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Kingella kingae is a Gram-negative bacterium that primarily causes pediatric
infections such as septicemia, endocarditis, and osteoarticular infections. Its
virulence is attributed to the outer membrane proteins having implications in
bacterial adhesion, invasion, nutrition, and host tissue damage. TonB-dependent
receptors (TBDRs) play an important role in nutrition and were previously
implicated as vaccine targets in other bacteria. Therefore, we targeted the
conserved β-barrel TBDR domain of these proteins for designing a vaccine
construct that could elicit humoral and cellular immune responses. We used
bioinformatic tools to mine TBDR-containing proteins from K. kingae ATCC
23330 and then predict B- and T-cell epitopes from their conserved β-barrel
TDR domain. A chimeric vaccine construct was designed using three antigenic
epitopes, covering >98% of the world population and capable of inciting humoral
and adaptive immune responses. The final construct elicited a robust immune
response. Docking and dynamics simulation showed good binding affinity of the
vaccine construct to various receptors of the immune system. Additionally, the
vaccine was predicted to be safe and non-allergenic, making it a promising
candidate for further development. In conclusion, our study demonstrates the
potential of immunoinformatics approaches in designing chimeric vaccines
against K. kingae infections. The chimeric vaccine we designed can serve as a
blueprint for future experimental studies to develop an effective vaccine against
this pathogen, which can serve as a potential strategy to prevent K. kingae
infections.
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1 Introduction

Kingella kingae is a Gram-negative bacterium that was first
identified in 1960 (Lebel et al., 2006). It was initially considered a
commensal organism of the upper respiratory tract (Al-Qwbani
et al., 2016). However, subsequent studies have shown that it can
cause a range of infections, particularly in children under the age of
5 years (Williams et al., 2014). Currently, it is considered an
emerging pathogen in the field of pediatrics (Dubnov-Raz et al.,
2010). The bacterium’s virulence is attributed to its ability to adhere
to host cells, invade host tissues, and damage host cells (Porsch,
2022). Infections caused by it are usually localized and can involve
various organs, such as the joints, bones, and heart (Ceroni et al.,
2013). The most common manifestation of its infection is
osteoarticular infection, which can present as septic arthritis or
osteomyelitis (Lundy and Kehl, 1998). The infection can also affect
the heart valves and cause endocarditis, which is a serious and
potentially life-threatening condition (Taubert and Dajani, 2001).
Prompt diagnosis and appropriate treatment are crucial to prevent
complications and ensure a good clinical outcome, while prevention
through vaccine is a better strategy. However, to date, no vaccine
exists against this bacterium.

TonB-dependent receptors (TBDRs) are outer membrane
proteins found in many Gram-negative bacteria that play a key
role in the uptake of essential nutrients, such as iron and vitamin
B12, from the host environment (Blanvillain et al., 2007; Moynié
et al., 2017). TBDRs are highly conserved among bacteria and are
essential for bacterial survival and growth, making them attractive
targets for the development of vaccines (Grassmann et al., 2017;
Bettin et al., 2022). One advantage of targeting TBDRs is that they
are expressed on the outer surface of the bacterial cell, making them
accessible to antibodies and other immune system components.
Several studies have investigated the potential of TBDRs as vaccine
candidates, with promising results. For example, a vaccine based on
the TBDR of the pathogenic bacterium Haemophilus influenzae was
shown to be highly effective in preventing infection in a mouse
model (Webb and Cripps, 1999). Other studies have focused on the
development of vaccines targeting TBDRs in pathogenic bacteria
such as Aeromonas hydrophila (Abdelhamed et al., 2017),
Mycobacterium bovis (Bettin et al., 2022), Pseudomonas
fluorescens (Hu et al., 2012), and Acinetobacter baumannii (Yang
et al., 2017).

