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Introduction: AVEN, an apoptosis and caspase activation inhibitor, has been
associated with adverse clinical outcomes and poor prognosis in Acute
myeloid leukemia (AML). Targeting AVEN in AML improves apoptosis sensitivity
and chemotherapy efficacy, making it a promising therapeutic target. However,
AVEN’s role has not been studied in solid tumors. Therefore, our study investigated
AVEN as a prognostic biomarker in amore comprehensivemanner and developed
an AVEN-derived prognostic model in Lung adenocarcinoma (LUAD).

Method: Pan-cancer analysis was performed to examine AVEN expression in 33
cancer types obtained from the TCGA database. GEPIA analysis was used to
determine the predictive value of AVEN in each cancer type with cancer-specific
AVEN expression. Lung Adenocarcinomas (LUAD) patients were grouped into
AVENhigh and AVENlow based on AVEN expression level. Differentially expressed
genes (DEGs) and pathway enrichment analysis were performed to gain insight
into the biological function of AVEN in LUAD. In addition, several deconvolution
tools, including Timer, CIBERSORT, EPIC, xCell, Quanti-seq and MCP-counter
were used to explore immune infiltration. AVEN-relevant prognostic genes were
identified by Random Survival Forest analysis via univariate Cox regression. The
AVEN-derived genomic model was established using a multivariate-Cox
regression model and GEO datasets (GSE31210, GSE50081) were used to
validate its prognostic effect.

Results: AVEN expression was increased in several cancer types compared to
normal tissue, but its impact on survival was only significant in LUAD in the TCGA
cohort. High AVEN expression was significantly correlated with tumor progression
and shorter life span in LUAD patients. Pathway analysis was performed with 838
genes associated with AVEN expression and several oncogenic pathways were
altered such as the Cell cycle, VEGFA-VEGFR2 pathway, and epithelial-
mesenchymal-transition pathway. Immune infiltration was also analyzed, and
less infiltrated B cells was observed in AVENhigh patients. Furthermore, an
AVEN-derived genomic model was established, demonstrating a reliable and
improved prognostic value in TCGA and GEO databases.

Conclusion: This study provided evidence that AVEN is accumulated in LUAD
compared to adjacent tissue and is associated with poor survival, high tumor
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progression, and immune infiltration alteration. Moreover, the study introduced the
AVEN-derived prognostic model as a promising prognosis tool for LUAD.
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Introduction

LUAD (Lung Adenocarcinoma) is a subtype of non-small cell
lung cancer (NSCLC) that arises from the glandular tissue of the
lungs. It is the most common type of lung cancer, accounting for
approximately 40% of all cases of NSCLC (Gelatti et al., 2019). In
recent years, there have been significant advances in diagnosing
and treating LUAD. For example, targeted therapies have been
developed to specifically target the genetic alterations that drive
the growth of cancer cells in individual patients (Chan and
Hughes, 2015; Skoulidis and Heymach, 2019). Immunotherapy
has also emerged as a promising treatment option for LUAD.
Despite the advances in diagnostic and therapeutic methods
implicated in clinical studies, these treatments have been
shown to benefit a limited pool of patients. Thus, it is
essential and urgent to find the potential and valuable
biomarkers for diagnosis, prognosis, and targets for therapy in
cancers.

AVEN (Apoptosis, caspase activation inhibitor) is a protein
that plays a crucial role in inhibiting apoptosis and promoting
cell survival. It binds to anti-apoptotic Bcl-2 family member,
B-cell lymphoma-extra-large (Bcl-xL) specifically that retain
anti-apoptotic activity. It also interacts with caspase regulator,
apoptotic protease activating factor 1 (Apaf-1) (Chau et al., 2000)
and prevents Apaf-1 mediated caspases activation (Chau et al.,
2000). In vivo experiments showed that AVEN knockdown
reduced tumor growth and in turn increased apoptosis of
hematopoietic neoplasms (Eißmann et al., 2013). In clinical
studies, it is reported that AVEN is overexpressed in acute
lymphoblastic leukemias/lymphoma patients and associated
with poor prognosis (Melzer et al., 2012; Eißmann et al.,
2013). Indeed, AVEN expression is significantly higher in
recurrent patients (Choi et al., 2006). With previous findings
being limited to cancer of blood and bone, the correlation of
AVEN expression with prognosis and immune infiltration in
different cancers remain unclear.

