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Fibrosis could happen in every organ, leading to organic malfunction and even
organ failure, which poses a serious threat to global health. Early treatment of
fibrosis has been reported to be the turning point, therefore, exploring potential
correlates in the pathogenesis of fibrosis and how to reverse fibrosis has become a
pressing issue. As a mechanism-sensitive cationic calcium channel, Piezo1 turns
on in response to changes in the lipid bilayer of the plasma membrane. Piezo1
exerts multiple biological roles, including inhibition of inflammation, cytoskeletal
stabilization, epithelial-mesenchymal transition, stromal stiffness, and immune
cell mechanotransduction, interestingly enough. These processes are closely
associated with the development of fibrotic diseases. Recent studies have
shown that deletion or knockdown of Piezo1 attenuates the onset of fibrosis.
Therefore, in this paper we comprehensively describe the biology of this gene,
focusing on its potential relevance in pulmonary fibrosis, renal fibrosis, pancreatic
fibrosis, and cardiac fibrosis diseases, except for the role of drugs (agonists),
increased intracellular calcium andmechanical stress using this gene in alleviating
fibrosis.
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1 Introduction

1.1 Fibrosis

The intricate balance between tissue repair and remodeling is
disrupted in fibrosis, a pathological condition characterized by the
aberrant accumulation of fibrous connective tissue within organs or
tissues. This process, driven by a cascade of molecular events
triggered by injury, inflammation, or underlying diseases,
culminates in the excessive deposition of collagen and an altered
extracellular matrix (ECM) composition (Wen D. et al., 2022). The
lungs, liver, kidneys, and heart are among the organs susceptible to
fibrotic transformations, with persistent injury perpetuating a cycle
of escalating fibrogenesis, ultimately leading to compromised organ
function and a continuum of deleterious consequences.

In the physiological processes of an organism, to maintain the
normal functioning of tissues and organs, it is mandatory to
ensure an appropriate reparative response, and fibrosis is
considered to be a reparative response that restores the organ
structure by replacing the destroyed tissues (Henderson et al.,
2020; Wen J. H. et al., 2022). However, if this repair response is
uncontrolled or over-activated, it can lead to pathological states
such as organ fibrosis and abnormal function (Wen J. H. et al.,
2022). Therefore, fibrosis is a pathological condition
characterized by parenchymal cell necrosis as well as an
unusual amount of hyperplasia and hyper-deposition of the
extracellular matrix (Antar et al., 2023).

Fibrosis can develop in multiple organs and often occurs in the
end stages of the disease. In the lung, fibrotic diseases include
pneumoconiosis (Qi et al., 2021) and silicosis (Zhao Y. et al.,
2022), whose etiology is known, and idiopathic pulmonary
fibrosis (Cottin et al., 2019; Somogyi et al., 2019), whose etiology
is not yet known. Pulmonary fibrosis is commonly the end stage of
chronic lung diseases, such as silicosis (Handra et al., 2023) and
idiopathic pulmonary fibrosis (Heukels et al., 2019) mentioned
above. In chronic lung diseases, lung tissue will be progressively
replaced by scar tissue, causing difficulty in breathing, and may
eventually cause respiratory failure. Chronic liver diseases, such as
chronic hepatitis B (Stalla et al., 2022), hepatitis C (Sebastiani et al.,
2014), and alcoholic liver disease (Lackner and Tiniakos, 2019), are
often accompanied by liver fibrosis at the end stage of the disease,
eventually leading to severe damage to liver function and symptoms
such as jaundice and hepatic ascites (Mansour and McPherson,
2018). Cardiac fibrosis is often the end stage of heart failure,
prolonged myocardial damage can lead to fibrosis of myocardial
tissue (González et al., 2018; Bacmeister et al., 2019). Similarly,
chronic kidney disease is one of the common causes of renal fibrosis,
prolonged damage to nephrons and glomeruli will gradually lead to
fibrosis of the kidneys (Rayego-Mateos and Valdivielso, 2020;
Panizo et al., 2021). Pancreatic fibrosis is a disease closely related
to chronic pancreatitis. In patients with chronic pancreatitis,
pancreatic tissue is gradually damaged, and pancreatic fibrosis is
a manifestation of advanced pancreatitis (Shimizu, 2008; Swain
et al., 2022).

In addition to the above-mentioned organs, fibrosis also often
occurs in the skin (Andrews et al., 2016), bones and muscles
(Mahdy, 2019), gastrointestinal tract (Wang J. et al., 2021), and
other organs. In this review, we are focusing on Piezo1 and its

potential contribution to the pathophysiology of pulmonary fibrosis,
renal fibrosis, pancreatic fibrosis, and cardiac fibrosis diseases.

1.2 Introduction of Piezo1

Using stress-sensitive cells, Prof. Ardem Patapoutian uncovered
a new sensor that is capable of responding tomechanical irritation in
the skin and visceral organs (Dubin and Patapoutian, 2010; Kefauver
et al., 2020). Thus, a new and completely unknown
mechanosensitive ion channel, Piezo1, was discovered, followed
by a second related gene, Piezo2 (Coste et al., 2010). Piezo
proteins are a combination of Piezo1 and Piezo2. Piezo1 is a
mechanosensitive cation channel protein situated on the
membrane of cells and is a pivotal cytomechanical sensor that
converts mechanical stimulation into galvanic signaling (Coste
et al., 2010).

Piezo1 is a protein that can be engaged in the process of
mechanosensation and mechanical force transformation. It forms
ion channels on the cell surface and can perceive and react to
mechanical stimulation around the cell (Huang et al., 2023). As
mentioned above, Piezo1 channels perform an essential function in
several physiological processes, including cell migration (Holt et al.,
2021; Yu et al., 2021), vascular smooth muscle cell contraction
(Chen et al., 2022a; Chen et al., 2022b; Porto Ribeiro et al., 2022), red
blood cell morphology changes (Cahalan et al., 2015; Svetina et al.,
2019), and sensory neuron perception of touch and pressure (Coste
et al., 2010). In addition to the perception of mechanical stimuli,
Piezo1 is engaged in the modulation of a wide range of cellular
functions. For example, it regulates stem cell fate determination
(Sugimoto et al., 2017; Qiu et al., 2023), cell proliferation and
differentiation (He et al., 2018), skeletal muscle development and
repair (Bernareggi et al., 2022), vascular endothelial cell permeability
(Friedrich et al., 2019), and tumor cell invasion andmetastasis (Jiang
et al., 2022). It has also been found that Piezo1 mutations are also
associated with several diseases, such as congenital erythrocytosis
(Knight et al., 2019; Filser et al., 2021; Sochorcova et al., 2023) and
familial pulmonary hypertension (Wang Z. et al., 2021; Liao et al.,
2021; Porto Ribeiro et al., 2022). Currently, there are also a large
number of studies that have identified a potential relationship
between Piezo1 and fibrotic diseases (Zhang et al., 2021a;
Braidotti et al., 2022a; He et al., 2022a; Swain et al., 2022).

