduction in either the active or repressive mark occurs in genes
associated with development and differentiation. Thus, lineage fate
decisions are dynamic processes that need histone methylation
modifications to maintain the HSPC activation potential required
for differentiation (Cui et al., 2009).

2.3 Histone demethylation

Histone demethylases erase the existing methylation of histones
and are classified into two families: amino oxidase homology lysine
demethylase 1 (KDM1), and Jumonji-domain histone demethylase
(JHDM). The KDM1 family members KDM1A, also known as lysine
specific demethylase 1 (LSD1), and KDM1B demethylate mono- or
dimethyllysine. LSD1 is specific for histone H3 lysine 4 and
9 methylation, which both activate and repress transcriptional
programs. In hematopoietic cells, it was shown that Lsd1 is
required for successful differentiation into mature blood cells. A
knockout mouse model was utilized to show that conditional
inactivation of Lsd1 led to defects in self-renewal, impairments in
HSC differentiation into immature progenitors, and disrupts
terminal erythroid and granulocytic maturation (Kerenyi et al.,
2013). In erythroleukemia cell lines, LSD1 was shown to mediate
the function of key transcription factors TAL1, GATA1, and
C/EBPα during erythroid differentiation (Hu et al., 2009; Kohrogi
et al., 2021). In many cancers, LSD1 is overexpressed, and studies
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have demonstrated that LSD1 contributes to the onset and
progression of AML.

The second-class of demethylases, JHDM, is composed of
20 members, uses ferrous iron and alpha-ketoglutarate and can
demethylate mono-, di-, and trimethyllysine. The JHDM
demethylase family is subdivided into KDM2-7 and has yet to be
fully studied due to the variation in substrate specificity. Focusing on
each subfamily hints that members are essential for normal
hematopoiesis and can function as tumor suppressors, oncogenes,
or both depending on the cellular context. For example, KDM2b/
JHDM1b is important for regulating cell proliferation and
senescence, is highly expressed in lymphoid and myeloid
leukemias, and is reported to be an oncogene that plays critical
roles in both leukemia stem cell self-renewal and leukemogenesis.
Depletion of Kdm2b led to an impairment of Hoxa9/Meis1-induced
leukemogenesis, which was partially mediated by decreased
expression of p15Ink4b. In contrast, overexpression of Kdm2b led
to cell growth advantages and suppression of differentiation in
normal HSPCs (He et al., 2011). Other studies showed that
ectopic expression of KDM2B could antagonize KRAS-driven
leukemias, while ablation led to an accelerated KRAS-driven
myeloid transformation (Andricovich et al., 2016).

Another demethylase subfamily shown to be required for the
growth of MLL-AF9 translocated AML cells is the KDM4
(KDM4A-E) subfamily. Using transplantation assays, it was
demonstrated that Kdm4a, Kdm4b, and Kdm4c played
functionally redundant roles in hematopoiesis. However,
deletion of two or three (Kdm4a, Kdm4b, or Kdm4c) of the
enzymes led to a significant reduction in myeloid, T, and B-cell
6 months after transplantation, hinting that KDM4 family
members are essential for the maintenance of HSCs (Agger
et al., 2019). KDM5 members also have roles in normal and
malignant hematopoiesis. KDM5A with NUP98 translocation
induced genomic instability in AML, and downregulation led to
apoptosis of AML cells (Shokri et al., 2018; Domingo-Reinés
et al., 2023). Knockdown of KDM5 was also shown to impact the
pathogenicity of leukemia by decreasing leukemic colony
forming potential (Xue et al., 2020). Thus, many members of
the Jumonji-domain histone demethylase family present as
potential therapeutics for various hematological malignancies;
however, some members’ roles are context-dependent, making it
a bit complex for pharmacological inhibition.

2.4 Histone acetylation

Functionally, transcription is enhanced by histone acetylation
through the electrostatic interactions between DNA and histones,
which in turn cause open active chromatin. Acetylated histones are
enriched at promoters and enhancers of active genes and are
modulated by two opposing groups of enzymes. Histone lysine
acetyltransferases (KAT) acetylate histone proteins by adding an
acetyl group to lysine residues resulting in an open chromatin
structure accessible for transcription factors. In contrast, histone
deacetylases (HDACs) erase acetyl groups from lysines leading to a
condensed chromatin structure and gene repression. Opposing roles
of KATs and HDACs keep the balance needed to regulate
hematopoiesis.

Histone lysine acetyltransferases are a diverse group of proteins
that are divided into two classes, Type A and Type B, which are
grouped based on being localized within the nucleus or the
cytoplasm. Type A KATs function in transcription-related
histone acetylation in chromatin and are grouped into five
families based on their catalytic domain: P300/CBP, MYST,
GNAT, transcriptional coactivators (KAT4 and KAT12), and
steroid receptor coactivators (KAT13A-D) (Wapenaar and
Dekker, 2016). Type B KATs (KAT1 and HAT4) are mostly
cytoplasmic and acetylate newly synthesized histones, which are
further transported into the nucleus and integrated into newly
synthesized DNA (Wapenaar and Dekker, 2016). Histone
acetylation is essential for regulating HSC self-renewal,
differentiation, and proliferation in normal hematopoiesis. A
large zebrafish screen targeting 425 orthologs of human
chromatin factors, led to the identification and validation of
44 factors that affect primitive and definitive hematopoiesis. The
44 identified factors were mapped to a protein network, which
displayed that multiple chromatin factor complexes, including those
containing the histone acetylases CBP/P300, HBO1, and NuA4,
were required for developmental hematopoiesis (Huang H-T. et al.,
2013).

CBP/300 and MYST family members have been studied
extensively in hematopoiesis, and murine models have shed light
on their role in oncogenesis (Wang et al., 2020). Loss of function
mutations inMoz, a member of the MYST family, lead to a failure of
HSC development during embryogenesis. Deletion of Moz in adult
murine bone marrow cells led to a loss of the long-term repopulating
ability of HSCs; however, lineage-committed progenitors were
unaffected, suggesting its role in the maintenance of HSCs
(Sheikh et al., 2016). A conditional knock-out mouse model of
Mof, another member of the MYST family, resulted in
hematopoietic failure suggesting its critical role in postnatal and
adult HSC and progenitor maintenance (Valerio et al., 2017a). MOF
orchestrates erythropoiesis through the modulation of chromatin
accessibility. Single-cell transcriptomic and bulk chromatin
immunoprecipitation sequencing revealed that the expression of
MOF is controlled by erythroid specific transcription factors, Runx1
and Gfi1b, through a feed-forward mechanism. Not surprisingly,
disrupting MOF expression results in defects in erythroid
differentiation, anemia and reduced erythroid progenitors in
murine models (Pessoa Rodrigues et al., 2020).