We first screened the oncogenic role of AVEN in pan-cancer
and found that AVEN is highly expressed in Colon adenoma
(COAD), Kidney renal clear cell carcinoma (KIRC), Kidney renal
papillary cell carcinoma (KIRP), Lung adenocarcinoma (LUAD),
Lung squamous cell carcinoma (LUSC), and Thyroid carcinoma
(THCA) compared to normal tissue. Interestingly, AVEN
overexpression was associated with poor survival only in
LUAD patients. Consistently, high tumor progression and
reduced levels of B cell infiltration was observed in AVEN
overexpressing LUAD patients. AVEN-associated genes and
pathways were studied to gain valuable insight of the
characteristics and function of AVEN. Furthermore, we
developed an AVEN-derived prognostic model in an attempt
to provide a promising prognosis tool for LUAD.

Materials and methods

Pan-cancer analysis and TCGA data
processing

The AVENmRNA expression in pan-cancer was analyzed by
the GSCA web tool (http://bioinfo.life.hust.edu.cn/GSCA).
GEPIA (Li et al., 2021) (http://gepia.cancer-pku.cn/) web tool
was applied for the survival analysis in COAD, KIRC, KIRP,
LUAD, LUSC and THCA. In order to conduct a more detailed
investigation into the role of AVEN in LUAD, RNA-seq data and
clinical data in LUAD patients derived from TCGA database
were obtained from the UCSC Xena website (http://xena.ucsc.
edu/). Log2(FPKM+1) value obtained from RNA-seq data was
converted to TPM (Transcripts Per Million) value.
Subsequently, patients with the highest 25% of AVEN
expression were categorized into AVENhigh group, and
patients with the lowest 25% of AVEN expression were
classified into the AVENlow groups. Overall survival analysis
was performed in AVENhigh and AVENlow groups.

LUAD patient characteristic analysis

To compare the characteristics between AVENhigh and AVENlow

patients, clinical data was downloaded from the UCSCXena website,
including age, TNM classification, gender, radiation therapy status,
race, AVEN expression, and smoking status. The R package
moonBook was exploited to visualize characteristics of patients
between AVENhigh and AVENlow groups.

Driver genes alteration analysis

The whole exome data of LUAD patients was downloaded from
the cBioportal (Cerami et al., 2012; Gao et al., 2013) to examine
genetic alterations (https://www.cbioportal.org/). Driver genes such
as TP53, EGFR, KRAS, ERBB2, BRAF, ALK, RET, FGFR3,
NTRK3 and ROS1 were selected, and their alteration pattern was
examined in AVENhigh and AVENlow LUAD patients. The R package
ComplexHeatmap was used to generate an oncoprint plot.

Identification of DEGs and functional
enrichment analysis

Spearman’s rank correlation test, which works with rank-order
variables instead of raw data value of the variables, was used to obtain
differentially expressed genes (DEGs) between AVENhigh and AVENlow

group. Genes with an absolute R-value>0.4 were used for pathway
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analysis by ConsensusPathDB (Kamburov et al., 2009) (http://cpdb.
molgen.mpg.de/MCPDB). Significantly altered pathways were selected
with the criteria of p < 0.05 and were visualized using SRplot (https://
www.bioinformatics.com.cn/srplot). Genes in Cell cycle and VEGFA-
VEGFR2 pathways were further visualized by using the R package
ComplexHeatmap. GSEA analysis was performed to compare the
pathway enrichment between AVENhigh and AVENlow groups by
using these gene sets as references: “SHEDDEN_LUNG_CANCER_
POOR_SURVIVAL_A6″, “HallMARK_MTORC1_SIGNALINF”,
“HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION”,
and “VEGF_A_UP.V1_DN”.

Immune infiltration analysis

Immune score, stromal score, and estimate score representing
immune infiltration, stromal cell level, and purity of tumor,
respectively were obtained from Estimate website (https://
bioinformatics.mdanderson.org/estimate/index.html) and
compared between AVENhigh and AVENlow patients.
Furthermore, multiple deconvolution tools including Timer,
CIBERSORT, EPIC, xCEll, Quanti-seq and MCP-counter (Li
et al., 2017; Racle et al., 2017; Sturm et al., 2019) were utilized to
examine various types of immune cells in tumor tissue. Immune
infiltration data was obtained from Timer (https://cistrome.

shinyapps.io/timer/) and was visualized by boxplot, using the R
package via ggplot2.

Prediction of immunotherapy response

To evaluate the prediction value of AVEN in immunotherapy
response, Tumor Immune Dysfunction and Exclusion (TIDE)
score (Jiang et al., 2018) was calculated (http://tide.dfci.harvard.
edu/). Consequently, the expression levels of immune checkpoint
genes and functional genes associated with cytotoxic T cells were
analyzed in AVENhigh and AVENlow LUAD. Furthermore, we
extended our investigation to encompass additional
immunotherapy response markers indicative of B cells, testing
these markers in AVENhigh and AVENlow LUAD patients.