Traditional vaccine development approaches can be time-
consuming and costly, often taking several years and requiring
large amounts of resources (Mahoney and Maynard, 1999).
Immunoinformatics approaches can accelerate the vaccine design
process and reduce the cost by predicting epitopes that are likely to
be effective (Kazi et al., 2018). The utilization of immunoinformatics
allows researchers to analyze vast amounts of genomic and
proteomic data to identify antigenic epitopes with desirable
characteristics, such as high immunogenicity, conservation across
strains, and binding affinity to immune receptors. By narrowing
down the pool of potential epitopes, immunoinformatics
streamlines the selection process, enabling more focused and
efficient experimental validation. Chimeric vaccines, which are
composed of multiple antigenic epitopes, have been widely used
in infectious disease research and developed using
immunoinformatics (Rahmani et al., 2019; Mishra et al., 2022).

Using bioinformatics tools, researchers can predict B-cell and T-cell
epitopes against the protein sequence of choice, to design a chimeric
vaccine and predict the safety and immunogenicity in silico,
reducing the cost and time required for experimental testing
(Enayatkhani et al., 2021). Several studies have demonstrated the
potential of immunoinformatics approaches in designing chimeric
vaccines against infectious agents. For instance, Kota et al. (2021)
identified B- and T-cell epitopes from the toxoid and hemolysin
protein of Staphylococcus aureus to design a chimeric vaccine. The
vaccine was predicted to be highly immunogenic and provided 83%
direct and 50% passive immunization in a murine model. Another
study identified MHC-binding epitopes from a Lom-like protein, a
putative pilin subunit, and a section of the type III secretion
structural protein EscC from the Escherichia coli O157:H7
(García-Angulo et al., 2014). The chimeric vaccine was designed
and tested in mice, as well as through other experimental assays. The
vaccine induced cytokine response and reduced colonization of the
pathogen in a mouse model. Similarly, immunoinformatics-based
predictions for the dengue virus vaccine led to good immune
response mapping in a rabbit model (Kaushik et al., 2022).

Hence, designing a chimeric construct targeting the K. kingae
TDR domain is assumed to be a promising approach for developing
a vaccine against strains of this pathogen. Therefore, the objective of
this study was to design a vaccine construct against K. kingae using a
computational approach. Prediction of antigenic epitopes that are
likely to be recognized by the immune system was followed by
construct design. The best immunogenic construct was docked with
immune receptors and immune response simulation. This
bioinformatics-aided vaccine design approach can accelerate the
vaccine design process to provide protection against K. kingae and
reduce the cost of development.

2 Materials and methods

2.1 Target sequence retrieval

The whole proteome of K. kingae ATCC 23330 (GenBank
accession: AFHS01000057.1; comprising 3,995 sequences) was
scanned against the TonB-dependent receptor domain (Pfam ID:
PF00593; length = 553 amino acids) using BLAST (https://blast.ncbi.
nlm.nih.gov/Blast.cgi; accessed 18 March 2023) (Altschul et al.,
1997). Three protein sequences, comprising two homologs of
TbpA (accession: EGK07547.1; WP_257003592.1) and an hpuB
(accession: WP_003785727.1), were obtained as significant hits.
Both consisted of a TonB-dependent receptor plug domain and a
TonB-dependent receptor-like β-barrel domain (Figure 1). The
sequence of the larger β-barrel-like domain (Pfam ID: PF00593;
Figure 1) was taken and used for creating a vaccine construct against
K. kingae ATCC 23330.

2.2 Epitope mapping and construct
preparation

Immunoinformatics analysis was carried out using several
public servers. Antigenicity of the sequence was predicted using
the VaxiJen server (http://www.ddg-pharmfac.net/vaxijen/VaxiJen/
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VaxiJen.html; retrieved 18 March 2023) (Doytchinova and Flower,
2007). The B-cell epitopes were predicted using the two servers
ABCpred (https://webs.iiitd.edu.in/raghava/abcpred; retrieved
19 March 2023) (Saha and Raghava, 2006) and BcePred (https://
webs.iiitd.edu.in/raghava/bcepred/; retrieved 19 March 2023) (Saha
and Raghava, 2004). ABCpred uses an artificial neural network to
predict continuous B-cell epitopes based on a dataset of
700 experimental epitopes. We took a threshold of 0.5 and a
window of 16 for prediction. BcePred uses data on 1,029 B-cell
epitopes and takes into account parameters like hydrophobicity and
flexibility.We used a default threshold ranging from −3 to 3 for these
parameters. A consensus of results from both servers was taken.
T-cell epitopes were predicted using IEDB-AR (https://www.iedb.
org/; retrieved 20 March 2023) (Dhanda et al., 2019) and were
filtered based on their antigenicity, conservancy, and accessibility to
the immune system. Overlap with B-cell epitopes was studied, and
the selected ones that fulfilled all criteria were arranged in a linear
order to form a chimeric vaccine.

