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Aldose reductase (AR) is an important target in the development of therapeutics
against hyper-glycemia-induced health complications such as retinopathy, etc. In
this study, we employed a combination of structure-based drug design, molecular
simulation, and free energy calculation approaches to identify potential hit
molecules against anti-diabetic (anti-hyperglycemic)-induced health
complications. The 3D structure of aldoreductase was screened for multiple
compound libraries (1,00,000 compounds) and identified as ZINC35671852,
ZINC78774792 from the ZINC database, Diamino-di nitro-methyl dioctyl
phthalate, and Penta-o-galloyl-glucose from the South African natural
compounds database, and Bisindolylmethane thiosemi-carbazides and
Bisindolylme-thane-hydrazone from the Inhouse database for this study. The
mode of binding interactions of the selected compounds later predicted their
aldose reductase inhibitory potential. These com-pounds interact with the key
active site residues through hydrogen bonds, salt bridges, and π-π interactions.
The structural dynamics and binding free energy results further revealed that these
compounds possess stable dynamics with excellent binding free energy scores.
The structures of the lead inhibitors can serve as templates for developing novel
inhibitors, and in vitro testing to confirm their anti-diabetic potential is warranted.
The current study is the first to design small molecule inhibitors for the
aldoreductase protein that can be used in the development of therapeutic
agents to treat diabetes.
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Introduction

Aldo-Keto-Reductases (AKRs) are versatile enzymes involved in
metabolizing carbonyl-containing substrates like sugars, lipid
aldehydes, ketosteroids, and keto prostaglandins (Bohren et al., 1989;
Komoto et al., 2004). This superfamily comprises 16 families, ranging
fromAKR1 to AKR16 (Komoto et al., 2004), that share a high degree of
sequence similarity and a common protein folding structure. The AKR
website (http://www.med.upenn.edu/akr/) provides information about
the AKR superfamily. AKR enzymes exhibit similar catalytic and
structural properties and are NAD(P)H-dependent oxidoreductases
expressed as 34–37 kDa polypeptides (Jez et al., 1997). The AKR1 is
further categorised into the A to E subfamilies; among them, AKRB1 is
comprehensively studied and plays a major role in the emergence of
diabetic complications (Blakeley et al., 2008). These enzymes make up
the “polyol pathway,” an alternative glucose metabolism process that
runs concurrently with glycolysis and causes hyperglycemia in diabetic
patients (Singh et al., 2021). Hyperglycemia-induced pathways drive
oxidative stress in diabetic organs (heart, kidney, and eye) through
AGEs, the polyol pathway, themitochondrial electron transport system,
and PKC activation (Srivastava et al., 2005; Bhatnagar and Srivastava,
1992). In metabolic processes like the glutathione reductase/glutathione
peroxidase system’s detoxification of reactive oxygen species (ROS),
NADPH plays reductive roles (Paul et al., 2020). An increased cytosolic
NADH/NAD + ratio causes mitochondrial NADH-dependent
pathways, which induce ROS (Vedantham et al., 2012) Increased
NADH may also ameliorate the production of diacylglycerol (DAG),
which activates PKC and causes oxidative stress by activatingNAD(P)H
oxidase by regulating PKC. The prevalence of diabetes has been rising
alarmingly worldwide. According to the World Health Organization
(https://www.who.int/health-topics/diabetes), more than 400 million
people worldwide are currently suffering from diabetes. As a result,
diabetes complications have risen in tandemwith the rise in the number
of people with the disease (Taslimi et al., 2018; Demir et al., 2020).
Cardiovascular disease (CVD) is the main cause of morbidity and
mortality in people with diabetes mellitus, among the different diabetic
complications (Jandeleit-Dahm and Cooper, 2002). Diabetic
cardiomyopathy is a unique cardiovascular condition characterized
by impaired cardiac function in individuals with diabetes that is
unrelated to coronary artery disease (Sower et al., 2001; Lopaschuk,
2002), Diabetes increases myocardial sensitivity to ischemia and raises
the risk of cardiovascular disease andmyocardial infarction (Lehto et al.,
1994; Stone et al., 1995). Cardiovascular dysfunction in diabetics has
been attributed to increased sorbitol buildup and a decline in NADPH
due to an AR flux (Flores et al., 2023). Diabetic patients demonstrate a
heightened incidence of cardiovascular disease and myocardial
infarction (Jhuo et al., 2022). Cardiac dysfunction in diabetic
patients is attributed to increased sorbitol accumulation and reduced
NADPH levels resulting from aldose reductase (AR) flux (De Geest and
Mishra, 2022; Garg and Gupta, 2022). According to studies, AR
activation causes oxidative stress, (Ramana et al., 2006b; Ramana
and Srivastava, 2006), which in turn can activate the NF-κB
pathway (Ramana et al., 2006a; Ramana et al., 2006b; Ramana and
Srivastava, 2006). Additionally, by lowering oxidative stress, AR
inhibition can prevent acute hyperglycemia-induced cardiac
contractile dysfunction (Aly et al., 2023). The blocking of the NF-κB
pathway and oxidative stress by AR suppression is a new strategy for
avoiding cardiovascular diseases.