Murine models have demonstrated that CBP and p300 are
paralogs with distinct functions in HSC self-renewal and
differentiation. Cpb heterozygous knockout mice have a decrease
in HSCs when aged to 1 year and Cpb heterozygous knockout
recipients have decreased reconstitution compared to p300
heterozygous knockout or wild type recipients in secondary bone
marrow transplantation assays, suggesting Cbp is essential for HSC
self-renewal (Rebel et al., 2002). Ablation of Cbp in adult conditional
knockout mice led to a myeloid bias, lymphopenia, HSC exhaustion,
and an increase in quiescent cells demonstrating that Cbp is essential
for HSC homeostasis (Chan et al., 2011). Specific mutation of the
KIX domain in CBP and p300, which binds transcriptional
regulators, also have non-redundant functions in hematopoiesis.
For instance, hematopoiesis in mice with homozygous mutations in
the Cbp KIX domain were essentially normal aside from having
slightly lower thymocyte numbers. The same homozygous KIX
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domain mutations in p300 were associated with megakaryocytic
hyperplasia, thymic hypoplasia, anemia, and B-cell deficiency. These
changes were also found in homozygous p300 KIXmutant recipients
after bone marrow transplantation, suggesting this is a cell intrinsic
phenotype (Kasper et al., 2002).

Although these paralogs have distinct roles in normal
hematopoiesis, both proteins serve as tumor suppressors. CBP
loss of function mutations are highly recurrent in patients with
DLBCL and follicular lymphoma (Zhang et al., 2017). Studies in
transgenic mouse models show that homozygous Cbp knockout
combined with Bcl2 overexpression leads to defects in B-cell
maturation, Myc overexpression and lymphoma development
(García-Ramírez et al., 2017). In AML, The C terminus of CBP is
a direct target of chrmosomal translocations to MLL1 and MOZ
(Taki et al., 1997; Crowley et al., 2005). MOF expression was also
found to be required for MLL-AF9 leukemogenesis. Deletion ofMof
in an Mll-Af9 leukemia mouse model led to reduced tumor burden,
decreased colony formation, prolonged survival, and
downregulation of genes involved in DNA damage repair.
Furthermore, human and murine MLL-AF9 leukemias showed
increased sensitivity to a selective small molecule inhibitor of the
histone acetyl transferase activity of the MYST protein (Valerio
et al., 2017b).

2.5 Histone deacetylation

HDACs remove acetylation from histones and promote
transcriptional repression. In humans, 18 HDAC enzymes are
divided into two families based on the presence of a conserved
deacetylase domain and their dependence on specific cofactors. The
zinc-dependent HDACs are the deacetylase family, divided into
classes I, II, and IV. The class III HDACs require nicotinamide
adenine dinucleotide as a cofactor for catalytic function and consist
of the sirtuin family proteins (Park and Kim, 2020). HDACs
counterbalance acetylation, and any disruption between KAT and
HDAC activities can result in aberrant expression of genes and lead
to hematologic malignancies.

During hematopoiesis HDACs, participate in various complexes
that help modulate the expression of critical genes needed for
multilineage development. HDAC1 and HDAC2 are class I
HDACs that play an essential role in HSC homeostasis and show
compensatory and overlapping functions in hematopoiesis.
Conditional knockout of both Hdac1 and Hdac2 in the bone
marrow leads to bone marrow failure with loss of HSCs and
early progenitors due to the dysregulated expression of genes
involved in stem cell survival and maintenance. Hdac1 or Hdac2
single knockout is associated with decreased B-cell numbers but
preserved myeloid differentiation. Only Hdac1 knockout was
associated with decreased erythroid colony formation and a
defect in the expansion of early erythroblasts (Marinus et al.,
2014). The expression of HDAC1 changes throughout lineage
specification, making it subject to regulation by transcription
factors such as GATA2, C/EBP, and GAT1. During
differentiation of common myeloid progenitors (CMP),
GATA2 and C/EBP represses HDAC1, while GATA1 activates it
during erythroid megakaryocytic differentiation (Wada et al., 2009).
Hdac8, another class 1 member, was shown to be an essential

regulator of long term hematopoietic stem cell (LT-HSC)
function by maintaining long-term hematopoietic repopulation
and protection from stress (Hua et al., 2017).

Other classes of HDACs are essential in HSC homeostasis and
aging. Inhibition of the class II HDAC, HDAC5, leads to increased
acetylated p65 in the nucleus of HSCs which increases expression of
CXCR4 and enhances HSC homing (Huang et al., 2018). Members
of the sirtuin family regulate HSC aging. For example, Sirt1 deletion
in young murine HCSs led to an accumulation of DNA damage and
features of aged HSCs including myeloid skewing and anemia
(Rimmelé et al., 2014). Sirt3 is highly enriched in HSCs, where it
functions to reduce stress. The role of Sirt3 in HSC maintenance is
dispensable in young mice but essential under stress or in aged mice
(Brown et al., 2013). Lastly, inactivating Sirt7 decreased quiescence,
disrupted the regenerative capacity of HSCs, and increased
mitochondrial protein folding stress. Upregulation of
Sirt7 improved regenerative capacity in aged HSCs, further
hinting that HDACs are highly dynamic in normal
hematopoiesis (Mohrin et al., 2015).

HDAC1 and HDAC2 are upregulated in DLBCL, peripheral
T-cell leukemias, cutaneous T-cell lymphomas and NK/T-cell
lymphomas and the expression of HDAC1 was found to be
related to worse prognosis in patients (Min et al., 2012). In B-cell
lymphoma HDAC1 and HDAC2 inhibition repressed proliferation
suggesting an oncogenic role in lymphoma. In contrast,
HDAC4 expression is low in widespread hematological
malignancies suggesting a protective tumor suppressor role
(Wang et al., 2020). HDACs are also critical for the oncogenic
potential of leukemia fusions through the recruitment and
repression of genes responsible for hematopoietic differentiation.
Thus, HDACs are great targets for clinical drug development.