Accurately assessing andmaximizing world population coverage
is essential in designing vaccines that have broad efficacy and can
effectively combat infectious diseases on a global scale. It helps
identify the extent to which a vaccine is effective in protecting a
specific pathogen across diverse populations worldwide, using HLA
allele frequencies and MHC binding data. World population
coverage of these epitopes was mapped using the IEDB server
(http://tools.iedb.org/population/; retrieved 21 March 2023). This
server maps coverage for 115 countries, covering 21 ethnicities.

A flexible linker sequence was introduced between the epitopes
to ensure that each epitope maintained its conformation and

function. In total, nine constructs were created and checked for
antigenicity using VaxiJen and allergenicity using AllerTOP (http://
www.ddg-pharmfac.net/AllerTOP/; retrieved 22 March 2023)
(Dimitrov et al., 2014) and AllerCatPro (https://allercatpro.bii.a-
star.edu.sg/; retrieved 22 March 2023) (Maurer-Stroh et al., 2019).
Construct no. 4 (referred to as C4 hereafter), having the best
antigenicity score and a non-allergen, was taken for structure
modeling.

2.3 Structure modeling and dynamics
simulation

The 3D structure was modeled using AlphaFold v2.3.1 (Jumper
et al., 2021). AlphaFold is a deep learning algorithm developed by
DeepMind that predicts the 3D structure of a protein from its amino
acid sequence. The final predicted structure was selected based on
the conformation having the lowest energy. A per-residue estimate
of its confidence on a scale from 0 to 100 was measured using a scale
called pLDDT, with a value >90 referring to high accuracy, and 70 or
above expected to be modeled well (Zifruddin et al., 2023). The
structure was minimized using the OPLS3e force field in the
software package Maestro (van Zundert et al., 2021). Bond orders
were assigned using the CCD database, and Het states were
generated using Epik at pH 7.0+/-2.0. Hydrogen bond
assignment was carried out using PROPKA at pH 7. Heavy
metals were converged to 0.3 Å. This minimization process
enhances quality by removing any small stereochemical violations
present and generally results in minimal differences between the

FIGURE 1
3D structures of (A) TbpA (https://alphafold.ebi.ac.uk/entry/F5S962; retrieved 18 March 2023) and (B) hpuB (https://alphafold.ebi.ac.uk/entry/
F5S5I2; retrieved 18 March 2023) of K. kingae, with the larger TBDR β-barrel domain shown in bluish purple and the smaller TonB plug domain shown in
teal. The rest of the sequence is shown in yellowish green.
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predicted and relaxed structures. Molecular dynamics simulation
was also conducted for 100 ns in Desmond, Schrodinger Inc.
(United States). The construct was prepared by adding
hydrogens, assigning bond orders, and adding disulfide bonds.
Refinement was carried out at pH 7 in the PROPKA module.
Restrained minimization was carried out by converging heavy
atoms to 0.30 Å. The solvation model was TIP3P,
box=orthorhombic, box size calculation method: Buffer and
neutralization was carried out by adding counter ions (Na+ or
Cl-according to requirement). Simulation parameters were force
field: OPLS2005 force field; Ensemble: NVT; system temperature:
300 K; pressure: 1.01 (bar); recording interval: 100 ps. The rest of the
options were default. RMSD and RMSF were obtained along with
the secondary structure over a time course of 100 ns.