Materials and methods

Preparations of protein structure

The 3D structure of an enzyme aldose reductase with (PDB ID;
3S3G) was extracted by utilizing the PDB database (Zheng et al.,
2012). The three-dimensional structure was further checked for
chain breaks, and missing atoms and water molecules were
extracted. Furthermore, the retrieved protein structure was
subjected to preparatory procedures using the Dock prep module
of UCSF Chimera v1.10.2 software program (Goddard et al., 2007).
The partial charges were used, which properly set the protein
model’s protonation phase at a neutral pH. The GBVI/WSA
rescoring approach and London dG scoring function were also
utilised in combination with the Triangle matcher docking
algorithm. Finally, a protein-ligand interaction fingerprint was
used to figure out hydrophobic bonds, ionic bonds, and
hydrogen bonds (Méndez-Álvarez et al., 2023). In addition, the
three-dimensional structure of the standard drug (tolmetin) was
retrieved from the Pub Chem database. The structure was energy-
minimised and prepared by AutoDock Vina.

Preparation of commercial and in house
databases

Virtual screening was conducted using three databases: the
ZINC database (Ghufran et al., 2022) (1 million compounds), the
South African Natural Compounds database (available at http://
african-compounds.org/about/afrodb/), and with the help of the
research of our collaborators, the three-dimensional structures of
the compounds were put into a database called an In-house
containing 1,600 compounds. These databases were utilized to
identify highly active and potent inhibitors against aldose
reductase. LogP, LogS, Lipinski’s, Pfizer, GSK, and the Golden
Triangle rules were among the properties predicted for the finally
selected hits. Subsequently, aldose reductase screening was
performed on the compounds passing the RO5 criteria from each
database, utilizing scoring and Minimization with AutoDock Vina
(smina) (Ding et al., 2023). Following Smina screening, the top hits
were subjected to further evaluation using ADFR. ADFR employed
flexible docking with high accuracy for each compound against
aldose reductase, utilizing the AutoDock four scoring function (Aly
et al., 2023). Finally, from in-house and commercial databases
(ZINC and the South African Natural Compounds Database), the
top two hits were finalized from each database on the basis of
docking score and binding interaction using Schrodinger Maestro
and Pymol software and carried out for MD simulation (Maya Díaz,
2023; Taherkhani et al., 2023).

Screening of libraries

The structure base Virtual screening uses the three-dimensional
structure of ligands and proteins in the database. In order to
determine potent ligands, we carried out molecular docking to
assess the methods by which ligands and proteins bind. This
approach predicts the beneficial and enhanced interactions
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between proteins and ligands. In addition, SANCDB, an in-house
database, and ZINC databases The drug libraries, including the
ZINC database, the in-house database, and SANCDB, were screened
by the SBVS using AutoDock 4. AutoDock 4, a docking suite, was
utilised to screen the compounds obtained from SANCDB, ZINC,
and the in-house databases, employing a homology model. To
ensure the robustness and reliability of our molecular docking
analysis, we employed three distinct servers: Glide module
software (Schrödinger Maestro v12.1) (Schrödinger, 2011;
Kaushik et al., 2018). These servers are renowned for their user-
friendly interfaces and accuracy in delivering reliable docking
results. This multipronged approach enhances the reliability of
our findings and strengthens the scientific rigor of our study also
it allowed us to assess the consistency and reliability of our docking
scores. The model’s protonation phase was appropriately adjusted
for neutral pH, and partial charges were included. The London dG
scoring function, Triangle Matcher Docking algorithm, and GBVI/
WSA rescoring method were employed. Additionally, a force field-
based scoring function was utilized for post-docking refinement.
Thereafter, the interaction of each ligand with the active site was
determined by utilizing the protein-ligand interaction fingerprint in
AutoDock 4. PLIF determines how hydrogen atoms, water
molecules, and ions interact with each other (Adessi et al., 2023).
Finally, MD simulation was performed in order to verify the
molecular docking approaches.