Establishment of an AVEN-derived
prognostic genes model

To determine the correlation between each gene from the
DEGs and the overall survival of LUAD patients, Univariate Cox
Regression model was employed. AVEN-derived genes with
p-value < 0.01 were regarded as AVEN-derived prognostic
factors. Followed by Random Survival Forest analysis, the

FIGURE 1
Brief overview of this study. LUAD: Lung adenocarcinoma. DEGs: Differentially expressed genes. TIDE: Tumor Immune Dysfunction and Exclusion.
ICI: Immune checkpoint inhibitor.
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relative importance of each gene was calculated. Genes with
relative importance >0.5 were used in the Multivariate Cox
Regression model. Step forward Cox regression was utilized to
optimize the model. The AVEN-derived genomic model was
formulated as follows (Abd ElHafeez et al., 2021):

Risk score � h0 t( ) × exp(KRT6A × 0.0002919

+ SLC16A3 × 0.0045 + CTSL × 0.0008009

+ LDHA × 0.007940 + CDC42EP2 × 0.0147)

The h0(t) represents the baseline hazard at time t, which denotes the
hazard of an individual when all predictor variables are set to 0.
Subsequently, based on the calculated risk scores, patients were
categorized into high-risk and low-risk groups using the mean risk
score. The survival and survminer packages were utilized to determine
the survival state of LUADpatients in both the TCGA andGEO cohorts
(GSE50081, GSE31210). ROC curves were generated to test the
specificity and sensitivity of the AVEN-derived prognostic gene
model by using the survivalROC package.

FIGURE 2
A high level of AVEN is associated with poor survival (A)mRNA level of AVEN in thirty-three different types of cancer and normal tissues. (B) Survival
analysis in AVENhigh and AVENlow LUAD patients derived from TCGA database. (C) AVENmRNA expression level in different T stages in LUAD and normal
tissue. (D) AVENmRNA expression level in different N stages in LUAD and normal tissue. (E) AVENmRNA expression level in different M stages in LUAD and
normal tissue. (F) Mutation landscape of driver genes associated with AVEN expression.
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Web-based bioinformatic analysis

PrognoScan (Mizuno et al., 2009) was employed to assess the
prognostic significance of AVEN across multiple LUAD data
cohorts. Additionally, AVEN protein abundance was examined
using the cProSite (Wang et al., 2023).

Statistical analysis

Statistical analysis was performed with R software (v4.2.1) and
its suitable packages. In this study, group comparisons were
performed using Student’s t-test, and the interaction between
variables were examined using the Spearman correlation test.

TABLE 1 Characteristics of AVENhigh and AVENlow patients in LUAD.

AVENhigh (N = 130) AVENlow (N = 130) p

Age (years) 65.1 ± 9.7 64.5 ± 10.5 0.624

T stage 0.03

t1 31 (23.1%) 55 (41.9.0%)

t2 75 (57.2%) 66 (50.3%)

t3 15 (11.5%) 8 (6.1%)

t4 9 (6.9%) 1 (0.8%)

uncharacterized 1 (0.8%) 1 (0.8%)

N stage 0.001

n0 67 (51.1%) 93 (71.5%)

n1 33 (25.2%) 17 (13.1%)

n2 27 (20.6%) 11 (8.5%)

n3 0 (0.0%) 1 (0.8%)

uncharacterized 4 (3.1%) 8 (6.2%)

M stage 0.061

m0 92 (70.8%) 84 (65.6%)

m1 11 (8.4%) 5 (3.8%)

uncharacterized 27 (20.8%) 39 (30.5%)

Gender 0.047

female 62 (47.3%) 79 (60.3%)

male 69 (52.7%) 52 (39.7%)

Radiation therapy 0.731

no 98 (83.8%) 106 (86.2%)

yes 19 (16.2%) 17 (13.8%)

Race 0.72

Asian 3 (2.7%) 3 (2.6%)

black or African American 9 (8.0%) 13 (11.2%)

white 100 (89.3%) 100 (86.2%)

AVEN expression (TPM) 31.9 ± 8.5 10.5 ± 2.0 0

Smoke 0.788

no 90 (68.7%) 93 (71.0%)

yes 41 (31.3%) 38 (29.0%)
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Result