In conclusion, Piezo1 is an important protein that has a critical
role in mechanical force perception and regulation of cellular
functions. Further studies are needed to gain insight into its
specific role and regulatory mechanisms in physiological and
pathological processes, which will not only facilitate our
understanding of the mechanosensory mechanisms of Piezo1 but
more importantly, can provide new methodologies to develop
treatments for associated disorders.

1.3 Piezo1 and fibrosis

We all know that the main pathological changes in fibrosis are
increased synthesis and insufficient degradation of extracellular
matrix and that persistent fibrosis leads to structural destruction
and functional decay of organs, but the mechanisms behind many
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fibrotic diseases are not yet understood by us. Several experiments
now suggest that Piezo1 may have a potential relationship with
fibrosis (Zhang et al., 2021a; He et al., 2021; Bartoli et al., 2022;
Braidotti et al., 2022a; Zhao X. et al., 2022; Fang et al., 2022; Swain
et al., 2022; Xing et al., 2023). In the pathological state, activation of
Piezo1 channels by mechanical stimuli induces excessive ECM
synthesis in the cells involved, leading to ECM deposition and
promoting the progress of fibrosis. It was found that aberrant
exposure of Piezo1 can be observed in fibrotic tissues and organs.

One investigator created a genetically engineered mouse
model (He et al., 2022a) that specifically knocked out Piezo1
from bone marrow cells, intending to study the mechanism of the
mechanosensitive protein Piezo1 in renal fibrosis, and finally
found that mice with Piezo1 knockout alleviates renal fibrosis,
suggesting that the development of targeting Piezo1 mechanical
channels offers a possible approach to the management of renal
fibrosis (He et al., 2022a; Zhao X. et al., 2022). In the pancreas, a
hypertensive condition stimulates the opening of Piezo1 channels
and the formation of fibrosis induced by stress (Swain et al.,
2022). As for cardiomyocytes, experiments have identified a
stress response after a myocardial injury that leads to the
upregulation of Piezo1, which may be responsible for the
positive feedback of fibrosis progression (Braidotti et al.,
2022a). Experimental studies have demonstrated that Piezo1
has an active role in ARDS-associated pulmonary fibrosis
exacerbated by mechanical stretch (MV) via mediation of
calcium inward flow as well as ATP emission (Fang et al.,
2022). Activation of Piezo1 channels can influence a range of
signal pathways that play an important role in the progression of
fibrotic disease (He et al., 2022a). For example, activation of
Piezo1 can lead to calcium inward flow, which activates signal
pathways such as TGF-β/Smad and p38-MAPK, which perform
key functions in the onset and progression of fibrosis (Ding et al.,
2021).

2 Structure and characteristics of
Piezo1

Piezo1 and Piezo2 constitute the 2 major mechanically-activated
(MA) channels identified in mammals. The Piezo1 protein was
initially identified in mice (Coste et al., 2010). By comparison,
the Piezo1 gene was found to be homologous in humans
(Schrenk-Siemens et al., 2015), mice (Ikeda et al., 2014), chickens
(Soattin et al., 2016), birds (Schneider et al., 2014), drosophila (He
et al., 2018), African clawed frog meadowlark (Methfessel C Fau -
Witzemann et al., 1986), and zebrafish (Faucherre et al., 2013).
Piezo1 is broadly expressed in several human organs and tissues,
encompassing vital organs such as the lungs (Xiong et al., 2022), the
gastrointestinal system (Yang et al., 2022), and the skeleton (Qin
et al., 2021; Xu et al., 2021), which strongly suggests that Piezo1 may
have a critical function in the normal functioning of these organs,
such as in respiration, digestion, and locomotion (Qin et al., 2021;
Xu et al., 2021; Xiong et al., 2022; Yang et al., 2022). Structural
similarities between mouse and human Piezo1 channels were
observed by cryo-electron microscopy, providing a basis for
further functional studies (Wang and Xiao, 2018; Xiao, 2020).
Piezo1 and Piezo2 are respectively positioned on chromosome

16 and chromosome 18. In the human body, Piezo1 is comprised
of 2,520 amino acids and Piezo2 is comprised of 2,752 amino acids
(Gottlieb and Sachs, 2012).

The mechanosensitivity of Piezo1 channels is explained by a
lever-like mechanism of mechanical action based on a unique three-
leaf propeller-like homologous structure (Bae et al., 2015; Jiang et al.,
2021a). The basic structure of the Piezo1 channel consists of
multiple repeating structural domains, which include an
N-terminal region, a membrane domain, and a C-terminal region
(Kefauver et al., 2020; Fang et al., 2021; Tang et al., 2022). Based on
the structure and function of the Piezo1 protein, some researchers
have divided it into an ion-conducting pore portion, an anchor that
acts as a conversion element: the CTD and bundles, and a
mechanosensing portion consisting of the TM blades (Zhao
et al., 2019). The channel can be in three active states: closed,
open, and inactivated (Cox and Gottlieb, 2019). A mechanical
stimulus acting on the cell membrane triggers the Piezo1 channel
to shift from a closed state to an open state, allowing the flow of ions,
such as calcium, potassium, and sodium ions (Gottlieb and Sachs,
2012).

The interaction of Piezo1 with the cytoskeleton in
mechanosensing has been described in detail (Nourse and
Pathak, 2017; Jiang et al., 2021b). The overexpression of Piezo1
channels in cells is characterized by rapid and complete inactivation,
described as a pressure pulse in a split second (Coste et al., 2010; Wu
et al., 2017), this character has also emerged as a signature of the
Piezo1 channel. The structure of the Piezo1 channel facilitates our
understanding of its mechanism in sensing mechanical stimuli and
regulating the permeability of ion channels.