Molecular dynamic simulation

A molecular dynamic (MD) simulation was carried out in order
to evaluate the dynamic behavior of receptors with inhibitors at the
atomic level. On the basis of binding interactions and docking
scores, the best hits were used to perform MD simulation, and
free energy calculation-based validation was carried out by using
AMBER22 (Case et al., 2005; Shahab et al., 2023a). Initially, the drug
topology was created by utilizing the parmchk2 and antechamber
(Khan et al., 2023). Thereafter, all complexes obtained were
constructed using the Tleap preparation programme. An
octahedral box was used, and by introducing the Na + or Cl-
ions, all complexes were neutralised. To prepare the complexes,
topology and coordinate files were used for a two-stage
minimization process: 1) 12,000 steps for the first round and 2)
6,000 steps for the second round. Subsequently, each complex
underwent heating and equilibration for 20 ns In the production
stage, a 100 ns simulation was conducted. For accelerated MD
simulation, the GPU version of PMEMD.cuda was employed.
Trajectories obtained were processed using the CPPTRAJ and
PTRAJ tools (Jama et al., 2023; Wang et al., 2023).

Binding free energy evaluation

The use of the MMPBSA.py script in the MD simulation run,
trajectories were identified, which were further used in calculating
the binding free energy (Shahab et al., 2023b). For calculating the
binding free energy of any complexes, including protein-ligand,
nucleic acid-protein, and protein-protein, this type of approach was
used (Khan et al., 2023). Hence, we also applied this approach here

to accurately compute the total binding free energy of the protein-
ligand complexes. Mathematically the binding free energy can be
estimated as:

″ΔGbind � G complex − Greceptor + Gligand[ ]″

Different contributing components of total binding energy were
calculated by the following equation:

″G � Gbond + Gele + GvdW + Gpol + Gnpol″

Gbond, Gelectrostatic, and GvdW refer to interactions involving
bonded, electrostatic, and van der Waals states, respectively. On
the other hand, Gpolar and Gnpolar describe polar and non-polar
interactions, respectively, which are calculated based on the assumed
free energy through precise Generalized Born (GB) methods (Chen
et al., 2019; Chen et al., 2022).

Prediction of bio activity and dissociation
constant (KD)

The bio-activity and dissociation constant (KD) were
computationally predicted for top hits by utilizing an online web
server, Molinspiration (https://www.molinspiration.com/cgi-bin/
properties) and PRODIGY-Ligand (https://wenmr.science.uu.nl/
prodigy/lig) respectively (Vangone et al., 2019). These online
tools were reported previously to demonstrate the bioactivity and
KD of various molecules against diseases (Khan et al., 2021).

Results and discussion

Aldose reductase, also known as AKR1B1, is an enzyme
belonging to the aldo-keto reductase family. It relies on NADPH
as a cofactor and is responsible for catalyzing the reduction of both
hydrophilic and hydrophobic aldehydes. It serves as the initial
enzyme in the polyol pathway, which converts glucose into
sorbitol. Sorbitol is then further metabolized to fructose by the
action of sorbitol dehydrogenase. The activation of the polyol
pathway, particularly in hyperglycemic conditions, is widely
accepted as the key event leading to various long-term
complications associated with diabetes. Due to the significant role
of AKR1B1 in the development of diabetic complications,
researchers have targeted this enzyme for the development of
molecules that can inhibit its activity (Balestri et al., 2022). In
our study, the computational analysis revealed that the identified
compounds form specific interactions with key amino acids within
the active site of aldose reductase, such as Ser302, Phe122, Trp219,
Cys298, Ala299, Val297, and Trp20 and Leu300 integrating
structure-based drug design (SBDD) and molecular mechanics/
generalized born surface area (MMGBSA) approaches (Kinoshita,
1990; Ramachandran et al., 2023). For instance, these residues are
also reported to act as inhibitor hotspots for other drug targets (Fang
et al., 2023).The topmost active ligands from each database (South
African, ZINC, and in-house) based on docking results and
interaction analysis were further subjected to validation through
molecular dynamics (MD) simulations. Post-MD analyses were
performed to assess the ligands’ behaviour and proper-ties.
Therefore, the present study used structure-based virtual