A high level of AVEN is associated with poor
survival in LUAD

The role of AVEN in cancer is systematically studied according
to the workflow shown in Figure 1. First, the GSCA web tool was
exploited (Liu et al., 2023) to identify the AVEN mRNA level in
various cancer types. AVEN was highly expressed in six types of
cancer compared to normal tissue: colon adenoma (COAD), Kidney
renal clear cell carcinoma (KIRC), Kidney renal papillary cell
carcinoma (KIRP), Lung adenocarcinoma (LUAD), Lung
squamous cell carcinoma (LUSC), and Thyroid carcinoma
(THCA) (Figure 2A). On the other hand, a slight downregulation
of AVEN was observed in two types of cancer, Cholangiocarcinoma
(CHOL), and Cervical squamous cell carcinoma (CESC). Besides
mRNA, AVEN protein level was analyzed using the cProSite
database, which showed a higher AVEN protein abundance in
Breast cancer, Colon cancer, Kidney cancer, Liver cancer, Lung
adenocarcinoma, Lung squamous cell carcinoma, and ovarian
cancer compared to its adjacent normal tissue (Supplementary
Figure S1). Given our interest in the oncogenic role of AVEN,
we performed GEPIA analysis to determine the overall survival in
the six tumor types with elevated AVENmRNA expression: COAD,
KIRC, KIRP, LUAD, LUSC and THCA (Supplementary Figure S2).
Notably, AVEN showed a significant prognostic effect only in
LUAD. To further validate this finding and investigate the
oncogenic features of AVEN, we acquired the mRNA sequencing
data and clinical information of LUAD patients from the TCGA
dataset. Based on the expression level of AVEN, LUAD patients were
classified into two groups: AVENhigh (top 25%) and AVENlow

(bottom 25%), and overall survival was investigated using
Kaplan-Meier analysis (Figure 2B). Consistent with GEPIA
results, high AVEN expression was markedly associated with
poor survival in LUAD. Before studying details of underlying
molecular and cellular mechanism of AVEN, patient
characteristics of AVENhigh and AVENlow gruop were analyzed
(Table 1). As shown in Table 1, AVEN expression did not show
significant differences in age, race, and smoking but only in gender.
Interestingly, the value of the T stage and N stage showed significant
differences between the two groups. TNM classification is a system
that defines tumor size (T), regional lymph amount (N), and spread
of cancer (M) in a patient’s body (Rosen and Sapra, 2022). Thus, we
wondered whether AVEN contributes to tumor progression
according to TNM classification. Notably, AVEN showed a
gradual increase with tumor progression when AVEN expression
was seen in normal tissue and different T stages (Figure 2C). AVEN
expression also increased in the N1 stage compared to N0
(Figure 2D). We further analyzed AVEN expression in different
M stages, however, there were no significant differences in the
number of patients in different M stages between AVENhigh and
AVENlow patients (Table 1). Consistently, AVEN expression was
similar between M0 and M1 stages (Figure 2E). Since genetic
alterations can lead to the activation of various signaling
pathways that promote the growth and survival of cancer cells
(Skoulidis and Heymach, 2019), we next examined genetic
alterations in driver genes that were well defined in LUAD.
However, no significant associations between AVEN expression

and genetic mutations in EGFR, KRAS, ALK, ROS1, BRAF, etc.,
Were observed (Figure 2F).

Functional signaling pathways associated
with AVEN

We next investigated molecular and cellular pathways associated
with AVEN. First, DEGs between AVENhigh and AVENlow groups
were analyzed by using Spearman’s rank correlation test with the
criteria of the absolute R-value over 0.4. A total of 838 genes were
obtained (Supplementary Table S1), followed by pathway
enrichment analysis via the ConsensusPathDB website tool. We
found that those DEGs were mainly involved in the biological
process pathways (such as metabolism of proteins, and
membrane trafficking), oncogenic pathways (such as the cell
cycle and VEGFA-VEGFR2 Signaling Pathway), and immune
regulation process (such as neutrophil degranulation, and innate
immune system) (Figure 3A).

Given the fact that VEGF plays an important role in tumor
progression and angiogenesis (Jiang et al., 2020), we suggested
that AVEN might enhance tumor aggressiveness by promoting
the cell cycle and angiogenesis. To better demonstrate a
correlation between AVEN and the gene expression profile in
the cell cycle or VEGFA-VEGFR2 Signaling Pathway, heatmaps
were introduced for visualization. Genes in these pathways were
distinctly upregulated by AVEN overexpression (Figure 3B).
Gene set enriched analysis (GSEA) was applied to further
investigate the oncogenic role of AVEN. Genes in
MTORC1 signaling, epithelial-mesenchymal-transition (EMT),
and VEGF pathways were remarkably enriched in AVENhigh

patients (Figure 3C). MTOR pathway is a key pathway to
regulate cell growth. EMT and VEGFA also play a critical role
in tumor progression (Brabletz et al., 2018; Zou et al., 2020).
Furthermore, we found that AVEN overexpression was
associated with a poor survival genomic signature (Figure 3D)
in NSCLC (NES = 3.43, p-value = 0.0), consistent with results
shown in Figure 2B.