2.6 Histone ubiquitination

Polycomb repressive complex 1 (PRC1) catalyzes the
monoubiquitination of lysine 119 on H2A, can condense
nucleosomes, and exists in multiple canonical (PRC.1 and 1.4)
and non-canonical variants (PRC1.1, 3, 5, and 6) (Zepeda-
Martinez et al., 2020; Nakajima-Takagi et al., 2023). The different
forms of PRC1 are divided according to the subtype of the Polycomb
group ring finger (PCGF) subunits (PCGF1-6) (Nakajima-Takagi
et al., 2023). Members of the canonical PRC1.4, such as BMI1, are
highly expressed in HSCs and have been linked to lymphocyte
development and malignant transformation (Park et al., 2003). To
understand the molecular mechanisms by which PRC1 variants
contribute to the self-renewal of HSCs, Park et al. analyzed gene
expression profiles of highly purified LT-HSCs and found that Bmi1
was expressed. Additionally, using competitive repopulating assays,
researchers showed that Bmi1 null mice had a decreased capacity to
reconstitute mature lineages and lost most of the donor-derived
HSCs by week 10, suggesting that Bmi1 is required for self-renewal
of adult HSCs (Park et al., 2003). In addition, forced expression of
Bmi1 enhanced symmetrical cell divisions of HSCs and led to the ex
vivo expansion of multipotent progenitors (Iwama et al., 2004).
Multiple studies have shown that BMI1 regulates self-renewal and
maintains multipotency by transcriptionally repressing CDKN2,
p16Ink4, and p19Arf (Park et al., 2003; Nakajima-Takagi et al.,
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2023). Studies also show that Bmi1 knockout mice have a block in
B-cell differentiation by silencing the promoter of Ebf1 and Pax5,
B-cell-specific transcription factors (Oguro et al., 2010).

Other members of both the canonical and non-canonical
PRC1 were also shown to regulate HSCs. Mel18 was shown to
promote self-renewal and increase quiescence acting as a negative
regulator of differentiation (Kajiume et al., 2004). The
PRC1 complex is highly dynamic, with the chromobox (CBX)
family proteins either leading to increased self-renewal and
induction of leukemia (Cbx7) or differentiation and exhaustion of
HSCs (Cbx2,4,8) when overexpressed (Klauke et al., 2013).
Noncanonical PRC1 complex member BCOR is ubiquitously
expressed across adult tissues, and mutations within this gene
occur in acute myeloid leukemia (AML), myelodysplastic
syndrome (MDS), chronic myelomonocytic leukemia (CMML),
and aplastic anemia (Kelly et al., 2019). Non-canonical
PRC1 components including polycomb group ring finger protein
1 (Pcgf1), USP7 and TRIM27 appear to have tumor suppressor
functions in myelofibrosis and AML (Maat et al., 2021; Shinoda
et al., 2022).

3 DNA methylation: A key modification
for development and differentiation

DNA methylation is a key epigenetic modification for
development, stem cell differentiation, and oncogenesis (Celik
et al., 2015). Methylation is associated with an inhibitory role
near transcriptional start sites and active transcription in gene
bodies. In mammalian cells, DNA methylation is defined as the
covalent transfer of a methyl group from S-adenyl methionine to the
5’ position of the cytosine ring of DNA by a family of DNA
methyltransferases (DNMTs). The majority (98%) of DNA
methylation occurs within CpG dinucleotides in somatic cells. In
contrast, around a quarter of methylation occurs in a non-CpG
context in embryonic cells (Lister et al., 2009). However, this non-
CpG methylation is not observed as cells differentiate and mature.

3.1 DNA methylation

DNA methylation is regulated by three main DNMTs that help
maintain and establish DNA methylation. DNMT1, the first
identified DNMT gene, is a canonical maintenance
methyltransferase that targets hemi-methylated DNA sequences
and is critical in re-establishing the methylation landscape after
DNA replication (Haggerty et al., 2021). DNMT3A and DNMT3B
are responsible for establishing methylation signatures in different
cell types and also transfer a methyl group to unmethylated DNA
during development. Structurally, all major DNMTs contain a
C-terminal catalytic domain, a central linker, and a regulatory
motif within the N-terminal region. DNMT3A and DNMT3B
have a PWWP, ATRX, and PHD domain. However, DNMT1 is
unique, containing distinct domains such as PBD, DRFTS, and BAH
(Brunetti et al., 2017). Over the years, research has provided
perspective on the significant roles DNMTs have on
hematopoiesis. Hematopoietic stem cells are tasked with
replenishing stem cell pools through self-renewal and producing

mature cell lineages through differentiation. Keeping the
equilibrium between both processes is extremely important and is
controlled by extrinsic and intrinsic signals. Intrinsically, DNA and
histone modifications help define the gene expression patterns
needed as stem cells decide to self-renew or differentiate from
HSCs to progenitors, which go on to differentiate into mature
lymphoid, erythroid, and myeloid cells.

Studies of the individual DNMTs have linked their function to
self-renewal and lineage-specific fate decisions. Through
transplantation studies, it was shown that in addition to
maintaining parental cell methylation patterns, Dnmt1 also
possesses a critical role in cell state transitions of adult stem cells
(Trowbridge et al., 2009). In particular, reducing Dnmt1 in mouse
HSCs led to impaired self-renewal and multilineage differentiation
(Trowbridge et al., 2009). Gene expression and methylation analysis
highlighted that Dnmt1 deletion causes a distinct pattern in LT-
HSCs, short-term hematopoietic stem cells (ST-HSCs), multipotent
progenitors (MPPs), and myeloid progenitors. Further integration
of mouse HSPCs highlighted that there is a bias toward the myeloid
erythroid lineage through DNA hypomethylation, which caused the
increased expression of transcription factors Gata1, Id2, and Cepba,
but a decrease in lymphoid and stemness genes (Bröske et al., 2009).

In contrast, DNMT3A and DNMT3B are de novo
methyltransferases linked to transcriptionally silencing self-
renewal genes in HSCs. Knockout models of Dnmt3a led to the
finding that self-renewal was favored over differentiation in mouse
HSPCs. Deletion led to hypo and hypermethylation of specific loci,
resulting in the upregulation of self-renewal genes such as Runx1
and Gata3. Compared to wildtype cells, Dnmt3a deficient cells can
extensively expand the HSC pool; however lineage output does not
increase in a similar proportion suggesting that there is a
differentiation defect induced by loss of Dnmt3a. The combined
loss of DNMT3A and DNMT3B is synergistic, leading to a severe
block in differentiation and enhanced self-renewal through β-
catenin activation. DNMT3B deficiency has minimal effects on
HSCs hinting that DNMT3A can compensate for DNMT3B loss,
further highlighting that DNMT3A is essential for HSC
differentiation. DNA methylation is a dynamic process, and
understanding the role of DNA methylation in cellular lineage
commitment is still being elucidated. Evidence shows that cellular
identity is defined by epigenetic switches that may act as gatekeepers
that prevent differentiated cells from aberrantly expressing stem
cell-associated genes (Bock et al., 2012).