As an important force-sensitive channel, Piezo1 plays multiple
physiological functions in cells. First, it plays a key role in
maintaining the shape of red blood cells (Vaisey et al., 2022). By
sensing extracellular mechanical forces, Piezo1 can regulate the
morphology of the cell membrane and ensure the adaptability
and functionality of red blood cells (Vaisey et al., 2022; Evtugina
et al., 2023; Hatem et al., 2023). Secondly, Piezo1 is involved in the
regulation of immune responses (Atcha et al., 2021a; Lai et al., 2022).
The opening of its channels can trigger intracellular signal
transmission, thereby affecting the activity of immune cells,
which is crucial for maintaining the balance of the immune
system (Solis et al., 2019a; Aykut et al., 2020; Atcha et al., 2021a;
Geng et al., 2021; Leng et al., 2022). In addition, Piezo1 is also
involved in the functional regulation of the cardiovascular system (Li
et al., 2014; Douguet et al., 2019), and its channel activity is closely
related to pathological conditions such as arrhythmia (Jiang F. et al.,
2021; Rolland et al., 2023), suggesting that it plays an important role
in cardiovascular biology.

One of the main functions of Piezo1 is to sense and respond to
mechanical stimulation. The opening of its channel will lead to an
increase in intracellular calcium ion concentration, thereby
triggering multiple signaling pathways. This process not only
affects the biological effects of cells, such as cell apoptosis,
proliferation, and migration (Volkers et al., 2015; Liu S. et al.,
2021; Dombroski et al., 2021; Shinge et al., 2022; Song et al.,
2022). Piezo1 can also activate the protein kinase pathway and
further regulate the activity of multiple cell signaling pathways
(Blythe et al., 2019; Liu S. et al., 2021; Chen S. et al., 2022; Wang
et al., 2022). In addition, Piezo1 can also regulate the activity of Na,
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and K-ATPase, further affecting intracellular ion balance and cell
membrane stability (Shahidullah et al., 2022; Hirata et al., 2023).
Recently, Shahidullah M and his colleagues studied the relationship
between Piezo1 and Na, K-ATPase-mediated ion transport in mouse
crystals. They found that after activation of Piezo1, Na, K-ATPase in
cells will be affected (Shahidullah et al., 2022).

Therefore, Piezo1 has a variety of key physiological functions in
cells. Its research will not only help to gain a deeper understanding of
the basic mechanisms of cell biology but may also provide new
therapeutic targets for the treatment of related diseases. Therefore,
the function and regulatory mechanism of Piezo1 deserve further in-
depth study.

3 A new hope for fibrosis diseases:
Piezo1

3.1 Piezo1 and pulmonary fibrosis

Pulmonary fibrosis (PF) is a diffuse interstitial pulmonary
disease featuring progressive inflammation and extracellular
matrix deposition, resulting in irreversible damage caused by
abnormal lung tissue repair (Thannickal et al., 2004; Henderson
et al., 2020; Zhao Y. et al., 2022).

Several studies have demonstrated a strong relationship between
epithelial-mesenchymal transition (EMT) with fibrosis (Qian et al.,
2018; Rout-Pitt et al., 2018; Salton et al., 2019; Liu et al., 2022).
Transforming growth factor beta (TGF-β) is thought to be closely
associated with early embryonic development and organogenesis,
and adult homeostasis (Xu et al., 2018), TGF-β overexpression can
lead to excessive metabolic disorders and dysfunction, promoting
EMT and ECM deposition (Su et al., 2020; Lee andMassagué, 2022),
leading to fibrosis and cancer development (Hao et al., 2019;
Andugulapati et al., 2020; Kim et al., 2020). Piezo1 is a
mechanosensitive calcium channel, and immunohistochemical
staining revealed widespread Piezo1 expression in mouse
pulmonary tissues (Zhang Y. A. et al., 2021), epithelial cells, and
endothelial cells (Zhong et al., 2018; Friedrich et al., 2019;
Bhattacharya and Hough, 2019), and was suggested to play an
important role in bleomycin-induced pulmonary fibrosis (Solis
et al., 2019a; Solis et al., 2019b).

Jia-Qi Huang and his colleagues discovered through cell line
studies and cell culture of rat lung cells that a positive response
mechanism for the relationship of Piezo1 to TGF-β1 was found to
exist in radiation-induced pulmonary fibrosis (Huang et al.,
2021a) and has a critical role in the radiation-induced
generation of EMT. It was found that upregulation of TGF-β1
was associated with the activation of Piezo1, some researchers
have found through cell line studies (Lei et al., 2019; Huang Y.
et al., 2021) and animal studies (Lei et al., 2019) that the Ca2+/
HIF-1α signaling pathway can activate TGF-β1, and Piezo1
induced EMT by regulating TGF-β1 through the Ca2+/HIF-1α
signaling pathway (Lei et al., 2019; Huang et al., 2021a; Huang Y.
et al., 2021). TGF-β1 was able to inhibit C/EBPβ expression
(Ramji and Foka, 2002), and C/EBPβ acts on the Piezo1 promoter
to reduce the expression of Piezo1 (Huang et al., 2021a; Ghafouri-
Fard et al., 2021). Research has also revealed that TGF-β acts
through the smad3 signaling pathway to inhibit C/EBPβ on the

expression of the Piezo1 promoter, resulting in upregulation of
Piezo1 expression (Huang et al., 2021c).

Mechanical ventilation is essential in the treatment of some
critical patients with respiratory illnesses, including acute
respiratory distress syndrome (ARDS) (Walter et al., 2018; Pelosi
et al., 2021; Shi et al., 2023). As mentioned previously, Piezo1 is
strongly observed in both normal pulmonary epithelial cells and
pulmonary endothelial cells (Bhattacharya and Hough, 2019; Shi
et al., 2023). Classification of alveolar epithelial cells into type I (AT
I) and type II(AT II). Caveolae are expressed in type I alveolar
epithelium (Wicher et al., 2019; Jones and Minshall, 2020), and
caveolae were found to be mechanosensory in the alveoli
(Thompson et al., 2014; Wicher et al., 2019), stretch-induced
Ca2+ signaling is dependent on Ca2+ entry through Piezo1
channels, allowing AT I cells to release ATP, resulting in the
regulation of surfactant secretion in AT II cells (Diem et al.,
2020; Lin et al., 2022).