AVEN-associated immune infiltration
landscape in LUAD

The tumor microenvironment (TME) consists of various cells
such as normal epithelial, vascular cells, stromal cells, and immune
cells. Immune cells, such as T cells, B cells, natural killer cells,
dendritic cells, macrophages, and others are attracted to the site of a
tumor by various signals, including chemokines and cytokines
produced by tumor cells and stromal cells and regulate tumor
cells proliferation/apoptosis (Galli et al., 2020). Considering our
finding of AVEN-associated signaling pathways such as innate
immune system, neutrophil degranulation, and EMT (Figures 3A,
C), it suggested unique TME features associated with AVEN
expression.

Thus, we first analyzed immune cells and stromal cells using the
ESTIMATE algorithm in AVENhigh and AVENlow groups. Despite the fact
that there was no significant difference in stromal score, AVENhigh patients
showed lower immune scores compared to AVENlow patients, which
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suggests the functional possibility of AVEN to inhibit the abundance of
immune cells in the TME. Based on the stromal score and immune score,
the Estimate score was calculated to infer the purity of tumor tissue
(Yoshihara et al., 2013), and the result showed AVENhigh and AVENlow

groups shared a similar tumor purity (Figure 4A). To explore the diverse
types of immune cells, multiple deconvolution tools were employed,
including Timer, CIBERSORT, EPIC, xCEll, Quanti-seq, and MCP-
counter (Sturm et al., 2019). These tools utilize different methodologies
to analyze the RNA-seq data and provide insights into the composition

and abundance of immune cell populations (Im and Kim, 2023). The
analysis using various deconvolution tools revealed that B cells were
significantly more abundant in AVENlow groups. However, different
patterns were observed for other immune cell types depending on the
specific tool used. For instance, Timer andEPIC indicated thatCD4T cells
were significantly higher in AVENlow groups, while Quanti-Seq suggested
higher levels in AVENhigh groups. Additionally, CIBERSORT analysis
showed that activating memory CD4 T cells were more abundant in
AVENhigh groups, whereas resting memory CD4 T cells were higher in

FIGURE 3
Functional signaling pathways associated with AVEN expression. (A) Pathway enrichment analysis with DEGs. (B) Heatmaps visualized the
association of AVEN expression with genes involved in cell cycle and VEGF-VEGFR2 pathways. (C)GSEA analysis in AVENhigh and AVENlow groups using
MTORC1, Epithelial-mesenchymal-transition (EMT), and VEGF signature. (D) GSEA analysis in AVENhigh and AVENlow groups using a lung cancer poor
survival signature.
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AVENlow groups (Figure 4B). EPIC, MCP-counter and xCEll subtracted
cancer associated fibroblast (CAF) from tumor. Specifically, EPIC and
MCP-counter indicated that CAF were significantly more abundant in
AVENhigh groups. However, in contrast to these findings, xCEll tool
showed lower levels of CAF in AVENhigh groups (Figure 4B).

A high level of AVEN expression predicts a
poor immunotherapy response

Immune checkpoint inhibitors (ICIs) in cancer treatments have
demonstrated significant potential in enhancing antitumor immune

responses and improving patient outcomes (Bondhopadhyay et al.,
2020; Robert, 2020). However, their responsiveness remains limited,
necessitating the identification of predictive biomarkers (Bai et al.,
2020; Błach et al., 2021). Therefore, we investigated whether AVEN
could serve as a predictive biomarker for ICIs response using the
TIDE algorithm, in addition to assessing the expression of immune
checkpoint genes. To explore the AVEN-associated immunotherapy
response, RNA-seq data from 260 patients in AVENhigh and
AVENlow groups were processed in TIDE tool. We found that
among the 158 non-responders, 62% (n = 98) belonged to the
AVENhigh group, while 38% (n = 60) were in the AVENlow

group. Specifically, among the AVENhigh patients (n = 130), only
24% (n = 32) were predicted to be responders based on the TIDE
tool (Figure 5A, Supplementary Table S2). Subsequently, expression
of immune checkpoint genes was examined. Immune checkpoint
genes such as CD274, CTLA4, and LAG3 (Qin et al., 2019; Wang
et al., 2019; Hu et al., 2021) had no significant differences between
AVENhigh and AVENlow groups (Figure 5B). Genes associated with
anti-tumor CD8 T cells such as CD8A and GZMA (van der Leun
et al., 2020) were also examined, but no differences were observed
(Figure 5C). Immune checkpoints and CD8 T cell function are
regarded as the essential indicators for immunotherapy respond,
however the immunotherapy resistance is far more complicated
than that. For example, a lower mutation burden (TMB),
dysfunctional MHCs complex, or immunosuppressive tumor
microenvironment (Lei et al., 2020) can result in a lower
responsiveness in immunotherapy treatment without altering
the expression level of immune checkpoint and CD8 T cell
markers. Moreover, in our current study, the observation of
diminished B cell infiltration (Figure 4B) in AVENhigh patients
have spurred us to propose additional possibilities that B cell
mediates immunotherapy resistance. With the knowledge that
B cells also express the receptors of PD1/PDL1/CTLA4 (Kim et al.,
2021) and have been established as a favorable prognostic marker
in NSCLC (Germain et al., 2014), there exists a theoretical basis
for B cells to respond to immune checkpoint inhibitors. We
extended our analysis to assess the expression of B cell markers
in LUAD. As depicted in Figure 5D, there was a significant
reduction in mRNA levels of CD19, CD20, and CD22 in
patients with elevated AVEN expression, further suggesting a
distinct immune phenotype in AVENhigh patients, characterized
by reduced B cell infiltration.