2.4 Molecular docking

The binding affinity of the chimeric vaccine to the immune
receptors (HLA alleles and TLRs), specifically known to interact
with the adjuvant used in C4, was carried out using ClusPro
(Kozakov et al., 2017). TLRs are involved in recognizing
pathogens, while HLAs help present antigens to T cells. Among
TLRs, TLR-1, TLR-1/2, and TLR-4 were included, while HLA
receptors included HLA-A*0201, HLA-B*5301, HLA-CW3, HLA-
DRA1, HLA-DRB1, HLA-DP1, HLA-DP2, HLA-DQA1, and HLA-
DQB1. ClusPro is based on a fast Fourier transform (FFT) algorithm
that uses rigid-body docking to generate a large number of candidate
models for protein–protein complexes. It then uses a clustering
algorithm to group these candidate models into clusters based on
their similarity, and it ranks the top models by their calculated
binding energy (Comeau et al., 2004). Interaction prediction could
help infer binding between C4 and human immune receptors, and
the subsequent initiation of immune response. Post-docking
interactions were visualized using Protein Interactions Calculator
(PIC) (http://pic.mbu.iisc.ernet.in/; accessed 22 March 2023) (Tina
et al., 2007).

Normal mode analysis is a computational method used to study
the collective vibrational motions of a protein or other biomolecules
(Case, 1994). It can provide insights into protein dynamics and
conformational changes. WEBnm@ (http://apps.cbu.uib.no/
webnma3/; accessed 23 March 2023) (Tiwari et al., 2014) was
used to study conformational changes and for comparing
unbound and bound C4 via the lowest-energy collective
vibrational modes, such as global twisting or bending motions.
Atomic displacement graphs in several modes and a correlation
matrix were used to observe the changes in bound and unbound C4.
MD simulation was carried out for all the receptors bound with C4.
Parameters were the same as described in Section 2.3, except for the
time duration being reduced to 50 ns due to the complexity of the
molecular system.

2.5 Immune response simulation

C-IMMSIM (Castiglione and Bernaschi, 2004) was used to
simulate the interactions between the vaccine construct, immune
cells, antigens, and cytokines, and to study the dynamics of the

immune response under different conditions. It is a C++-based
agent-based modeling framework that integrates both cellular and
molecular components of the immune system. Hence, the response
of various immune cells, such as T cells, B cells, and dendritic cells, to
C4 and K. kingae TbpA and hpuB challenge was attempted. For
most of the vaccines currently in use, 4 weeks is the minimum
recommended time between the first and second doses (Saha et al.,
2021). We utilized the same values. The entire simulation ran for
1,000 time steps, which are ~11 months (1 timestep=8 h). Two
vaccine injections were given on days 1 and 30 (i.e., after
1 month), followed by the bacterial challenge on day 240
(i.e., after 8 months since vaccine initiation and 7 months after
the end of vaccination) to check the efficacy of the vaccination
process. Host HLA selection was A0101, A0102, B0702, B0704,
DRB101, and DRB102. The rest of the parameters were as described
previously (Rahman et al., 2020).

2.6 Cloning

In silico cloning is a computational method used to predict the
optimal restriction enzyme sites and sequence overlap for the
insertion of a DNA sequence of interest into a cloning vector
(Celie et al., 2016). It is carried out to design the cloning strategy
and is helpful in guiding wet laboratory experiments. JCat (Grote
et al., 2005) was used for optimization of the codon usage of C4 to
enhance its expression in E. coli. Codon optimization was attempted
because it can lead to higher yields of the antigen protein and a
stronger immune response in the host (Ramakrishna et al., 2004).
The C4 protein sequence was first reverse-translated to the DNA
sequence, and then, the codon usage was adjusted to match the
preferred codon usage of E. coli. A suitable pET vector was then
selected for cloning this sequence in SnapGene software (available at
https://www.snapgene.com/) based on optimal restriction enzyme
sites for C4. It was then cloned, and the image was saved in .jpeg
format.

3 Results

3.1 Construct assembly

In total, 538 16-mer B-cell epitopes were obtained from the
ABCpred server, and 11 epitopes were obtained from the BcePred
server. Additionally, 29,403 epitopes were predicted for MHC-I and
14,553 for MHC-II. Finalization was carried out based on various
properties like immunogenicity and sequence coverage. The final
MHC-I and MHC-II epitopes were checked for cumulative
population coverage. This was carried out to identify epitopes
that are likely to be recognized by a large proportion of the
population to design a vaccine effective in a broad range of
individuals. By targeting epitopes that are highly conserved and
commonly presented by MHC molecules, we can increase the
likelihood of generating a robust and broadly protective immune
response. According to the IEDB server, the cumulative MHC-I and
MHC-II epitope population coverage of the world was predicted to
be 98.55% (Supplementary Figure S1). This means that more than
98% of the world’s population is likely to have at least oneMHC-I or
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MHC-II allele that can bind to this set of epitopes. Achieving high
world population coverage is a desirable goal in vaccine design as it
aims to ensure that a significant majority of individuals, regardless
of geographic location, genetic variations, or other demographic
factors, can mount an effective immune response against the
targeted pathogen. A vaccine with high world population
coverage shows potential to reduce the overall burden of the
disease, prevent transmission, and contribute to global public
health.