Some researchers have found through animal trials (Zhang et al.,
2021c) and cell line trials (Diem et al., 2020; He J. et al., 2022) that
mechanical stretch can significantly induce Piezo1 activation in
epithelial cells (Diem et al., 2020; Zhang et al., 2021c; He J. et al.,
2022). Piezo1 can induce ATP release during the mechanical stretch,
and the released ATP can, in turn, drive mechanical stretch to
enhance EMT, thus exacerbating pulmonary fibrosis (Diem et al.,
2020; Fang et al., 2022), and leading to more severe pulmonary
fibrosis in ARDS during ventilation. Although Piezo1-mediated
ATP release is essential in the exacerbation of pulmonary fibrosis
by mechanical stretch (Miyamoto et al., 2014; Diem et al., 2020), the
association of ATP with EMT and pulmonary fibrosis remains to be
investigated.

When mechanical stretching was performed on pulmonary
epithelial and endothelial cells, the extent of the injury was
directly related to the duration of mechanical stretching, and the
expression of Piezo1 was also proportional to it, indicating an
association between Piezo1 and respiratory lung injury (Zhang Y.
A. et al., 2021). After excessive mechanical stretching of the lung
endothelium, Ca2+ inward flow activates Piezo1 channels and the
adhesion junctions between endothelial cells are disrupted
(Friedrich et al., 2019; Zhong et al., 2020; Jiang et al., 2021b).
Using a mouse model induced by hyper-tidal volume mechanical
ventilation (Zhang et al., 2021c), Yang Zhang and members of his
experiments demonstrated that Piezo1 functions in the pathological
processes in the epithelial cells of the lung in ventilator-induced
pulmonary damage by activating the RhoA/ROCK1 pathway
(Zhang Y. A. et al., 2021). In conclusion, Piezo1 performs a
crucial function in lung injury due to mechanical stretch (MV).

When understanding the current relationship between Piezo1
and pulmonary fibrosis, we can find that in ATⅠ, ATⅠ-expressed
caveolae can respond to mechanical signals through plasma
membrane invagination, caveolae act as a mechanical sensor of
Piezo1, Ca2+ inward flow activates pannexin-1 hemichannel to enter
and localize to caveolae, acting on ATⅠ to release ATP (Diem et al.,
2020); as shown in the Figure 1, among ATⅡ cells, after the
mechanical signal activates Piezo1, calcium ion inward flow
enters the cell, Piezo1 regulates TGF-β1 expression through
Ca2+/HIF-1α signaling pathway, so that TGF-β1 expression is
upregulated (Huang et al., 2021c; Zhang et al., 2022), and the
upregulation of TGF-β1 can be activated through MAPK and
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smad-dependent signaling pathway (Guo et al., 2021) on the one
hand EMT, which promotes lung fibrosis, and on the other hand, it
may suppress the expression of C/EBPβ by the Smad3 pathway
(Feinberg et al., 2004; Lourenço et al., 2020), thus inhibiting C/EBPβ
from acting on the Piezo1 promoter and causing Piezo1 to be
upregulated as well (Huang et al., 2021c).

In addition, in animal trials on lung injury caused by
mechanical ventilation in rats (Zhang et al., 2021c),
mechanical ventilation can also stimulate Piezo1 channel
activation, convert mechanical signals into biological signals,
calcium ion inward flow, and elevated calcium in alveolar
epithelial cells, leading to downregulation of non-apoptotic
cytokine Bcl-2 expression (Liang et al., 2019) and alveolar cell
necrosis. Piezo1 is also an upstream modulator of the RhoA/
Rock1 pathway, activating this signaling pathway and inducing
the onset of pulmonary fibrosis (Zhang et al., 2021c). In contrast,
in respiratory lung injury secondary to ARDS, Piezo in the lung
endothelium is activated by mechanical signaling and calcium
ions flow inward, leading to disruption of the adhesion junctions
(AJs) between endothelial cells and resulting in damage to the
lung endothelial barrier (Liang et al., 2019; Jiang et al., 2021c).

Piezo1 is an ion channel protein widely expressed in various
tissues and cell types, and its role in various disease processes has
attracted much attention. Piezo1 is widely expressed in lung tissue,
epithelial cells, and endothelial cells, and interacts with the TGF-β1
signaling pathway. In pulmonary fibrosis, the upregulation of Piezo1
is an important event, which may serve as a response to mechanical
stimuli and play a key role in the occurrence and progression of
fibrosis. Mechanical stretch activates Piezo1, leading to Ca2+ influx,
activating the Ca2+/HIF-1α signaling pathway of TGF-β1, inducing
epithelial-mesenchymal transition (EMT), and promoting
pulmonary fibrosis. TGF-β1 also inhibits C/EBPβ through the
smad3 signaling pathway, thereby upregulating the expression of
Piezo1. Therefore, the increase in Piezo1 is accompanied by
pulmonary fibrosis and further promotes the occurrence of fibrosis.

3.2 Piezo1 and renal fibrosis

Renal fibrosis is an irreversible pathology of long-term kidney
disease and end-stage renal disease, manifested by improved
production and insufficient breakdown of ECM within the renal
tubules (Black et al., 2019; Bülow and Boor, 2019; Liang et al., 2022).
Piezo1 which is a mechanosensitive cation channel (Coste et al.,
2010) senses the stiffness from the external environment and
converts mechanical signals into intracellular electrochemical
signals (Lewis and Grandl, 2015; Kefauver et al., 2020; Xu et al.,
2021). Piezo1 is expressed in endothelial and mural cells, proximal
and distal curvilinear tubules of the renal vesicle (Peyronnet et al.,
2013; Martins et al., 2016; Dalghi et al., 2019). Increased ECM
synthesis and sclerosis of the cellular environment may exacerbate
renal fibrosis (Chen et al., 2014; Imamura et al., 2018). One study
using an animal model found that increased ECM synthesis and
sclerosis can activate Piezo1 and exacerbate kidney fibrosis by the
Piezo1-p38MAPK-YAP signaling pathway (Fu et al., 2021).

Macrophages have an essential function in renal fibrosis, and
macrophages can transmit information to cells by sensing
mechanical signals (Wei et al., 2022; Wu et al., 2022). It has been
suggested that macrophages are multifunctional cells that possess
pro- and anti-fibrotic effects (Wynn and Vannella, 2016; Tang et al.,
2019). In the unilateral ureteral obstruction (UUO)model (Lee et al.,
2023), Piezo1 deletion was observed followed by a crucial reduction
in the CCL2-CCR2 signaling pathway and Notch pathway (He et al.,
2022a), which inhibited the inflammation of macrophages and the
progression of renal fibrosis. Macrophages are classified into
M1 type (pro-fibrotic) and M2 type (anti-fibrotic) (Nishida et al.,
2005). Piezo1 can activate the CCL2-CCR2 pathway via Notch,
causing macrophage aggregation to trigger inflammation and
thereby mediating ECM deposition and renal fibrosis (He et al.,
2022a).