Developing an AVEN-derived genomic
model for LUAD prognosis

As AVEN displayed significant predictive value in terms of
LUAD survival within the TCGA database, we were motivated to
investigate its prognostic utility across other cohorts. Employing
PrognoScan, we delved into the influence of AVEN expression on
different datasets. While a substantial correlation with LUAD
survival was observed in some cohorts, it is important to note
that certain cohorts exhibited limitations in significant prognostic
effect of AVEN (Supplementary Table S3). Since AVEN-derived
DEGs showed remarkable effect in pivotal oncogenic pathways, we
further investigated the prognosis effect of 838 DEGs by using
Univariate Cox Regression (Ma et al., 2022; Yu et al., 2022).

FIGURE 4
Immune infiltration landscape associated with AVEN. (A) Stromal
score, immune score and estimate score in AVENhigh and AVENlow
groups. (B) immune infiltration evaluation by diverse deconvolution
tools including TIMER, MCP-Counter, EPIC, quanTiseq, xCELL,
and CIBERSORT.
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305 of survival-related genes with p-value < 0.01 (Supplementary
Table S4) were shown to contribute to LUAD patient survival and
determined as prognostic factors, which were then used as input for
the Random Survival Forest analysis (Figure 6A). Following the
Random Survival Forest analysis, the relative importance of the
above prognostic genes was calculated and ranked. Eight genes,
KRT6A, SLC16A3, AHNAK2, CTSL, FAM83A, LDHA, CDC42EP2,

and SPHK1, were selected with a relative importance value of over
0.5 (Figure 6B), and Multivariate-Cox regression model was
developed with those genes. In order to optimize survival
prediction model, step-forward Multivariate Cox analysis was
used to further screen the valuable prognostic genes containing
KRT6A, SLC16A3, CTSL, LDHA, and CDC42EP2. According to the
model, the risk score of each patient was identified as follows:

FIGURE 5
Immunotherapy response prediction based on AVEN expression. (A) Bar-plot of TIDE score among 260 patients with different AVEN expression
levels. (B) Expression of immune checkpoint genes in AVENhigh and AVENlow patients. (C)Genes expression related to the cytotoxicity activity of tumor-
killing T cells in AVENhigh and AVENlow patients. (D) mRNA expression of B cell markers was compared between AVENhigh and AVENlow patients.
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h0(t) × exp(KRT6A × 0.0002919 + SLC16A3 × 0.0045 + CTSL
× 0.0008009 + LDHA × 0.007940 + CDC42EP2 × 0.0147). In
accordance with the mean risk score, LUAD patients were classified
into two subpopulations, high and low risk score. Kaplan-Meier survival
analysis showed LUAD individuals with low-risk scores had a greater
benefit in survival compared with a high-risk score population, which
revealed that the AVEN-derived prognostic model was able to estimate
patients’ prognosis according to risk score (Figure 6C). Additionally, the
time-dependent ROC curves were performed and confirmed that
AVEN derived prognostic model showed potency to predict patient
prognosis (Figure 6D).

Validation of AVEN-derived prognostic
model in LUAD

Two independent external datasets, GSE50081 and GSE31210,
were used to evaluate AVEN-derived prognostic model. As
shown in Figures 7A, B, LUAD patients with low-risk score
had better survival, which indicated that the AVEN-derived

prognostic model is effective and sufficient in predicting
LUAD survival.