Finally, three overlapping validated epitopes (Table 1) were
selected for designing the vaccine constructs (Supplementary

Table S1). The overlap with B-cell epitopes was then studied to
select those that fulfilled all criteria and arranged in a linear order to
form a chimeric vaccine. To ensure the stability and functionality of
the epitopes, a flexible linker sequence was introduced between
them, along with adjuvants like β-defensin and flagellin. Adjuvants
are added to enhance the immunogenicity of the vaccine and
stimulate the immune response (Bastola et al., 2017). Nine
different vaccine constructs were prepared and checked for
antigenicity and allergenicity using VaxiJen, AllerTOP, and
AllerCatPro servers. C4, which had the best antigenicity score
and was non-allergenic, was selected for structure modeling.

TABLE 1 Final epitopes used for preparing the vaccine construct.

Serial no. Sequence Length (aa) Conservancy (%) Toxicity

1 DQCNYRGNSENYSDCSGRVIKGS 23 100 Non-toxic

2 LEASYFNNDYRDLITFGCQI 20 100 Non-toxic

3 NARLGGVNVLGKIYWNG 17 100 Non-toxic

FIGURE 2
(A) 3D model of C4 colored according to model confidence. (B) 2D depiction of C4 topology. (C) LDDT plot of the predicted structure. (D).
Ramachandran plot of the predicted structure.
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FIGURE 3
(A) RMSD plot of construct C4. (B) RMSF plot of C4. (C) Secondary structural elements (SSEs) like α-helices and β-strands throughout the simulation.
(D) Residue scale SSE (α-helices shown in orange; β-strands shown in sky blue) assignment over 100 ns.
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3.2 Structure modeling and simulation

The 3D structure of a vaccine construct is important because it
can provide insights into its function, interactions with other
molecules, and potential immunogenicity. The 3D structure
(Figure 2A) comprised 2 sheets, 5 β-hairpins, 3 β-bulges,
8 strands (Figure 2B), 3 helices, 14 β-turns, 15 gamma turns, and
4 disulfides. Disulfides are covalent bonds between two cysteine
residues that help stabilize the protein structure and prevent
degradation (Trivedi et al., 2009).

The first 50 residues modeled had a high confidence level
(Figure 2C), while the overall Ramachandran plot (Figure 2D)
showed 74% residues in highly favored regions, 24% in allowed
regions, and the rest in disallowed regions.

The construct stabilized after 30 ns of simulation, and its RMSD
remained approximately 15 Å after 60 ns (Figure 3A). RMSF
remained less than 12 Å for most of the residues, and there was
very little variation between heavy atoms, side chains, and the
backbone (Figure 3B). The percentage of helices was 8.89 and
that of strands was 25.58%, making SSE>30% of the residues
over the course of simulation (Figure 3C). A major portion of
the structure retained their composition of helices and sheets
throughout the simulation (Figure 3D).

3.3 Docking and dynamics simulation
analysis

ClusPro is a widely used docking program that predicts the
binding affinity and orientation of two protein structures (Kozakov
et al., 2017). Here, it was used to predict the interaction between the