Recent research revealed that Piezo1 expressed markedly
elevated in fibrotic kidneys, and treatment of the UUO model

FIGURE 1
Schematic diagram of the mechanism by which mechanical stimulation of ATII cells activates Piezo1 channels to trigger related pathways. After
activation of Piezo1 by mechanical signals, calcium ions inwardly flowed into the cells, and Piezo1 regulated TGF-β1 through the Ca2+/HIF-1α signaling
pathway, leading to upregulation of TGF-β1. The upregulation of TGF-β1 could on the one hand activate the EMT through the MAPK and smad-
dependent signaling pathways to promote lung fibrosis, on the other hand, andmight inhibit C/EBPβ by the Smad3 pathway, which could inhibit the
effect of C/EBPβ on the promoter of Piezo1, and result in the upregulation of Piezo1’s expression as well.
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with GsMTx4, a blocker of Piezo1 (Velasco-Estevez et al., 2020),
revealed a significant attenuation of renal fibrosis, indicating that
Piezo1 has an essential function in renal fibrosis (Zhao X. et al.,
2022). In addition, it has been found that mechanical stretch
stimulation of Piezo1 induced fibrosis in human renal cortical
proximal tubular epithelial cells (HK2 cells) (Zhang et al., 2021;
Zhao X. et al., 2022) and primary cultured mouse proximal tubule
cells (mptc) (Zhao X. et al., 2022), while inhibition of Piezo1
inhibited fibrosis through blocking the TGF-β1 signaling
pathway, which suggests the role of Piezo1 in the fibrosis of renal
tubular epithelial cells caused by mechanical stretch.

As is known, TGF-β1 is an important marker of EMT, but
several studies have found no strong correlation between EMT and
renal fibrosis in vivo (Galichon et al., 2013; Sheng and Zhuang,
2020). It has been suggested that TGF-β1 damages renal tubules
through the smad signaling pathway, resulting in inadequate
deposition and degradation of ECM, leading to renal fibrosis (Hu
et al., 2018; Gifford et al., 2021).

As shown in Figure 2, the mechanical signal or activator of
Piezo1, Yoda1, acted on HK2 cells and mptc, activated cellular
piezo1 channels, TGF-β1 induced upregulation of fibronectin and α-
SMA (Zhao X. et al., 2022), which increased ECM synthesis and also
inhibited ECM degradation. The mechanical signal was delivered to
ECMwith calcium inward flow, activation of calpain2, which signals
downstream of Piezo1, induces talin1 clearance and upper-
regulation of integrin β1 protein (Bate et al., 2012; Zhao X. et al.,
2022), and integrin and ECM bind more tightly and induce the
development of renal fibrosis. When ECM stiffness increases, it may
activate Yes-associated protein (YAP) (Dupont et al., 2011; Calvo
et al., 2013), which acts as a transcription factor of the Hippo
signaling pathway mechanically regulated by ECM stiffness. When
Piezo1 is activated, a large amount of calcium ions inward flow may
activate the P38-MAPK molecule, and P38-MAPK reactivates YAP,
and YAP induces ECM deposition and promotes the process of renal
fibrosis (Fu et al., 2021).

Piezo1 is expressed in renal tubular and renal capsule endothelial
cells and parietal cells. Upregulation of Piezo1 in renal fibrosis also
occurs during fibrosis. Mechanical stretch or Piezo1 activators can
lead to an increase in intracellular calcium ions, increased expression

of TGF-β1, and promote ECM synthesis and renal fibrosis. It is
worth mentioning that although TGF-β1 is an important marker of
EMT, some studies have not found a strong correlation between
EMT and renal fibrosis in vivo, indicating that Piezo1 may have a
more complex role in renal fibrosis.

3.3 Piezo1 and pancreatic fibrosis

The pancreas is sensitive to mechanical injury (Romac et al.,
2018), and pressure on the gland may lead to the development of
pancreatitis (Wang et al., 2009; Romac et al., 2018; Swain et al., 2020;
Swain et al., 2020) and fibrosis (Swain et al., 2022), so the pancreas
can sense mechanical tension. When the pancreas is subjected to
external mechanical injury, Piezo1 pathologically opens
continuously, calcium ions flow in a large amount, intracellular
calcium ion homeostasis is disrupted, and intracellular zymogen and
lysosomal particles in the pancreatic follicle cells react abnormally,
and lead to pancreatitis (Geokas et al., 1985; Tenner et al., 2013;
Mayerle et al., 2019). Pancreatic fibrosis increases the risk of
pancreatic cancer, and studies in recent years show that the
progression from pancreatitis to pancreatic cancer may be
interspersed with pancreatic fibrosis (Cannon et al., 2021; Huang
et al., 2021). Excessive deposition of ECM produced primarily by
activated pancreatic stellate cells (PSCs) triggers pancreatic fibrosis
(Phillips et al., 2012; Thomas and Radhakrishnan, 2019; Huang
et al., 2021; Hamada et al., 2022; Swain et al., 2022). PSCs can express
Piezo1 (Kuntze et al., 2020; Swain et al., 2022), intracellular calcium
ion concentration increases and TGF-β1 expression increases after a
mechanical pull or the Piezo1 activator yoda1 acts on PSCs, and
these phenomena disappear when the Piezo1 inhibitor GsMTx4 acts,
so Piezo1 is critical in stress-induced pancreatic fibrosis (Swain et al.,
2022).