3.2 DNA demethylation

DNA demethylation also plays a considerable role in regulating
HSC differentiation. Studies show various instances where lineage-
specific demethylation is required for the upregulation of critical
genes such as Gadd45a, an essential gene implicated in myeloid
development during the common myeloid progenitor (CMP) to
granulocyte-monocyte progenitor (GMP) transition (Cullen et al.,
2014). The demethylation process is complex and is orchestrated
through a protein family known as the ten-eleven translocation
(TET) protein. The TET proteins belong to a family of dioxygenase
enzymes subdivided into TET1, 2, and 3. All three TET proteins
have similar catalytic activity by functioning to oxidize the methyl
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group on 5mC, yielding 5- hydroxymethylcytosine, 5-
formylcytosine, and 5- carboxylcytosine (Bowman and Levine,
2017). The TET1 and TET3 genes encode for both the DNA
binding domain, the CXXC domain, and the catalytic domain.
Due to chromosomal inversion during vertebrate evolution
TET2 was separated from its DNA biding region, which is
encoded by a neighboring gene, IDAX. The deposition of 5hmC
on CpG islands vs gene bodies by TET proteins is thought to be
influenced by the type of DNA binding domain (CXXC or IDAX)
(Huang et al., 2014). TET1 is usually detected at promoters or
enhancers in mouse embryonic stem cells, while TET2 is enriched in
enhancer regions and gene bodies. TET2 and TET3 are ubiquitously
expressed in all HSPC compartments, with TET2 having decreased
expression in megakaryocyte-erythroid progenitors (MEPs) and
TET3 having reduced levels in differentiated populations.
Assessment of the TET proteins in normal hematopoiesis using
knock-down studies have suggested that TET2 is responsible for
60% of DNA dioxygenase activity in HSPCs highlighting its essential
role in HSPCs (Guan et al., 2021). Reduction of Tet2 in murine
HSPCs results in a competitive advantage over wild-type cells and an
increase in colony formation ability after serial replating, implicating
a role in HSC self-renewal (Moran-Crusio et al., 2011; Rasmussen
et al., 2015a). Gene expression profiles of serial replated cells had an
increase in expression of self-renewal factors Meis1 and Evi1.
Increasing evidence has suggested that TET proteins act on
regions outside of CpG islands, and 5hmc analysis shows that it
is enriched on enhancer elements and CTCF insulators. Thus, loss of
Tet2 in HSCs led to genome-wide hypermethylation of enhancers
and changes in gene expression of both tumor suppressors and
oncogenes (Hon et al., 2014; Rasmussen et al., 2015a; Rasmussen
et al., 2015b). Tet2 null mice develop many hematopoietic
abnormalities with myeloid proliferative neoplasms and chronic
lymphocytic leukemia, hinting that Tet2 is also a tumor suppressor
in hematopoietic tissue.

4 DNA methylation in disease and
therapeutic implications

Disrupting the balance between stem cell self-renewal and
lineage commitment can lead to the onset of hematological
malignancies. Genomic sequencing studies have revolutionized
the understanding of disease pathogenesis by revealing that
malignancy arises from acquired somatic mutations in genes
involved in specific cellular pathways, including epigenetic
regulation, chromatin modification, and RNA splicing. However,
the mechanisms by which these mutations lead to normal HSCs
transforming into leukemic stem cells remain poorly understood.
More recently, studies in healthy individuals revealed that somatic
mutations in HSCs leading to clonal expansion are acquired during
aging. Clonal hematopoiesis of indeterminate potential (CHIP) is
the expansion of a hematopoietic stem cell clone with an acquired
driver mutation in individuals without cytopenias or overt
malignant hematologic disease (Genovese et al., 2014; Jaiswal
et al., 2014). CHIP studies have identified a high prevalence of
gene mutations that overlap with those found in overt hematological
malignancies such as MDS, AML, and chronic myeloid leukemia
(CML). CHIP represents a pre-disease state or the first step in the

path of leukemogenesis. As mutant CHIP clones expand, the
acquisition of additional driver mutations can lead to MDS and
further transformation into AML. The most frequently mutated
genes in CHIP are the epigenetic regulators DNMT3A, TET2, and
ASXL1. IDH1 and IDH2 are metabolic enzymes that can affect
TET2 function when mutated in CHIP or AML (Figure 2). Thus,
epigenetic regulators remain attractive targets for myeloid and
lymphoid malignancies. DNA hypomethylating agents (HMAs)
5-azacytidine and decitabine are approved treatments for MDS
and AML. Azacitidine and decitabine are cytidine analogs that
cause DNA demethylation by inactivation of DNMT-1. However,
some patients develop primary and secondary treatment failures,
showing that the “one-size fits all” approach needs adapting (Prébet
et al., 2011; Nair et al., 2021).

Mutations inDNMT3A are found in ~10% of MDS and ~30% of
AML patients. In all instances, DNMT3A occurs early in
transformation, making it an attractive target for new therapeutic
approaches. DNMT3A mutations in CHIP and AML are primarily
missense, with residue R882 being the most affected. In particular,
the R882H variant leads to a dominant-negative effect over the
wildtype protein, resulting in altered methyltransferase activity and
genome-wide hypomethylation in patients (Russler-Germain et al.,
2014; Langstein et al., 2018). Murine models have been instrumental
in understating the link between DNMT3A and leukemogenesis. In
particular, serial transplantation assays of Dnmt3a null cells did not
lead to overt malignancy (Challen et al., 2012), suggesting that
transformation into leukemia requires sequential mutations.
Consequently, a long-term survival study of Dnmt3a null HSCs
decreased overall survival compared to WT and developed a
spectrum of myeloid and lymphoid malignancies. The variations
in disease further support that DNMT3A confers a preleukemic
phenotype that acquires additional mutations during
transformation (Mayle et al., 2015).

In a large cohort of de novo AML patients, DNMT3Amutations
commonly co-occurred with NPM1, FLT3-ITD, IDH1/2, and FLT3-
TKD mutations (Torabi et al., 2022). Consequently, modeling
Dnmt3a commutations in murine models has provided
additional mechanistic insight. Conditional Dnmt3a R878H
(equivalent R882 mutation) and Nras G12D double knock-in
mice developed aggressive AML, mediated by an upregulation in
Myc and its target genes (Shi et al., 2019). Similar studies have also
demonstrated that Dnmt3a deletion or mutations cooperate with
Flt3ITD (Poitras et al., 2016), Npm1c (Guryanova et al., 2016), or
cKIT (Celik et al., 2015) in leukemia transformation. Interestingly, a
model of Dnmt3a-driven CHIP demonstrated that acquiring Npm1
mutations can lead to the development of myeloproliferative
disorders (MPD), and additional transplantation leads to AML
(SanMiguel et al., 2022).