vaccine construct and the target proteins TLR1, TLR2, and TLR4,
and various HLA molecules. The results showed that C4 has a high
predicted binding affinity with all the target proteins, and docking
scores range from −1550.0 to −1017.4, indicating strong interactions
(Table 2). The lowest docking score was obtained with the protein
TLR2, followed by TLR1 and TLR4, which suggests that C4 may
have a high binding affinity for these receptors. The HLA molecules
tested also showed a good interaction with C4, with docking scores
ranging from −1709.4 to −1162.9, and binding is likely to potentially
increase C4 efficacy as a vaccine. Previously, the interaction of
TLR4 with the vaccine construct designed against Haemophilus
influenzae (ClusPro score: −1035.2 kcal/mol) and Streptococcus
pneumoniae (ClusPro score: −1150.5 kcal/mol) was reported to
be robust (Mazumder et al., 2023). Our score was higher than
the score in these studies, indicating a highly stable binding affinity
(AlChalabi et al., 2022). Similarly, the binding interaction score of
the vaccine construct designed against Candida tropicalis and HLA-
A*0201 has been reported as − 1178.4 kcal/mol (Akhtar et al., 2022),
whereas it was −1218.9 kcal/mol in this study, indicating good
binding affinity. It is important to ensure the reliability and
accuracy of computational methods in determining binding
affinities. For this purpose, we incorporated cross-validation of
docking calculations by introducing a control
(TLR1–TLR2 interaction; PDB ID: 2Z7X) with a strong
experimentally known binding affinity (Jin et al., 2007) and
compared against the docking prediction for our construct. The
TLR1–TLR2 interaction cluster with the largest number of members
had the lowest energy of −936.5 kcal/mol. Energy values of
C4 binding with immune receptors were much lower than this
value, indicating more stable and possibly robust interactions. The
stability of the interactions between C4 and immune receptors is an

TABLE 2 HLA and TLR interaction statistics with the designed vaccine construct. 3D depiction of interactions is shown in Supplementary Figure S3.

Serial
no.

PDB
ID

Chain Name Lowest docking
score with C4

Hydrophobic
interactions

No. of hydrogen
bonds in main chains

Ionic
bonds

Aromatic
interactions

1 6NIH A TLR1 −1102.7 14 1 8 4

2 2Z80 A TLR1/2 −1017.4 4 0 5 1

3 3FXI A TLR4 −1355.7 9 9 10 0

4 1AKJ A HLA-
A*0201

−1218.9 12 4 11 2

5 1A1M A HLA-
B*5301

−1162.9 9 0 7 1

6 1EFX A HLA-
CW3

−1261.0 8 0 9 0

7 1A6A A HLA-
DRA1

−1399.8 19 0 6 2

8 1A6A B HLA-
DRB1

−1489.0 32 6 3 10

9 3LQZ A HLA-DP1 −1494.4 20 2 8 6

10 3LQZ B HLA-DP2 −1550.0 23 1 4 6

11 1JK8 A HLA-
DQA1

−1709.4 29 3 9 4

12 1JK8 B HLA-
DQB1

−1408.4 13 5 5 2
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important factor in determining the effectiveness of the immune
response. Lower energy values imply stronger binding between
C4 and the receptors, suggesting a higher likelihood of successful
recognition and activation of the immune system. Robust
interactions can trigger a more vigorous immune response, which
is desirable in combating pathogens.

Delving into the details of interactions, C4 formed a significant
number of hydrophobic interactions and hydrogen bonds with all
interactors, which are crucial for stabilizing the interaction. A
smaller number of ionic bonds and aromatic interactions were
also observed, which contributed to the stability of the
interaction. The highest number of hydrophobic interactions
were observed for HLA-DRB1 (n= 32), the largest number of
hydrogen bonds was observed for HLA-DP2 (n = 23), and
maximum ionic interactions were detected for HLA-DRB1 (n =
3). C4 also formed aromatic interactions with some interactors, with
the highest number observed for HLA-DRB1 (n = 10). Aromatic
interactions are relatively weaker than hydrophobic interactions and
hydrogen bonds, but they can add to the strength of the interaction.
Normal mode analysis for C4 showed major fluctuations around
residues 30 and 40, and between residues 160 and 170
(Supplementary Figure S2), while binding appeared restrained for
the TLR4 receptor. Displacements were also observed for HLA-
DRA1 and HLA-DQB1.