Frontiers in Molecular Biosciences frontiersin.org03

Shahab et al. 10.3389/fmolb.2023.1271569

https://www.molinspiration.com/cgi-bin/properties
https://www.molinspiration.com/cgi-bin/properties
https://wenmr.science.uu.nl/prodigy/lig
https://wenmr.science.uu.nl/prodigy/lig
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1271569


screening, molecular dynamic simulation, and binding free energy
approaches to determine potent inhibitors against aldose reductase.
The combination of these computational techniques facilitated the
rational design and prioritization of compounds based on their
predicted binding energies and structural characteristics. In various
computational approaches, including structure-based virtual
screening and MD simulation, great concern is given to
accelerating the cycle of drug development. The identified
inhibitors hold promise for further development and
experimental evaluation, potentially leading to novel treatments
for hyper-glycemic patients and addressing the complications
associated with diabetes. I believe this research offers promising
insights into potential aldose reductase inhibitors for managing
hyperglycemia and diabetes-related complications, it is important
to acknowledge its limitations. The findings are primarily based on
computational methods and simulations, specifically structure-
based drug design (SBDD) and molecular mechanics/generalized
born surface area (MMGBSA) approaches. These predictions,
although promising, necessitate rigorous experimental validation
to assess the efficacy, safety, and specificity of the identified
compounds in biological systems. Additionally, the study does
not address critical aspects such as pharmacokinetics, potential
off-target effects, and the variability among diverse patient
populations. Recognizing these limitations is crucial to offer a
balanced and realistic perspective on the study’s implications and
the potential for clinical translation of the findings.

Molecular docking

Analyzing binding modes of top hits retrieved from
african medicines database

The South African Natural Compounds Database (SANCDB) is
a valuable resource for various disease treatments. Screening
SANCDB identified diamine-dinitro-methyl dioctyl phthalate and
penta-o-galloyl-glucose as the top hits among the 570 compounds.
These compounds demonstrated docking scores of -12.24 kcal/mol
and -11.34 kcal/mol, respectively. Then we validated molecular
docking score by Schrödinger Maestro v12.1
(−12.265, −11.532 kcal/mol). In terms of interaction, Diamino-di
nitro-methyl dioctyl phthalate established five hydrogen bonds with
Ser302, Phe122, Trp219, Cys298, and Leu300 residues Figures 1A, B.
The interacting residues observed in the South African Natural
Compounds Database (SANCDB) align with the compounds
reported in the ZINC database. The binding residues, including
Trp20, Cys298, Tyr309, and Asn260, were found to be involved in
the interaction with the compounds. Additionally, a π-π interaction
was established with the Tyr209 residue. These findings indicate
consistent and specific interactions between these small molecules
and the critical residues of aldoreductase. The compound penta-o-
galloyl-glucose established four hydrogen bonds involving Ala299,
Val297, Ser302, and Trp20 (Figures 1C, D). Diamino-di nitro-
methyl dioctyl phthalate was found to interact with aldose
reductase through hydrogen bonds, exhibiting a similar
interaction pattern to the compounds reported in the ZINC and
Inhouse databases in this study. This suggests potential
pharmacological activity against aldose reductase. The interaction

patterns of each compound and their respective docking scores are
presented in Table 1.

Binding modes of top hits from the inhouse
database

The in-house database, containing over 1,300 derivatives of bis-
indolylmethane, proves to be a valuable resource for designing
natural product-based remedies for various diseases. Based on
docking conformations, the ligands Bisindolylmethane thiosemi-
carbazides and Bisindolylmethane-hydrazone hybrids were selected
as top hits, demonstrating binding scores of -10.25 kcal/mol and
-9.51 kcal/mol, respectively. Bisindolylmethane thiosemi-carbazides
formed two hydrogen bonds with Trp48 and His110, while
Bisindolylmethane-hydrazone hybrids formed three hydrogen
bonds with Phe122, Tyr49, and Asn160. The docking score for
Bisindolylmethane against the aldoreductase protein was reported as
-10.25 kcal/mol, with key interactions involving Phe122, Tyr49, and
Asn160. To validate the molecular docking score, we used
Schrödinger Maestro v12.1, which yielded scores of -10.422 and
-10.827 kcal/mol. The compounds identified in this particular
database have smaller molecular structures and show promising
pharmacological activity against aldoreductase. The interaction
patterns of each compound are depicted in Figures 2A–D, and
their respective docking scores are presented in Table 1.

Binding modes of top hits from the ZINC database
The ZINC database, comprising 100,000 druggable compounds,

was screened, and 6,575 compounds were found to comply with the
LogP, LogS, Lipinski’s, Pfizer, GSK, and Golden Triangle rules,
which were among the properties predicted for the top two hits.
Among these, 1,145 compounds were identified as the best hits.
From these, two compounds, namely ZINC35671852 and
ZINC78774792, were selected as the top hits based on their
docking scores of -7.49 kcal/mol and -6.71 kcal/mol, respectively.
To validate the molecular docking score, we used Schrödinger
Maestro v12.1, which yielded scores of −8.753and -7.827 kcal/
mol. ZINC35671852 formed three hydrogen bonds with the
residues Trp20, Tyr309, and Asn260, while
ZINC78774792 exhibited a similar hydrogen bond interaction
pattern. These shortlisted compounds from the ZINC database
displayed excellent docking scores and exhibited an interaction
pattern that covered the entire active site, effectively blocking key
residues and highlighting the pharmacological potential of these
small molecules. The interaction patterns of each compound are
depicted in Figures 3A–D, and their respective docking scores are
presented in Table 1.