Somatic mutations in TET2 are frequently identified in
individuals with CHIP and various lymphoid and myeloid
hematological malignancies. TET2 mutations occur throughout
the gene and can include missense mutations found in its
functional domain affecting the catalytic activity of TET2. Loss of
function mutations in TET2 have been reported in 20% of MDS and
50% of patients with chronic myelomonocytic leukemia (CMML).
Human and murine studies have shown that TET2mutations occur
in HSCs and are early events that skew differentiation toward the
myeloid lineage (Delhommeau et al., 2009; Ko et al., 2010). For
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instance, using a competitive transplantation assay Moran-Crusio
et al. validated that Tet2 regulated HSC self-renewal by showing that
Tet2 knockout HSPCs out compete wild type cells and expand HSCs
and GMPs (Moran-Crusio et al., 2011). It was also shown in
different models that Tet2 loss led to the development of features
of human CMML, which was characterized by myeloproliferation
and splenomegaly (Li et al., 2011; Moran-Crusio et al., 2011;
Quivoron et al., 2011). Xenotransplantation studies of
TET2 mutant MPN samples that demonstrated mutant cells
could engraft NOD-SCID mice (Delhommeau et al., 2009).
Patient cohorts show that TET2 mutations are associated with
low 5hmC levels in the bone marrow compared to healthy
controls (Ko et al., 2010). Likewise, it was also demonstrated that
deletion of Tet2 led to a reduction in 5hmC with a concomitant
increase in the 5mC levels in the DNA of BM cells (Hon et al., 2014).

TET2 can also influence the lymphoid lineage, and multiple
mutations have been reported in angioimmunoblastic T-cell
lymphomas, DLBCL, and mantle cell lymphoma (Quivoron et al.,
2011; Meissner et al., 2013; Dominguez et al., 2018). Interestingly, a
study assessing the catalytic dependent and independent requirements
for Tet2 found that mice with catalytically inactive mutant mice
developed myeloid malignancies reminiscent of MDS (Ito et al.,
2019a). In contrast, Tet2 knockout mice developed both myeloid
and lymphoid malignancies. Gene expression profiles differed
between the two models, and Tet2-knockout HSPCs had decreased
levels of lineage specifiersGata2 andHoxa9. These findings suggest that
TET2mutations lead to different hematological malignancies that may
depend on the catalytic activity of TET2 (Ito et al., 2019a).

Like DNMT3A, TET2 is considered an early preleukemic
mutation associated with the sequential acquisition of additional
mutations in AML and myeloproliferative diseases. In AML, TET2

mutations are commonly commutated with secondary driver genes
such as FLT3 and JAK2-V617F (Rasmussen et al., 2015a). Multiple
mouse models have been developed to understand the underlying
mechanisms both mutations have together in hematopoietic
neoplasms. When Tet2 deficient mice were crossed with Flt3ITD
mice, hypermethylation of specific genomic loci, such as the Gata2
promoter, was associated with reduced expression and the
development of transplantable leukemia (Shih Alan et al., 2015).
In an MPN model, mice with Jak2V617F and Tet2 mutations had a
more severe MPN phenotype, where double mutant HSPCs could
maintain MPNs in secondary recipients after transplantation (Chen
et al., 2015). In this context, Tet2 was speculated to have different
roles depending on the stage of the disease. In already established
MPNs, TET2 loss may accelerate malignancy, whereas TET2 as the
initial mutation may serve a role in initiating MPNs, as shown in
CHIP (Kameda et al., 2015). Thus, TET2 mutations are context
dependent, and additional studies to determine how different
contexts of mutation acquisition lead to paradoxical changes in
disease progression are still warranted.

In many cases, DNMT3A and TET2 are commutated. Having
mutations of two driver genes has ushered the field to investigate
how these genes with opposite functions synergize during disease. In
a conditional knockout model of Tet2 and Dnmt3a, mice developed
accelerated malignancy by leading to the upregulation of lineage
specific TFs and obstructing differentiation (Zhang et al., 2016).

Perturbations in the expression of the two other TET enzymes are
less frequent in hematologicmalignancies. In rare cases of AML,TET1
is fused to MLL. A large genome wide expression study of 100 AML
patient samples and nine normal bone marrow samples revealed that
TET1 is over-expressed in MLL-rearranged AML (Huang H. et al.,
2013). Additionally, chromatin immunoprecipitation assays revealed

FIGURE 2
Epigenetic Dysregulation: From CHIP to Leukemia. Clonal hematopoiesis is a disease caused by the clonal expansion of stem clones harboring
leukemogenic mutations. Mutations in DNMT3A and TET2 are two of the most frequent genes found in CHIP. In addition, IDH mutations are also
associated with CHIP in older populations. Selective pressures such as age and environmental insults lead to the expansion of these mutant clones that
may progress to myeloid malignancies such as myelodysplastic syndrome (MDS), myeloproliferative neoplasms (MPN), and chronic
myelomonocytic leukemia (CMML). The subsequent acquisition of additional mutations in genes such as FLT3 and NPM1 can result in the transformation
into overt acute myeloid leukemia (AML). Figure made with BioRender.
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that TET1 was a direct target of MLL which binds directly to the
promoter of TET1 (Huang H. et al., 2013). Silencing of Tet1 led to
downregulation of MLL target genes including HOXA9, PBX3, and
MEIS1. In this context, TET1 is shown to act as an oncogene instead
of a tumor suppressor like TET2 and TET3. Rare TET1 and TET3
mutations have been found in other hematological malignancies
including AML (TET1), T-cell lymphoma (TET3) and chronic
lymphocytic leukemia (TET1 and TET3) (Langstein et al., 2018).

Genomic sequencing studies revealed that isocitrate
dehydrogenase 1 and 2 (IDH1 and IDH2) were a new class of
genes mutated in myeloid malignancies (Losman et al., 2013). The
main function of these homodimeric metabolic enzymes is to
convert isocitrate to α-ketoglutarate (α-KG) while producing
reduced NAPDH from NADP+ and CO2. IDH1 (located in the
cytoplasm and peroxisomes) and IDH2 (found in the mitochondrial
matrix) are highly homologous to each other (Cairns and Mak,
2013). IDH1 and IDH2 missense mutations occur around 8% and
12% in AML, respectively. The most common mutation in IDH1 is
R132, and the most common mutations in IDH2 are R140 and R172
(Cairns and Mak, 2013). These common mutations result in a
neomorphic enzymatic activity, which catalyzes NADPH and α-
KG to produce active metabolite D 2-hydroxygluterate (D-2HG).
The two main targets of D-2HG are the KDM family of HDACs and
the TET family of enzymes, and due to its structural affinity with α-
KG, D-2HG competitively inhibits both families of enzymes.
Inhibition with 2-HG leads to increased H3 lysine methylation
and global hypermethylation. IDH1/2 and TET2 mutations are
mutually exclusive. TET2 knockout and IDH2 mutations have
similar effects on hematopoietic differentiation, suggesting that
the effects may be due to TET2 inhibition by D-2HG (Figueroa
et al., 2010). IDH genes are also considered preleukemic genes and
are detected at very low levels in CHIP compared to other epigenetic
regulators. The role of IDH1 and IDH2 in normal hematopoiesis is
still being determined. However, several studies have provided
insights into functions other than regulation of TET enzymes.
For instance, Idh1 mutations in a murine model increased
H3K9 methylation, leading to the downregulation of the DNA
damage sensor Atm. Decreased Atm impaired DNA repair and
reduced HSC self-renewal. ATM was also found to be decreased in
human AML with IDH1 mutations suggesting that IDH1 can alter
cellular differentiation by changing the histone code (Inoue et al.,
2016). A study performed in human cell lines found that the R132H
mutation in IDH1 could block differentiation and promote cytokine
independence (Losman et al., 2013).