However, one study found that Piezo1 is a rapidly inactivating
pathway (Del Mármol et al., 2018; Shi et al., 2020) and that Piezo1
only causes a transient elevation of intracellular calcium ions (Swain
et al., 2020), therefore, it is presumed that other mechanisms could
lead to a sustained increase in intracellular calcium ions. TRPV4 was
also found to be expressed in both mouse and human pancreatic

FIGURE 2
Schematic diagram of the Piezo1-related pathway mechanisms in renal fibrosis. Mechanical signaling or Yoda1 activates cellular Piezo1 channels
after acting on HK2 cells and mptc. TGF-β1 induces upregulation of fibronectin and α-SMA, resulting in increased ECM synthesis. Activation of calpain2,
which signals downstream of Piezo1, induces talin1 clearance and upper-regulation of integrin β1 protein, and increased ECM stiffness. A large number of
calcium ions inward flowmay activate P38-MAPKmolecules, P38-MAPK then activates YAP, and YAP induces ECM deposition, which promotes the
process of renal fibrosis.
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follicles (Swain et al., 2020), and in the absence of TRPV4, Piezo1
triggers insufficient calcium inward flow signaling (Swain et al.,
2020; Gorelick and Nathanson, 2020; Swain et al., 2022). It has
been suggested that Piezo1 stimulates PLA2, which initiates the
TRPV4 pathway (Swain et al., 2020), leading to a sustained
increase in intracellular calcium ions, a sustained increase in
intracellular calcium ion concentration will further activate
intracellular protein kinases, leading to cellular self-digestion
and damage to pancreatic cells (e.g., fibrosis). In addition to
this, in human and mouse models, macrophages exacerbate
fibrosis (Hu et al., 2020; LaRue et al., 2022) by producing TNF-
α and TGF-β1 (Xue et al., 2015), while in macrophages, the
mechanical pull is engaged in the inflammatory response and
fibrosis by acting on Piezo1 (Solis et al., 2019a; Atcha et al.,
2021b; Atcha et al., 2021a).

When patients suffer from chronic pancreatitis, it is usually
associated with pancreatic fibrosis (Shimizu, 2008; Swain et al.,
2022). First, after high-pressure acts on pancreatic alveolar
cells, Piezo1 channels open and calcium ions flow inward into
the cells, but some experiments have found that the opening
of Piezo1 channels can only trigger transient calcium ion
inward flow, which is not enough to cause pancreatitis, so
only after prolonged high pressure acts on alveolar cells,
Piezo1 channels open, inducing PLA2 channel activation, and
then inducing TRPV4 channel opening, which eventually allows

a continuous inward flow of calcium ions (Romac et al., 2018;
Swain et al., 2020; Gorelick and Nathanson, 2020). The high
intracellular concentration of calcium ions activates trypsin and
disrupts zymogen granules, leading to damage of the alveolar
cells and pancreatitis, complicated by pancreatic fibrosis (Figure
3) (Hu et al., 2016).

Pancreatic fibrosis is caused by ECM deposition proteins
produced by PSCs, and at the same time, PSCs can secrete pro-
inflammatory cytokines to aggravate pancreatitis complicated by
fibrosis. PSCs express Piezo1, which is activated by the continuous
action of high pressure on PSCs, secreting interleukin-6 (IL-6),
interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and other
cellular inflammatory factors, which can accelerate the damage of
alveolar cells and lead to pancreatitis complicated by pancreatic
fibrosis (Talukdar and Tandon, 2008; Piao et al., 2015; Hao et al.,
2017). At the same time, PSCs can activate macrophages to recruit
inflammatory monocytes. Meanwhile, PSCs can activate
macrophages to recruit inflammatory monocytes (a regulator of
fibrosis) and secrete tumor necrosis factor-α (TNF-α) and
transforming growth factor-β (TGF-β), which likewise accelerate
pancreatic fibrosis by promoting the onset of inflammation. After
the onset of pancreatitis, pancreatic follicular cells can activate PSCs
by secreting cytosolic inflammatory factors to accelerate the
development of pancreatic fibrosis (Figure 3) (Kuntze et al., 2020;
Swain et al., 2022).

FIGURE 3
Schematic diagram of Piezo1 channels in pancreatic alveolar cells and PSCs cells associated with pancreatic fibrosis. (1) After prolonged high
pressure is applied to the alveolar cells, the opening of Piezo1 channels activates PLA2 channels, which in turn induces the opening of TRPV4 channels,
which ultimately allows for the sustained inward flow of calcium ions, causing pancreatitis with concomitant pancreatic fibrosis. (2) After the continuous
action of high pressure on PSCs, PSCswere activated to secrete cellular inflammatory factors such as IL-6, IL-1β, TNF-α, etc., which could accelerate
the damage of alveolar cells and lead to pancreatitis complicated by pancreatic fibrosis. Meanwhile, PSCs can activate macrophages to recruit
inflammatory monocytes, and secrete TNF-α and TGF-β, which also accelerate the development of pancreatic fibrosis by promoting inflammation. (3)
PSCs can secrete ECM proteins leading to pancreatic fibrosis, and after pancreatitis occurs, pancreatic alveolar cells can activate PSCs by secreting
cellular inflammatory factors, accelerating the development of pancreatic fibrosis.
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In the pancreas, Piezo1 activation is triggered by external
mechanical damage, leading to an abnormal increase in
intracellular calcium ions and ultimately triggering pancreatic
fibrosis. Thus, upregulation of Piezo1 precedes the onset of
fibrosis. After pancreatic cells are mechanically damaged, the
Piezo1 channel will continue to open, causing an increase in
intracellular calcium ions, triggering the PLA2 pathway, and
ultimately leading to the opening of the TRPV4 pathway,
increasing intracellular calcium ion concentration, inducing cell
self-digestion and pancreatic cell damage. Furthermore,
macrophages exacerbate the development of fibrosis and
pancreatitis through the production of inflammatory factors.

3.4 Piezo1 and cardiac fibrosis

When the heart is diseased, it is often accompanied by cardiac
fibrosis (Frangogiannis, 2021; Bartoli et al., 2022), like heart
failure (Liu M. et al., 2021; Oppedisano et al., 2021),
myocardial infarction (Ma et al., 2021; Zaidi et al., 2021), and
hypertension (Pinho, 2019; Siamwala et al., 2020). The key
characteristic of cardiac fibrosis is ECM deposition. (Ma et al.,
2018; Maruyama and Imanaka-Yoshida, 2022; Sarohi et al.,
2022). Cardiac fibroblasts play a crucial part in the synthesis
and metabolism of ECM. These fibroblasts secrete collagen
proteins to form ECM. When pathological conditions persist,
excessive ECM synthesis is induced by fibroblasts, leading to
ECM deposition and subsequent cardiac fibrosis. This impairs
cardiac compliance and diastolic function (Frangogiannis, 2021;

Liu M. et al., 2021; Kurose, 2021; Shao et al., 2022). Additionally,
under pathological conditions, fibroblasts can proliferate and
differentiate into myofibroblasts (MFs), and prolonged injury
can also contribute to the occurrence of cardiac fibrosis (Nagpal
et al., 2016; Frangogiannis, 2019; Tarbit et al., 2019).