Molecular dynamic simulation
To properly understand the structure’s dynamic features, the

binding of proteins with ligands is an essential parameter to
reveal. Therefore, in the molecular dynamic simulation
technique, we performed RMSD (structure stability), RMSF
(residual flexibility), RoG, and hydrogen bond analysis to
understand each ligand’s stability. The structure stability,
which is calculated through RMSD as a function of time,
shows that all ligands stably bind to the target protein except
for some minor deviations.
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Root mean square deviation
The dynamic stability of a protein-ligand complex plays a crucial

role in determining the pharmacological efficacy of a compound. A
stable binding between the ligand and the protein’s active site
indicates a higher potential for pharmacological activity. To
evaluate the stability of the simulation trajectory, the Root Mean
Square Deviation (RMSD) function is utilized in combination with
simulation tools. In this study, the RMSD values for the trajectories
of each complex were computed over time to assess their stability.
The RMSD values for each complex are illustrated in Figures 4A–F.
For this purpose, we carried out RMSd analysis to calculate the top
two ligands from each database and the standard drug in the active
site of aldose reductase. The RMSd analysis demonstrates that the
top ligands exhibit stable behaviour but have minor deviations. The
RMSd graph of the standard drug exhibits a small deviation within
0.5–1 Å up to 60 ns; thereafter, it increases from 1.2 to 1.7 Å up to
100 ns., ns and shows unstable behaviour (Figure 4). In the South
African database, the SA1 complex exhibits significant stability
throughout MD simulation from 0.6 to 0.7 Å till end of
simulation (Figure 4A). Interestingly, the SA2 complex, according
to the RMSd analysis presented, exhibits highly stable behaviour
throughout the MD simulation period (average RMSD analysis 0.9Å
(Figure 4B). In addition, for the compound Bisindolylmethane
thiosemi-carbazides from the in-house database, RMSd graphs
reveal stable behaviour at 1.0 to 1.3 Å at 65 ns; after that, the
RMSd curve increased to 1.7 Å till 85 ns, thereafter reaching a
stable state till the end of simulation (Figure 4C). Furthermore,
Bisindolylmethane–hydrazonehybrids complex, the initial RMSd

curve increases at 1.8 until 55 ns, then gradually decreases to 1.2,
as presented in Figure 4D. In the Zinc database, initially the
ZINC35671852 complex mediates an increase in the RMSd
graph, reaching 1.9 Å up to 35 ns; thereafter, it gradually
decreases to 1.5 Å and shows minor fluctuation till
100 ns (Figure 4E). Furthermore, the ZINC78774792 complex
initially presents a decrease in the RMSd curve at 1.4 Å after
reaching 55 ns, and the system shows minor fluctuations within
1.5–1.8 Å till end of simulation (Figure 4F). The control complex
exhibited stable RMSD values, but the complexes formed with the
novel compounds showed lower RMSD values, indicating more
stable dynamics. This suggests that the novel compounds have a
stronger and more stable interaction with aldoreductase. These
findings highlight the potential therapeutic value of these
compounds for the treatment of anti-diabetic (anti-
hyperglycemic) conditions based on their interaction with
aldoreductase.

Root mean square fluctuation (RMSF)
The calculation of residue flexibility has provided crucial

information regarding molecular interaction patterns, inter-
residue communication, protein coupling, inhibition potential,
Biocatalysis, and enzyme engineering. The flexibility of each
residue was evaluated and visually represented in Figures 5A–C.
The fluctuations for each amino acid of aldose reductase in complex
with ligands were evaluated through the RMSF curve, which accesses
the stability of the active site towards compounds during the 100-ns
MD simulation period. A lower number or reduced fluctuation

FIGURE 1
(A) The binding pocket of diamine-dinitro-methyl dioctyl phthalate with the aldoreductase receptor (B) the binding interaction pattern of the
diamine-dinitro-methyl dioctyl phthalate demonstrating the key interacting residues. (C) The binding pocket of penta-O-galloyl-glucose with the
aldoreductase receptor (D) the binding interaction pattern of the penta-O-galloyl-glucose, demonstrating the key interacting residues.
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TABLE 1 Protein-ligand interaction details and their docking of the standard drug and final hits score.