Over the past several years clinical trials of IDH protein
inhibition have demonstrated promising response rates in
relapsed-refractory AML and there are currently several small
molecule inhibitors that have been approved by the FDA for the
treatment of IDH1 (ivosidenib, olutasidenib) or IDH2
(enasidenib) mutant AML (Gruber et al., 2022). For instance,
a phase 1 trial of enasidenib, a selective small-molecule inhibitor
of IDH2 resulted in an overall response rate of 40.3% (Stein et al.,
2017). In addition, a phase 1 clinical trial for IDH1 inhibitor
ivosidenib resulted in 41.6% overall survival (DiNardo et al.,
2018; Zhuang et al., 2022). As a single agent, ivosidenib led to
30.4% complete morphological remission in patients with mutant
IDH1, however many of the patients eventually acquired drug
resistance or relapsed.

A study aiming to elucidate mechanisms that dictate response to
ivosidenib, developed a novel inducible Idh1 mouse model with co-
expressed Dnmt3a and Nras mutations (Gruber et al., 2022). Mice
expressing all three mutations developed AML and had improved
survival after treatment with ivosidenib when compared to the
vehicle treated mice. Throughout treatment mutant cells were
still detected, highlighting that sole IDH inhibition does not fully
inhibit the disease. Further analysis revealed that ivosidenib
promoted cycling of leukemia stem cells and increased the
expression of pyrimidine salvage components, which led the
authors to test a combination treatment of ivosidenib and
azacitidine. The study demonstrated that ivosidenib leads to the
uptake of azacitidine in immature leukemic cells, further causing
changes in DNA methylation at promoters and upregulation of
genes that promote myeloid differentiation (Gruber et al., 2022).

Mutations in metabolic enzymes such as IDH1 and IDH2 are an
example of the dynamic role metabolism has in hematopoiesis.
Metabolic enzymes not only modulate epigenetic regulators but are
also hijacked by cancer cells to promote disease progression and
drug resistance (Patel et al., 2022). The adaptation to energy
requirements from glycolysis to oxidative phosphorylation as
HSCs differentiate has become a hot topic in the field as
highlighted in several recent reviews exploring the metabolic
changes that occur during HSC development, stress, and
leukemic transformation (Ito et al., 2019b; Nakamura-Ishizu
et al., 2020; Patel et al., 2022).

5 RNA modifications in normal and
malignant hematopoiesis

Improvements in RNA sequencing technologies and stem cell
specific disease models have established connections between RNA
epigenetics and chromatin structure, divulging the roles of RNA
binding proteins (RBPs) and RNA modifiers in the epigenetic
regulation of HSC genome function.

5.1 RNA splicing

Messenger RNA (mRNA) splicing is the dynamic process whereby
noncoding (intron) or coding (exon) nucleotide sequences are removed
from a premature mRNA transcript to generate a mature transcript or
isoform that will subsequently be translated into protein. Alternative
mRNA splicing is a co-transcriptional process that increases the
functional diversity of proteins through the generation of tissue-
specific isoforms (Wang et al., 2008). Alternative splicing can also
lead to decreased protein expression by causing the inclusion of introns
or exons containing a premature termination codon (PTC). The
presence of a PTC can lead to induction of the nonsense mediated
mRNA decay (NMD) pathway, a quality control pathway that degrades
these aberrantly spliced transcripts (Belgrader et al., 1994). Bulk
RNAseq studies performed in primitive HSPC populations including
human fetal liver, cord blood, and bone marrow CD34+ cells revealed
differences in the isoform expression of transcription factors including
HMGA2 and MEIS1, and the epigenetic regulator, DNMT1. However,
these developmentally distinct CD34+ cell populations had little to no
difference in the expression of these genes, highlighting the importance
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of alternative splicing in regulating stage-specific features of HSPCs
during development (Cesana et al., 2018).

RNAseq studies performed in human CD34+ HSPCs and
downstream myeloid and lymphoid progenitor populations have
documented the presence of lineage-specific alternative splicing
events associated with differential isoform expression during
myeloid and lymphoid lineage commitment (Liu et al., 2011;
Chen L. et al., 2014). Pathway analyses of the alternatively
spliced genes found them to be enriched in pathways important
for hematopoietic differentiation and cell cycle progression such as
the Wnt/β -catenin and Rac/RhoA signaling pathways. A highly
regulated alternative splicing program was identified in human
erythroblasts differentiated in vitro to progress through the last
four cell divisions before enucleation (Pimentel et al., 2014). This
alternative splicing program causes tissue-specific isoform
expression of genes important for chromatin condensation,
autophagy and enucleation as well as NMD-associated splicing
events that are thought to decrease the expression of RNA and
DNA binding proteins and histone modifying enzymes that are
presumably not needed in late-stage erythroblasts. Orchestrated
intron retention programs have been shown to be important to
regulate the expression of splicing factors, among other genes,
during terminal erythropoiesis (Edwards et al., 2016; Pimentel
et al., 2016), granulocyte maturation (Wong et al., 2013), and
B-cell development (Ullrich and Guigo, 2020) through both
nuclear retention and NMD of the alternatively spliced transcripts.

Given the importance of mRNA splicing to HSC function and
hematopoietic differentiation, it is not surprising that mutations in
components of the mRNA splicing machinery occur early in
leukemogenesis and are among the most frequently identified
somatic lesions in cancer (Graubert et al., 2011; Papaemmanuil
et al., 2011; Yoshida et al., 2011). The most commonly mutated
spliceosome genes in myeloid malignancies, SF3B1, SRSF2, and
U2AF1, are also frequently identified in individuals with CHIP
(Genovese et al., 2014; Jaiswal et al., 2014). Interestingly, while
patient-associated point mutations in each of these genes have been
shown to lead to an expansion of HSCs and HSCPs that is associated
with cytopenias and dysplastic cellular features in murine models,
these mutations also have detrimental effects on HSC self-renewal in
competitive transplantation assays (Kim et al., 2015; Shirai et al.,
2015; Obeng et al., 2016).