Studies indicated that Piezo1 is widely distributed in cardiac
tissues and plays a crucial part in cardiac fibrosis. Piezo1 is expressed
in cardiac fibroblasts (CF) (Stewart and Turner, 2021), and its
dysregulation, either overexpression or silencing, can lead to
calcium ion defects and ROS signaling dysregulation (Ma et al.,
2013; Zhu et al., 2020; Jiang F. et al., 2021; Yan et al., 2022).
Mechanical stimulation that activates Piezo1 channels can trigger
calcium-mediated activation of calpains and calcineurin (Garcia-
Dorado et al., 2012), leading to fibroblast-to-myofibroblast
transition (Beech and Kalli, 2019; Xing et al., 2023).

Some studies have suggested a close relationship between Piezo1
and interleukin-6 (IL-6), which is a pro-fibrotic cytokine (Blythe
et al., 2019). Thus, the activation of Piezo1 may induce fibroblast
fibrosis through paracrine signaling involving IL-6 (Blythe et al.,
2019; Emig et al., 2021; Malko et al., 2023). Experimental evidence
has shown that Piezo1 activation can trigger calcium ion activation
and promote fibroblast proliferation and differentiation into
myofibroblasts, which are capable of secreting cytokines,
including IL-6 (Bartoli et al., 2022; Braidotti et al., 2022a).
Moreover, researchers have also found that Piezo1 activation
results in increased intracellular calcium levels, subsequently
activating downstream signaling pathways like p38- MAPK,
resulting in elevated IL-6 levels (Figure 4) (Blythe et al., 2019;
Bartoli et al., 2022; Braidotti et al., 2022a).

FIGURE 4
Schematic diagram of the mechanism by which Piezo1 channels in cardiac fibroblasts are associated with cardiac fibrosis. (1) Activation of Piezo1
triggers the activation of calcium ions and promotes fibroblasts into myofibroblasts, which are capable of secreting cytokines, including IL-6, etc.
Increased calcium ions activate the downstream signaling pathway p38-MAPK, thereby increasing the level of IL-6. (2) After mechanical stimulation of
Piezo1 channel opening, Nppb responded to mechanical stretching by expressing BNP, which inhibited TGF-β1 and also further inhibited the
promotion of cardiac fibrosis by TGF-β1.

Frontiers in Molecular Biosciences frontiersin.org08

Xu et al. 10.3389/fmolb.2023.1270979

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1270979


There is also evidence suggesting the involvement of brain
natriuretic peptide (BNP) in cardiac fibrosis. BNP is abundantly
present in cardiomyocytes and is known to inhibit collagen
production and fibroblast proliferation (Hall, 2004; Goetze et al.,
2020; Sun et al., 2023). Recent studies have identified BNP
expression in fibroblasts. Fibroblasts express Nppb, which
responds to mechanical stretch (Tsuruda et al., 2002; Ploeg et al.,
2021). Nppb is the gene encoding BNP. Animal models have shown
that the activation of Piezo1 using Yoda1, an agonist, increasesNppb
and Tgf-β1. Conversely, silencing Piezo1 expression suppresses the
expression of these two genes, indicating that Piezo1 mediates Nppb
and Tgf-β1 in cardiac fibroblasts under mechanical stretch
stimulation. Piezo1, as a mechanosensitive channel, has a crucial
function in regulating the mechanical stress response in cardiac
fibroblasts (Bartoli et al., 2022; Braidotti et al., 2022a). Upon
mechanical stimulation and opening of the Piezo1 channel, Nppb
reacts to it and expresses BNP, which inhibits TGF-β1 as well as
further suppresses Acta2 induction by TGF-β1. Tgf-β1 is a gene
involved in fibrosis and inflammation (Figure 4) (Paulus and
Tschöpe, 2013; Tian et al., 2019).

Piezo1 is widely distributed in cardiac tissue, and its
dysregulation can lead to calcium ion defects and dysregulation
of ROS signaling. Mechanical stimulation activates Piezo1 channels,
triggering calcium-mediated activation of calpain and calcineurin,
leading to the transformation of fibroblasts into myofibroblasts.
Piezo1 is expressed in cardiac fibroblasts (CF), and activation of
Piezo1 can trigger the transformation of fibroblasts into
myofibroblasts, a key step in fibrosis. Therefore, the upregulation
of Piezo1 plays a role in the fibrosis process. Furthermore, activation
of Piezo1 may induce fibroblast fibrosis through paracrine signaling
involving IL-6.

In summary, in most cases, Piezo1 activation is triggered by
mechanical stimulation, both occur through calcium influx but
induce fibrosis through different signaling pathways. In
pulmonary, renal, and cardiac fibrosis, upregulation of Piezo1
may occur during the fibrotic process, whereas in pancreatic
fibrosis, activation of Piezo1 is triggered by external mechanical
injury and may occur before the fibrotic process. Notably, these
processes may differ in different disease states and time points.

4 Piezo1 as a prospective treatment
target for fibrotic diseases

Piezo1 attracts widespread attention as a potential target for
fibrotic diseases. Fibrosis is a pathological condition involving
excessive ECM deposition and abnormal remodeling of tissue
structure. Several studies have attempted to inhibit the fibrotic
process by inhibiting the activity of Piezo1 channels. The
development of fibrosis is attenuated by interfering with Piezo1
channel function or blocking Piezo1 channel-related signal
pathways, like the calcium pathway and intracellular signal
pathways, through the use of specific Piezo1 channel antagonists
or inhibitors. In addition to inhibiting Piezo1 channel activity,
studies have also been conducted to enhance the function of
Piezo1 channels through the use of agonists or promoters or to
adjust the activity level of Piezo1 channels by the use of modulators,
to achieve regulation of the fibrotic process. In addition to directly

targeting Piezo1 channels, several studies are exploring other
therapeutic strategies related to Piezo1. For example, researchers
continue to identify downstream signaling pathways and molecular
targets that can influence Piezo1 regulation and are banking on
controlling downstream pathways and signals to achieve
intervention in the fibrotic process.