Discussion

Even though AVEN has been found as an apoptosis, caspase
activation inhibitor, its role in solid tumor including lung cancer was
rarely studied. To analyze the role of AVEN systematically, we
examined AVEN mRNA in 33 cancer types and found high AVEN
expression in COAD, KIRC, KIRP, LUAD, LUSC and THCA
compared to normal tissue, but interestingly high AVEN expression
was associated with poor survival only in LUAD (Supplementary
Figure S2). The impact of AVEN on tumor progression was
analyzed in the LUAD patients grouped by the TNM classification,
and we found that AVEN expression was significantly associated with
the tumor burden of the main tumor and the number of lymph nodes
contained in cancer (Figures 2C–E). Specifically, AVEN expression
was positively correlated with the size and/or extent of themain tumor,
suggesting the oncogenic role of AVEN. Before delving into the cellular

FIGURE 6
AVEN-derived prognostic model in LUAD. (A) Random survival forest analysis with DEGs. (B) AVEN-derived genes with a relative importance value
over 0.5. (C) Survival analysis between LUAD patients with high-risk score and low-risk score using TCGA LUAD data. (D) Time-dependent ROC curves
based on optimized AVEN-derived prognostic model.
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and molecular events in AVEN-associated LUAD, we questioned how
AVEN is upregulated in LUAD. Interestingly, we found that AVEN
upregulation in LUAD was not due to genomic amplification
(Supplementary Table S5). Although it is unclear which factor
regulates AVEN expression in the cancer cells in the absence of
genomic amplification, previous studies have suggested potential
regulatory mechanism. MiR-30 family (Ouzounova et al., 2013) has
been reported to negatively regulate the AVEN expression in the breast
cancer cell line, while Foxo1 (Cai et al., 2017) has a positive regulatory
effect on AVEN expression in regulatory T cells. Hence, we propose
that AVENoverexpression in cancer cells may result from the interplay
of miRNA, transcription factor, and epigenetic modifications.

We furthermore analyzed signaling pathways altered by
AVEN expression to understand the underlying mechanism
of AVEN in tumor and tumor microenvironment. First,
838 DEGs were obtained between AVENhigh and AVENlow

groups by using Spearman’s rank correlation test using the
criteria of absolute R-value over 0.4, followed by pathway
enrichment analysis (Figure 3A). The results were explained
by three different functional cellular pathways, biological
process pathway with metabolism of proteins and membrane
trafficking, oncogenic pathways with cell cycle and VEGFA-
VEGFR2 signaling pathway, and immune regulation process
with neutrophil degranulation and innate immune system.

The majority of genes under cell cycle and VEGFA-VEGFR2
pathways were dramatically upregulated in AVENhigh patients
(Figure 3B). Although AVEN is known as an apoptosis inhibitor,
further studies are needed to confirm whether AVEN boosts the cell
cycle in cancer by inhibiting apoptosis. Apart from losing control of
cell division, cancer cells have the ability to use various immune escape
mechanisms from our immune surveillance, such as migrating to
other parts of the organs via the blood vessel. One of the critical
signaling pathways involved in angiogenesis is the VEGFA-VEGFR2

pathway. Activation of the VEGFA-VEGFR2 pathway is commonly
observed in many types of cancer and is associated with poor
prognosis. Furthermore, GSEA analysis also showed that AVENhigh

LUAD patients have more active oncogenic pathways including
mTOR signaling (Figure 3C). These oncogenic pathways are
targeted by drugs such as Palbociclib (CDK4/6 inhibitors) (Mills
et al., 2017), Aflibercept (anti-VEGF agent) (Zirlik and Duyster, 2018)
and Rapamycin (mTOR signaling) (Rapamycin hits the target | Nature
Reviews Cancer, no date), all of which are in a clinical use. This further
highlights the potential significance of AVEN as a promising
therapeutic target in cancer treatment.

As tumor and their neighboring cells such as fibroblast and
immune cells receive and send proliferation/apoptosis signals
from each other (Galli et al., 2020), we examined the immune and
stromal scores using ESTIMATE algorithm. AVENhigh patients
showed lower immune scores compared to AVENlow patients,
while stromal scores had no significant difference (Figure 4A). In
order to have a better understanding of immune cell infiltration
correlated with AVEN, Timer, CIBERSORT, EPIC, xCEll,
Quanti-seq, and MCP-counter were exploited to study the
infiltration of diverse cell types (Figure 4B). These tools are
available to analyze infiltrated immune cells using bulk RNA-
seq, and each tool has been developed using a different
methodology. B cells were significantly lower in AVENhigh

expressing group by all the algorithms indicating a weakened
anti-tumor immunity (Figure 4B). The compromised B cell
phenotype in AVENhigh patients was further confirmed by
examining expression level of B cells marker such as CD19,
CD20 and CD22 (Figure 5D). B cell belongs to antigen-
presenting cells (APC), which is able to gain, process, and
present tumor-associated antigens for T cells activation
(Nature Reviews Immunology, no date). In one study, the
depletion of B cells decreased the production of type I T cells