Mutations in SF3B1, SRSF2, and U2AF1 are uniformly
heterozygous and mutually exclusive (Yoshida et al., 2011),
findings which have led to the hypothesis that the remaining
wild-type allele is essential for cells with splicing factor mutations
and fueled efforts to target spliceosome function in patients with
splicing factor-mutant myeloid malignancies (Lee et al., 2016; Fong
et al., 2019). Clinical trial results to date are mixed, with on target
effects noted but little effect on disease progression (Steensma et al.,
2019). This may be due to an incomplete understanding of which
aberrant splicing events are essential for myeloid leukemogenesis.
Recent preclinical studies that may hold promise for selectively
targeting splicing factor-mutant cells include the development
of “synthetic intron” containing constructs which are only
properly spliced to express toxic proteins in cells that contain
SF3B1 mutations (North et al., 2022) and findings that
SF3B1 mutations may confer sensitivity to replication stress
induced by PARP inhibition (Bland et al., 2023).

5.2 Non-coding RNAs

RNA regulatory networks play vital roles in hematopoiesis and
work in concert with histone modification and DNA methylation
programs to regulate gene expression. Post-transcriptional
modifications extensively studied in normal and disease states
include microRNAs (miRNAs) and long-non-coding RNAs
(lncRNAs). miRNAs are small non-coding RNAs consisting of
19-24 nucleotides that regulate gene expression by binding to
mature mRNAs and causing post-transcriptional silencing of
their targets. Since the discovery of the first miRNA in 1993,
recent reports estimate that the human genome encodes
approximately 2,600 mature miRNAs (Plotnikova et al., 2019).

In normal hematopoiesis miRNAs help regulate stem cell self-
renewal, differentiation, cell cycle and lineage specification. MiR-
126, miR-125a/b and miR-129a regulate self-renewal of
hematopoietic stem cells by repressing multiple targets (Lechman
Eric et al., 2016). miR-126 is highly expressed in murine and human
HSC compartments, and plays a vital role in maintaining HSC
quiescence by restricting cell cycle progression (Lechman Eric et al.,
2012). Researchers found that decreasing miR-126 expression in
cord blood HSPCs resulted in increased proliferation of HSPCs.

During lineage specification microRNAs are implicated in
erythropoiesis, megakaryopoiesis, granulopoiesis, and lymphopoiesis.
During primitive hematopoiesis miR-126 expression helps regulate
erythroid differentiation by increasing erythroid progenitors through
Vcam-1 (Sturgeon Christopher et al., 2012). Studies found that miR-
144 and miR-451 are direct targets of GATA-1 and are required for
erythropoiesis (Dore et al., 2008), while miR-223 plays a vital role in
granulopoiesis through a negative feedback loop involving NF1-A and
C/EBPα (Fazi et al., 2005). Additionally, miR-126 specific interaction
with c-myb was shown to control thrombocyte-erythrocyte lineage
decisions (Grabher et al., 2011). In lymphopoiesis, miR-150 was
upregulated during the development of T and B cells and when
overexpressed in HSPCs the transition from the pro-B to the pre-B
cell stage is blocked (Zhou et al., 2007).

Given the role of miRNAs in regulating quiescence and
differentiation, it is not surprising that alterations in miRNA
expression can lead to the development of hematological
malignancies in which miRNAs can act as either tumor
suppressors or oncogenes. Studies have shown that overexpression
of miRNA family members such as miR-125 (Klusmann et al., 2010),
miR-22 (Song Su et al., 2013), miR-155 (Eis et al., 2005), and miR-
126 (Lechman Eric et al., 2012) can lead to malignant
transformation. Mechanistically, miRNA’s crucial role in self-
renewal provides opportunities for leukemic stem cells to acquire
self-renewal properties. Gene expression and proteome profiles
performed in leukemia stem cells overexpressing miR-126 led to
the identification of the PI3K/AKT axis as targets of miR-126
important for chemotherapy resistance and quiescence (Lechman
Eric et al., 2012). Studies have reported that miR-29 directly targets
DNMT3A which in turn leads to the maintenance of self-renewal.
In AML samples, miR-29 is upregulated in HSCs, and its
overexpression in murine HSPCs led to the development of
MPNs with progression to AML (Han et al., 2010). Although
these studies suggest that miR-29a may have a role in initiating
AML, contrasting studies have demonstrated that overexpression of
miR-29a, leads to decreased AML cell proliferation and survival
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(Garzon et al., 2009). More recently, it was found that DNMT3A-
mutant AML samples overexpress miR-196 family members, and
morpholino knockdown of miR-196b in AML cells isolated from
moribund FLT3ITD Dnmt3a heterozygous knockout mice induced
significant cell death compared to negative control (Gamlen et al.,
2022).

Similar to miRNAs, lncRNAs (~200 nt) are also heterogenous
and play vital roles in lineage specification by regulating gene
expression by directly interacting with transcription factors,
acting as a decoy for transcription factors, recruiting chromatin
modifiers to target gene promoters, or by directly interacting with
DNA to produce RNA-DNA hybrids (Nobili et al., 2016). In normal
hematopoiesis, studies have shown that lncRNA-EC7 is required for
the activation of BAND 3, HOTAIRM1 located between
HOXA1 and HOXA2, is essential for myeloid differentiation
(Zhang et al., 2009), and functions as a miRNA sponge (Chen
et al., 2017). In NPM1-mutated AML, HOTAIRM1 is highly
expressed and contributes to leukemia cell autophagy and
proliferation through increasing ULK3 expression by sponging
miR-152–3p (Jing et al., 2021).

5.3 RNA modifications

Improvements in sequencing technologies have established
a connection between RNA epigenetics and chromatin
structure, divulging the roles of RNA modifiers and RNA
binding proteins (RBPs) in gene regulation and genome
function. Chromatin-associated RNAs can occur via cis

interactions, where newly transcribed RNA remains at the
site of synthesis, and trans interactions, where RNA is
released from their transcription sites to interact with DNA-
binding proteins. Similar to epigenetic regulation, RNA
modifications are carried out by enzymes that add methyl
groups to RNA (writers), remove methyl groups from RNA
(erasers), and proteins that recognize and bind to RNA
(readers). Although RNA modifications were described over
50 years ago, recent studies have uncovered that RNA modifications
and their binding partners are dysregulated in cancer, creating unique
opportunities for new therapeutics. Over 100 different chemical marks
can modify RNA, and N6-methyladenosine (m6A) is one of the most
abundant modifications in mammalian cells. Some of the additional
marks include 5-methylcytosine (m5C), Adenosine-to-inosine (A-I)
RNA editing, and Cytosine-to-uracil RNA editing (Qing et al., 2021).