4.1 Piezo1 as a prospective treatment target
for pulmonary fibrosis disease

Recent studies have highlighted the great importance of
Piezo1 channels in the EMT process, suggesting that they may serve
as key components mediating TGF-β signaling and epithelial cell
transformation. This not only contributes to a deeper understanding
of EMT-related diseases such as pulmonary fibrosis butmay also provide
new targets for the development of therapeutic strategies (Huang et al.,
2021a; Zhang Y. A. et al., 2021). Besides, Mechanical ventilation is
extensively used in critically ill patients, but at the same time, it may
trigger and exacerbate the progression of pulmonary fibrosis. It was
discovered that Piezo1 channels are activated by mechanical stretch
under conditions of mechanical ventilation, leading to a cascade of
cellular signaling events. This process is mediated through the activation
of the RhoA/ROCK1 signaling pathway, which in turn triggers an
increase in intracellular calcium ion concentration and leads to Bcl-2
inhibition, which in turn induces apoptosis in type II lung cells (Liang
et al., 2019; Zhang Y. A. et al., 2021; Jiang et al., 2021b). Mechanical
stretch activation of Piezo1 induces type II lung cell apoptosis via Ca2+
inward flow (Zhang et al., 2021c). In ARDS, Piezo1 and Ca2+ inward
flow are thought to have a potential role (Liang et al., 2019; Jiang et al.,
2021c; Fang et al., 2022). Future in-depth studies are expected to reveal
the finemechanisms of these pathways and providemore insight into the
development of therapeutic strategies.

In summary, the essential role of the Piezo1 pathway in lung
diseases should not be overlooked, and further studies on its
molecular mechanism will provide a basis for drug development
and optimization of therapeutic approaches. This promising
research direction is expected to bring new hope for the future
development of lung disease treatment.

4.2 Piezo1 as a prospective treatment target
for renal fibrosis disease

For the potential link between Piezo1 and renal fibrosis, several
studies have provided evidence suggesting that Piezo1 can be activated
by mechanical stretch, chemical stimuli, or increased synthesis of
extracellular matrix (ECM). Additionally, inhibition of Piezo1
expression in animals has been demonstrated to alleviate fibrotic
processes in the kidney, this provides preliminary evidence for the
feasibility of Piezo1 as a prospective treatment for renal fibrosis (Zhao X.
et al., 2022). These findings, along with the previously described
signaling pathways associated with Piezo1 and renal fibrosis, strongly
suggest that Piezo1 plays a significant part in renal fibrosis. Collagen
deposition or cross-linking leads to increased ECM stiffness and
accelerated ECM secretion, which in turn aggravates the renal
fibrosis process, forming a vicious positive feedback loop. A
potential therapeutic strategy has been proposed to target ECM
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stiffness-induced mechanotransduction signaling pathways. By
interfering with the mechanotransduction signaling pathway, it is
expected to inhibit the increase in ECM stiffness, thereby slowing
down or reversing the process of renal fibrosis (Seghers et al., 2016;
Fu et al., 2021; He et al., 2022a; Zhao X. et al., 2022). Although this
therapeutic strategy still needs further research and validation, it
provides a new direction and idea for the treatment of renal fibrosis.

4.3 Piezo1 as a prospective treatment target
for pancreatic fibrosis disease

Elevated pancreatic duct pressure leads to fibrosis mediated by
Piezo1-activated PSCs. In a mouse model, the action of Piezo1
activator Yoda1 on PSCs leads to increased fibrosis, while the
action of Piezo1 inhibitor GsMTx4 attenuates the fibrotic
response. It can be speculated that the blocker of Piezo1 is used
to act on PSCs as a target to attenuate pancreatic fibrosis (Kuntze
et al., 2020; Swain et al., 2022). In addition to this, it has been
suggested that Piezo1 stimulates PLA2, which initiates the
TRPV4 pathway, and we can also use the blocker of TRPV4 to
attenuate the damage to pancreatic cells (Swain et al., 2020). Further
studies will contribute to a better discovery of the mechanism of
Piezo1 in pancreatic fibrosis and develop new therapeutic options
(Zhan and Li, 2018; Swain et al., 2020; Gorelick and Nathanson,
2020; Swain et al., 2022).

4.4 Piezo1 as a prospective treatment target
for cardiac fibrosis disease

Piezo1 takes a mechanosensing part in cardiac fibroblasts,
and we suggest that Piezo1 may be a prospective target to
attenuate fibrosis in abnormal pathological states of the heart
and maybe a potential target to interfere with cardiac fibroblast
function (Zhang et al., 2021a; Jiang F. et al., 2021; Braidotti et al.,
2022a). Piezo1 has a crucial function in cardiac fibrosis and
provides an idea for the attenuation, cessation, or prevention
of cardiac fibrosis. On the one hand, we can start from the
perspective that after the mechanical activation of Piezo1, the
Nppb gene in fibroblasts expresses BNP to anti-fibroblasts, and
through the anti-fibroblast effect of BNP, we can attenuate or
even prevent the occurrence of fibroblasts ahead of time (Ploeg
et al., 2021), and on the other hand, we can also start from the
calcium inward flow triggered by Piezo1 and the P38-MAPK

signaling pathway, which affects the release of cytokines related
with fibroblasts formation, to modulate fibroblasts occurrence
(Blythe et al., 2019; Emig et al., 2021). In addition, we have
compiled a Table 1 detailing the pro fibrotic and antifibrotic
effects of peizo1 in the context of renal, pancreatic, cardiac and
pulmonary fibrosis.

In conclusion, Piezo1 could be a potential target for
pulmonary fibrosis, renal fibrosis, pancreatic fibrosis, and
cardiac fibrosis. The difficulty associated with treating fibrotic
diseases often lies in reversing them, and we are aware of the
seriousness of persistent fibrosis in the heart, lungs, liver, and
kidneys. Although Piezo1 provides us with a novel direction for
treating fibrotic diseases, its current research and application are
mostly limited to animal models. Considering the differences
between humans and animals, it will take a long time to obtain
effective results from Piezo1 for the treatment of fibrotic
diseases, and we expect Piezo1 to bring hope to fibrotic
patients sooner.

5 Summary and discussion

Fibrosis is a clinically advanced presentation of the majority of
diseases and is a common phenomenon after organ damage with
failure, severely affecting the wellbeing of patients. Therefore, using
effective methods to inhibit or slow down the progression of disease
fibrosis has attracted extensive attention from researchers. Due to
the complex pathological mechanisms of fibrosis, it is crucial to
further explore reliable therapeutic approaches. Piezo1, a key
molecule in fibrosis, has been shown to exert an essential role in
many types of fibrotic diseases. Hence, we expect that future studies
should be devoted to further elucidating the specific mechanisms of
Piezo1’s role in different fibrotic diseases, as well as its inter-
regulatory relationship with other crucial signaling pathways. On
this basis, the development of specific antagonists targeting Piezo1
will be a potential therapeutic strategy to provide new ideas for the
clinical treatment of fibrotic diseases and open up new possibilities
for the treatment of fibrotic diseases.
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