Compound Docking
score

Interaction details

Ligand Receptor Interaction Distance E(kcal/mol)

African database (A)

Diamino-di nitro-methyl
dioctyl phthalate

−12.24 C 1 SG CYS 298 H-donor 3.80 −0.2

O 3 CD1 LEU 300 H-acceptor 3.87 −1.5

O 17 CD1 LEU 300 H-acceptor 3.52 −0.2

O 22 OG SER 302 H-acceptor 3.09 −6.4

O 17 CD1 PHE 122 H-acceptor pi-H 3.76 −3.3

C 7 6-ring TRP 219 pi-H 3.65 −1.3

C 5 6-ring TRP 20 4.33 −2.1

Penta-O-galloyl-glucose −11.34 O 6 SG CYS 122 H-donor 3.16 −1.4

O 28 O VAL 297 H-donor 2.86 −1.6

C 31 6-ring PHE 122 H-pi pi-H 4.13 −0.7

6-ring CB PHE 122 3.67 −0.8

In-house database (B)

Bisindolylmethane
thiosemi-carbazides

−10.25 N 7 O VAL 47 H-donor 3.06 −0.5

S 16 O ASP 216 H-donor 4.06 −0.1

C 19 O ASP 216 H-donor 3.55 −0.2

C 19 OD2 ASP 216 H-donor 3.77 −0.2

C 45 O CYS 298 H-donor 4.27 −0.1

S 16 CD PRO LEU 218 H-acceptor 4.48 −0.1

O 19 CD1 300 H-acceptor 3.61 −0.1

Bisindolylmethane–
hydrazone hybrids

−9.51 S 16 SG CYS 298 H-donor 3.77 −0.7

N 39 O VL 47 H-donor 3.39 −0.8

O 13 N LEU 300 H-acceptor 3.09 −1.6

S 16 NE1 TRP 111 H-acceptor 4.22 −0.0

6-ring 6-ring TRP 219 Pi-Pi 3.78 −0.7

Zinc database (C)

ZINC35671852 −7.90 N5 22 CE LYS 77 H-acceptor 3.38 −0.7

C5 6-ring TRP 20 H-pi 3.50 −0.5

5-ring 8 6-ring TYR 209 Pi-pi 3.19 −0.0

6-ring 6-ring TRP 219 Pi-pi 3.60 −0.0

ZINC78774792 −7.49 N3 18 CE LYS 77 H-acceptor 3.45 −0.2

O3 ND2 ASN 160 H-acceptor 3.03 −0.2

6-ring CA LEU 300 H-pi 4.37 −0.2

6-ring 19 CD1 LEU 300 Pi-pi 3.48 −0.1

6-ring 6-ring TYR 209 Pi-pi 3.32 −0.0

6-ring TRP 219 3.82 −0.0

Control drug (Tolmetin) −6.71 O2 18 NE1 TRP 11 H-acceptor 3.16 −2.4

(Continued on following page)
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signifies well-structured and less distorted regions within the
complex. Interestingly, the flexibility of residues in the control
complex exhibited similarities to the complexes of the top hits.
Similarly, in the African database, all the compounds displayed a
nearly identical pattern of residue flexibility. The region between
30 and 280 presented higher flexibility in the penta-o-galloyl-glucose
complex only, while the regions between 10 and 120, 130–160, and
200–230 demonstrated higher fluctuation in Diamino-di nitro-
methyl dioctyl phthalate complex in all the complexes
(Figure 5A). Additionally, the compound Bisindolylmethane
thiosemi carbazides exhibited significantly higher flexibility in the
regions 75–180, while Bisindolylmethane-hydrazone hybrids
showed higher flexibility in the regions 0–75, 80–110, and
230–280, as shown in Figure 5B. Moreover, a notable fluctuation
was observed in the zinc database, where almost all regions displayed
higher fluctuations except for 110–300. The RMSF graphs depicting

the fluctuations in the zinc database complex are displayed in
Figure 5B. Overall, these findings indicate that the binding of
each ligand affects the internal dynamics in a different manner.
It is noteworthy that the regions 160–190 encompass the active site
residues, suggesting that the movement of this loop assists the drug
in optimizing its position within the cavity by increasing the volume
of the pocket. This ultimately facilitates the stable binding of ligands
to the active site of aldose reductase.

Radius of gyration
The compactness of the system was evaluated by plotting the

correlation between RoG (radius of gyration) and time. In
comparison to conformational entropy, lower RoG values
indicate a highly stable and compact structure, while higher RoG
values indicate a lower degree of compactness in the structure. RoG
is used to explore the folding and compactness of proteins; lower

TABLE 1 (Continued) Protein-ligand interaction details and their docking of the standard drug and final hits score.