Due to m6A being the most prevalent internal modification,
many studies have focused on uncovering its role during normal and
pathological states. The critical writers, erasers, and readers for m6A
include the methyltransferase complex (METTL3-METTL14-
WTAP), demethylases ALKBH5 and FTO, and YTH-domain
family RBPs (YTHDF1-3, YTHDC1) (Figure 3) (Qing et al.,
2021). Studies have demonstrated that m6A and its writer
METTL3 are critical regulators implicated in the emergence of
HSPCs during embryogenesis. Ablation of Mettl3 in embryonic
stem cells resulted in a significant decrease in m6A levels and
impaired endothelial to hematopoietic transition. Deleting
Mettl3 in endothelial cells decreased the expression of Runx1 and
Gfi1 and further impaired the development of HSPCs and
downstream lineages (Lv et al., 2018). In adult hematopoiesis,

FIGURE 3
RNA Methylation in Hematopoiesis. RNA modifications and their binding proteins are emerging as key regulators of hematopoiesis. Modifications
involving m6A are some of the most abundant modifications studied in HSPC biology. m6A is regulated by “writers” or RNAmethyltransferase complexes
and “erasers” or RNA demethylases. RNA function is modulated by m6A interactions with “readers” or specific proteins that affect mRNA stability,
translation, and decay. Targeting m6A modifications may provide novel strategies for treating hematologic malignancies. To date, agents targeting
METTL3 and FTO are being tested in leukemia. Figure made with BioRender.
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Mettl3 knockout reduced reconstitution of HSCs and blocked
differentiation. However, ablation in cord blood led to cell
differentiation and reduced cell proliferation, suggesting context
dependent functions of Mettl3 (Vu et al., 2017). To establish a
comprehensive landscape of m6A in the hematopoietic system, a
new sequencing (SLIM-seq) strategy was developed for rare HSCs.
The highest level of expression of m6A was observed in LT-HSCs
when compared to downstream progenitors. Epitranscriptomic
maps of HSPCs identified 8,599 m6A-tagged mRNAs, with about
half coming from LT and ST-HSCs. Further profiling revealed that
high m6A levels were present in LT-HSCs and uncovered that m6A
-IGF2BP expression controls the transcriptional state and
maintenance of HSCs (Yin et al., 2022). Mechanistically,
IGF2BP was found to preserve mitochondrial homeostasis of HSCs
by accelerating Bmi1mRNA decay. Other methyltransferases, such as
METTL16, were shown to be vital in erythropoiesis by safeguarding
genome integrity by controlling DNA response associated mRNAs
(Brac2 and Fancm). Mettl16 is expressed at high levels in erythroid
progenitors, and deletion in erythroid cells leads to impairments in
erythroid differentiation; therefore, altered expression may lead to
hematological malignancies (Yoshinaga et al., 2022).

A genome-wide CRISPR-Cas9 knockout screen of 800 cancer
cell lines revealed that METTL16 was a strong dependency on
AML cell lines. A small screen targeting DNA and RNA
methylation genes demonstrated that METT16 is essential for
AML cell survival (Han et al., 2023). Homozygous conditional
knockout of Mettl16 in an Mll-Af9 murine model inhibited
leukemogenesis and prolonged the survival of primary AML
models. Additionally, Mettl16 was shown to have a significant
role in leukemia stem cells and leukemia initiating self-renewal.
Mechanistically, it was demonstrated that Mettl16 promotes the
expression of BCAA metabolic proteins (Bcat1 and Bcat2) by
adding m6A to their mRNA transcripts, further contributing to
its oncogenic role in AML (Han et al., 2023).

METTL3 is also associated with leukemogenesis and is upregulated
inmultiple AML cell lines (Vu et al., 2017). DeletingMETTL3 in human
cell lines increases cell differentiation and induces cell cycle arrest
(Barbieri et al., 2017; Vu et al., 2017). Consistently, c-MYC was
identified as a transcriptional target of m6A-METTL3 oncogenesis
either directly or through the transcription factors SP1 and SP2
(Barbieri et al., 2017; Vu et al., 2017). Furthermore, it was also
shown that METTL3 was recruited by binding protein CEBPZ to
transcriptional start sites of active genes resulting in increased
translation of SP1. Taken together, m6A modifications and their
associated methyltransferases are important regulators with cell
specific mechanisms that should be therapeutically explored.

6 Conclusion

Epigenetic regulation is a dynamic phenomenon that is critical in
cell fate decisions during hematopoiesis. Understanding chromatin
regulation through both histone modifications and methylation has
identified how key regulators of hematopoiesis are silenced and
activated during lineage specification. Disruption in any of these
mechanisms leads to hematological malignancies of both myeloid
and lymphoid lineages. In many instances these epigenetic regulators
can function as either tumor suppressors or oncogenes depending on

the disease and stage of development. The heterogeneity seen in
leukemogenesis presents a critical challenge in targeting epigenetic
enzymes and the associated patterns of genes dysregulated in
hematological diseases. Targeting vital regulators in hematopoiesis
with a combination of therapies represents a great avenue in
treating aggressive hematologic malignancies, however, some studies
have led to less than favorable outcomes (Issa et al., 2015; Liva et al.,
2020). Therefore, it is important to further decipher the crosstalk
mechanisms within the epigenome. For instance, evidence suggest
that there is an interplay between DNA methylation and histone
modifications however, mechanisms on how both cooperate to
regulate differentiation needs further investigation. Advancements in
new technology has not only expanded our knowledge of HSC decision
making but it has also identified RNA modifications as an additional
regulator of gene expression. RNA modifications such as m6A were
shown to have regulatory effects on transcription, revealing a direct
cross-talk mechanism between chromosome-associated regulatory
RNAs and chromatin state (Liu et al., 2020). In addition, RNA
methylation may play a role in immune surveillance. Although
agents targeting cells with mutant RNA splicing factors have had
mixed results in early clinical trials, the development of synthetic
introns may provide more selectivity for mutant MDS or AML cells
(North et al., 2022).

Although, we understand the established functions of epigenetic
regulation in hematopoiesis, less is known about the non-
canonical functions that may be exploited during disease states.
A recent study deciphering mechanisms needed to switch between
stem and differentiated states, found that an increase in splicing
regulated by DNMT3A was needed to govern the exit
(Ramabadran et al., 2023). The study reported that use of a
spliceosome modulator was also shown to lead to sensitivity in
isogeneic cell lines and decreased the leukemic burden in vivo. In
many myeloid malignancies DNMT3A as well as TET2 are
commutated with splicing factor mutations. Thus, further
molecular insights into how epigenetic regulators and splicing
factors cooperate during malignancies will not only lead to
advancements in selective inhibition but will outline additional
roles DNA methylation has in stem cell biology.
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