FIGURE 7
Validation of prognostic effect of AVEN-derived prognostic model in LUAD. (A) External validation of AVEN-derived prognostic model using
GSE50081. (B) External validation of AVEN-derived prognostic model using GSE31210.
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(Th1) and caused scarcity of IFN-γ, supporting the crucial role
that B cells may play in T cell immunity (DiLillo et al., 2010). In
addition to their role in facilitating T cell activation, B cells also
play a pivotal role in the tumor microenvironment, such as
tumor-specific antibodies mediated antibody-dependent cell
cytotoxicity (ADCC) (Germain et al., 2014; Sarvaria et al.,
2017), complement activation (Dunkelberger and Song, 2010),
and the formation and maintenance of tertiary lymphoid
structures (TLS). Furthermore, independent cohort studies
have highlighted the association of B cells with immune
therapy response (Cabrita et al., 2020; Helmink et al., 2020;
Petitprez et al., 2020). Therefore, even though no difference
was observed in CD8 T cell markers (Figure 5C), the AVEN-
mediated downregulation of B cell could potentially contribute to
insufficient immunity, possibly resulting in an immunotherapy
resistance phenotype through mechanisms that bypass T cell.
This observation is further supported by the result from TIDE
tool, indicating the association of AVEN in immunotherapy
resistant effects (Figure 5A). Besides, CAF was upregulated in
AVENhigh patients as shown by EPIC and MCP-counter even
though xCELL showed the opposite results (Figure 4B). CAF is
involved in the matrix remodeling process and soluble factor
secretion including VEGF, Exosomes, HGF, etc., which are the
underlying mechanisms of tumor metastasis (Sarvaria et al.,
2017). Because of the fundamental role of CAF in tumor
progression, the correlation between AVEN and CAF needs to
be further investigated.

In recent years, many prognostic biomarkers have been
reported, however their applications are often limited due to
the variations observed between different cohorts. Similarly,
AVEN demonstrated a notable correlation with LUAD
survival in some cohorts, but its significant prognostic effects
were limited (Supplementary Table S3). To address the
limitations associated with relying on a single prognostic
marker, we developed a more comprehensive approach. We
focused on the identification of AVEN-related genes and their
association with patient survival. Initially, we identified 838 DEG
that exhibited a correlation with AVEN expression.
Subsequently, we performed Univariate Cox analysis, filtering
down to 305 survival-related genes that displayed significant
prognostic effects in LUAD patients within the TCGA cohort.
To further refine our prognostic model, we employed Random
Survival Forest analysis and Multiple Cox Regression analysis.
The resulting model, consisting of five AVEN-related genes,
demonstrated robust predictive capabilities for patient survival
in both the TCGA cohort and two separate GEO cohorts,
highlighting the potential of our AVEN-derived prognostic
model as a valuable tool for LUAD prognosis and offering
enhanced accuracy and applicability across diverse datasets.

Further investigation was conducted to explore the
relationship between the identified five genes (KRT6A,
SLC16A3, CTSL, LDHA, CDC42EP2) and AVEN expression.
Supplementary Table S6 revealed a high correlation between these
genes andAVEN expression. However, in-depth analysis using Protein-
Protein Interaction (PPI) network analysis did not uncover any direct
interactions among the proteins encoded by these genes
(Supplementary Figure S3). It is worth noting that the lack of
observed interactions in the PPI network may be attributed to

insufficient available information or limitations in the current
understanding of these interactions. Further studies are warranted to
delve into this aspect and gathermore comprehensive data in the future.
In addition, previous studies have identified Bcl-xl andApaf-1 as AVEN
interacting proteins. These interactions are known to retain Bcl-xl
mediated anti-apoptotic activity and prevent Apaf-1 mediated
caspase activation (Chau et al., 2000). However, in this study, we
observed that the expressions of Bcl-xl and Apaf-1 do not show
significant association with AVEN expression (Supplementary Table
S6). In our efforts to predict the underlying molecular mechanisms of
AVEN, the results from this study suggest that AVENmay exert control
over oncogenic events through mechanisms involving cell cycle
regulation, VEGFR pathway. mTOR signaling, EMT and immune
pathways. However, to gain a deeper understanding of molecular
mechanism underlying AVEN’s involvement in LUAD, further
investigations are imperative to elucidate the specific molecular
details associated with AVEN’s function in the oncogenic process
in LUAD.

In summary, our study elucidated the significance of AVEN in
LUAD, showing its association with poor survival and its potential
role in tumor progression and immune evasion. We developed an
AVEN-derived prognostic model, incorporating five AVEN-related
genes, which exhibited robust predictive capabilities for patient
survival in diverse cohorts, highlighting the potential of our
AVEN-derived prognostic model as a valuable tool for LUAD
prognosis.
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