Compound Docking
score

Interaction details

Ligand Receptor Interaction Distance E(kcal/mol)

O2 18 ND2 ASN 160 H-acceptor 2.69 −6.5

O3 19 OH TYR 48 H-acceptor 2.75 −0.5

FIGURE 2
(A) The binding pocket of Bisindolylmethane thiosemi-carbazides with the aldoreductase receptor (B) the binding interaction pattern of the
Bisindolylmethane thiosemi-carbazides, demonstrating the key interacting residues. (C) The binding pocket of Bisindolylmethane–hydrazone hybrids
with the aldoreductase receptor (D) the binding interaction pattern of the Bisindolylmethane–hydrazone hybrids, demonstrating the key interacting
residues.
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RoG values present strong compactness and strong structural
rigidity, whereas high RoG values present less compactness and
an unfolded state. The study of MD simulation presents the
effects of inhibitors upon binding with proteins. As presented in
Figure 6, RoG analysis shows that these obtained compounds
from databases bound to aldose reductase, having lower RoG
values as compared with standard drugs, which shows that after
binding with ligands, aldose reductase stability and compactness
increase. In the control complex, a consistent RoG value of 19.1 Å
was observed, indicating a uniform and stable structure.
Similarly, the compounds from the African database showed a
comparable RoG pattern to the RMSD results. Specifically, the
Diamino-di nitro-methyl dioctyl phthalate-AR complex
exhibited a higher RoG pattern, with an average RoG of
19.3 Å. In contrast, the Bisindolylmethane-hydrazone hybrids
displayed a lower RoG pattern, consistent with the RMSD results,
with an average RoG of 19.0 Å Figures 6A, B. Similarly, the
structural compactness of each complex from the in-house
database was assessed to examine the variations observed
during the simulation. Interestingly, the RoG patterns for the
top complexes from the in-house database align strongly with the
RMSD results. For instance, the RoG of Bisindolylmethane
thiosemicarbazides displayed a uniform RoG value with an
average of 10.0 Å. The RoG exhibited a consistent graph with
no significant changes in protein size, except for an abrupt
decline observed at 40–50 ns. The average RoG for this
complex was estimated to be 19.3 Å. In line with the RMSD
results for Bisindolylmethane-hydrazone hybrids, the RoG

pattern also demonstrated a gradual increase in the RoG
Trajectory Figures 6C, D. The top hits from the ZINC
database displayed slightly lower but relatively stable RoG
values for all the complexes. In the case of the
ZINC35671852-AR complex, the RoG initially decreased and
reached 19.1 Å at 20 ns It then continued to decrease and
stabilised at 19.0 Å for the remaining 100 ns of the simulation.
As for the ZINC78774792-AR complex, a consistent and uniform
RoG was observed throughout the first 100 ns of the simulation.
The average RoG for this complex was calculated to be 19.1 Å
Figures 5E, F. In conclusion, the results indicate that the
identified hits exhibit stable protein compactness, as reflected
by similar average RoG values. Additionally, minimal unbinding
events were observed. These findings suggest that these hits have
promising pharmacological potential and could potentially serve
as effective therapeutics against aldoreductase for the treatment
of diabetes.

Analysis of hydrogen bond
Hydrogen bond analysis plays an essential role to

understand any protein-ligand complex stability. Herein, we
studied strength of hydrogen bonds during MD simulation. In
current study, we carried out analysis of hydrogen bonds of top
two hits from each database for entire 100 ns MD simulation
period. As illustrated in Figure 7, the number of hydrogen
bonds were increase in all inhibitors from Zinc, South
African and in-house databases by comparing with standard
drug. The SA1 exist four hydrogen bond where as SA2 mediate

FIGURE 3
(A) The binding pocket of ZINC35671852 with the aldoreductase receptor (B) the binding interaction pattern of ZINC35671852, demonstrating the
key interacting residues. (C) The binding pocket of ZINC78774792 with the aldoreductase receptor (D) the binding interaction pattern of the
ZINC78774792 demonstrating the key interacting residues.
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FIGURE 4
RMSD analysis was conducted to assess the dynamic stability of the hits from four databases in complex with aldoreductase. Figures (A–F) show the
RMSD profiles for the hits from the African, Inhouse, and ZINC databases, respectively, compared to the control (Tolmetin-Aldoreductase). The results
indicate that the hits exhibit lower RMSD values, suggesting more stable dynamics and promising interactions with aldoreductase.

FIGURE 5
RMSf analysis of the finally selected hits (A) RMSf analysis Diamino-di nitro-methyl dioctyl phthalate/aldoreductase complex (red), Penta-O-galloyl
glucose/aldoreductase complex (Blue) (B) Bisindolylmethane thiosemi-carbazides/aldoreductase complex (pink), Bisindolylmethane-hydrazone
hybrids/Aldoreductase Complex (green) (C) ZINC35671852/Aldoreductase Complex (Purple), ZINC78774792/Aldoreductase Complex (Blue).

Frontiers in Molecular Biosciences frontiersin.org09

Shahab et al. 10.3389/fmolb.2023.1271569

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1271569


three, IH1, IH2, ZN2, and standard drug have number of two
hydrogen bonds during MD simulation.

Binding free energy calculation
The MMPBSA is one of the commonly employed approaches

that is used to access the ligands binding energy with protein

molecules. This calculation is an imperative assessment that
properly re-evaluates the accuracy and binding conformation of
the interacting partner. This approach is the least expensive and has
higher accuracy as compared with other techniques. By considering
the precious applicability of this approach, we computed the binding
free energy for the top inhibitors from each database by utilising MD

FIGURE 6
(A–F) Illustrating the analysis of hydrogen bond of standard drug (black) and the final hits.

FIGURE 7
RoG of each hit from four databases in complex with aldoreductase (A,B) represent the RMSDs for the tolmetin-aldoreductase and top hits from the
African database with aldoreductase. (C,D) represent the RoG for the tolmetin-AR and top hits from the in-house database with aldoreductase. (E,F)
represent the RoG for the tolmetin-aldoreductase and top hits from the ZINC database with aldoreductase.
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trajectories. The details of binding free energy are illustrated in
Table 2.

Dissociation constant and bioactivity analysis
PRODIGY-LIG generates the KD results as ΔG upon submission

of the complex. For the top six hits, the KD values were calculated to
be Diamino-di nitro-methyl dioctyl phthalate (−12.44), penta-O-
galloyl-glucose (−11.63), Bisindolylmethane thiosemi carbazides
(−9.87), Bisindolylmethane–hydrazone hybrids (−10.25),
ZINC35671852 (−10.14), and ZINC78774792 (−10.87) respectively.
The dissociation constant for the control complex was −8.21,
indicating its strong activity against aldoreductase. In terms of
bioactivity, a score between −0.5 and 0.5 is considered. A molecule
with a bioactivity score greater than 0.00 is likely to possess significant
biological activity, while scores between 0.50 and 0.00 indicate
moderate activity. Scores below 0.50 are indicative of inactivity.
The bioactivity for each of the top hit molecules was estimated to
be Diamino-dinitro-methyl dioctyl phthalate (0.15), penta-o-galloyl-
glucose (0.27), Bisindolylmethane thiosemi carbazides (0.24),
Bisindolylmethane–hydrazone hybrids (0.41), ZINC35671852
(0.23), and ZINC78774792, respectively. The control complex
(aldoreductase-tolmetin) was predicted to have a bioactivity score
of 0.42, indicating significant biological activity. This suggests that the
compounds have a strong potential to inhibit aldoreductase under
in vitro conditions.

Conclusion

Different attempts have been made to identify potent drugs
against aldose reductase. But none of the drugs show strong
efficiency. Therefore, the present study was designed to apply
structure-based virtual screening, MD simulation, and the
MMPBSA approach to identify a potent drug against aldose
reductase. By performing virtual screening, we identified the top
six inhibitors from each database, including the South African
natural database, the in-house database, and the zinc database,
respectively. All these inhibitors were validated and compared with
standard drugs through various computational approaches. In these
obtained inhibitors, compounds from South Africa and IH1 were
found to be the best inhibitors, which presented less carbon alpha
deviation, less fluctuation, binding interaction, and a good binding
score. However, in vivo and in vitro analysis were required, which will
help validate the activity of compounds for clinical usage.
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TABLE 2 Illustration of binding free energy of control drug and finally selected hits.

Complexes VDW EEL ESURF EGB ΔG Total Std. Err. of Mean

Diamino-di nitro-methyl dioctyl phthalate −67.8424 −2.9115 −6.8578 16.9381 −60.6736 0.1813

Penta-o-galloyl-glucose −56.2216 1.2134 −6.2394 10.5192 −50.7283 0.1592

Bisindolylmethane thiosemi-carbazides −52.3106 −0.5548 −6.5891 12.3153 −47.1392 0.1433

Bisindolylmethane–hydrazone hybrids −61.1410 −4.3809 −7.0350 31.2747 −41.2822 0.2546

ZINC35671852 −43.8532 −0.2644 −5.0052 8.9494 −40.1734 0.1046

ZINC78774792 −42.0320 −0.8339 −4.8443 8.8884 −38.8218 0.1819

Control drug (Tolmetin) −32.0807 −52.8459 −3.5380 64.1539 −24.3108 0.1200
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