Comparative MD simulation (Figure 4) of the C4 vaccine
construct and bound immune receptors revealed that the RMSD
of the complexes (Supplementary Figure S4) was much lower
than that of the vaccine construct alone. This suggests that
binding to the immune receptors stabilizes the structure of the
vaccine construct. RMSD values varied among different immune
receptors. HLA-DP1, HLA-DQA1, and TLR-4 had comparatively
low average RMSD values (less than 6), indicating that the
complexed vaccine remained relatively stable when bound to

these receptors, while TLR1/2, HLA-B*5301, HLA-DRA1, HLA-
DRB1, HLA-DP2, and HLA-CW3 complexed with the vaccine
had higher average RMSD values (less than 8), suggesting that the
complex with these receptors experienced more structural
fluctuations. HLA-A*0201 and HLA-DQB1 exhibited a more
dynamic behavior than the rest of the immune receptors.
RMSD of HLA-A*0201-C4 reached up to 15 Å at
approximately 10 ns and then stabilized for some time for less
than 8 Å until 40 ns. It again increased to more than 8, and the
trend continued upward. HLA-DQB1 reached up to 12 Å after
20 ns and then stabilized but remained higher than 10.5 Å,
peaking toward 12 Å after 35 ns. The initial increase in RMSD
indicates structural adjustments or fluctuations as they
accommodate the vaccine construct. The subsequent
stabilization suggests a period of relative structural stability,
but this stability is at a higher RMSD level, indicating that
these receptors undergo some level of structural change even
in their stable states and as time progresses. The results are in
alliance with the findings of normal mode analysis, where HLA-
DQB1 showed higher displacement.

Similarly, it was noted that the RMSF varied for complexes
(Figure 5) compared to the vaccine construct alone (Figure 3B).
Findings provide insights into the dynamic nature of the interaction
between these immune receptors and the vaccine construct,
suggesting that the receptors undergo structural adaptations
during the simulation. The initial residue portion of the graph
shows the immune receptor RMSF, while the last 200 residues
depict the vaccine construct C4. The RMSF of TLR1 was less
than 3 Å while that of the construct C4 was less than 5 Å on
average. It exceeded 4.5 Å on average in the unbound form. It was
even lower for TLR1/2, TLR4, HLA-DRA1, HLA-DRB1, and HLA-
DP1. HLA-B*5301, HLA-CW3, and HLA-DQB1 showed higher
fluctuations. These observations highlight the dynamic nature of the

FIGURE 4
RMSD plot of 50-ns simulation showing C4=vaccine construct; C4-6NIH=vaccine–TLR1 complex; C4-2Z80=vaccine–TLR1/2 complex; C4-
3FXI=vaccine–TLR4 complex; C4-1AKJ=vaccine–HLA-A*0201 complex; C4-1A1M=vaccine–HLA-B*5301 complex; C4-1EFX=vaccine–HLA-
CW3 complex; C4-1A6AA=vaccine–HLA-DRA1 complex; C4-1A6AB=vaccine–HLA-DRB1 complex; C4-3LZQA=vaccine–HLA-DP1 complex; C4-
3LZQB=vaccine–HLA-DP2 complex; C4-1JK8A=vaccine–HLA-DQA1 complex; and C4-1JK8B=vaccine–HLA-DQB1 complex.
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interaction between the immune receptors and the vaccine
construct. Different receptors exhibit varying levels of stability
and flexibility during the simulation, which suggests that the
dynamic nature of receptor–vaccine interactions observed in the
simulation may have implications for the effectiveness of a vaccine.
A stable interaction with immune receptors could be important for
eliciting a strong and targeted immune response, which was depicted
by the receptors TLR1/2, TLR4, HLA-DRA1, HLA-DRB1, and
HLA-DP1.

3.4 Immune response simulation

The C-IMMSIM results describe the efficacy of the vaccination
process against K. kingae infection, attempted by injecting tbpA and
hpuB proteins after 7 months of vaccination. Memory B cells kept
decreasing after 3 months, while non-memory B cells kept
increasing after 5 months (Figure 6A). IgM (first antibody to be
produced in response to an initial exposure to a pathogen) and the
total B-cell population plateaued (at ~500 cells per mm3) 4 months
after vaccination. IgM is the first antibody that is produced in
response to an initial exposure to a pathogen, and the plateauing

of its levels and that of the total B-cell population suggests that the
immune systemmounted a robust initial response to the vaccine, but
this response might not continue to increase or remain at a high level
over an extended period.

The immunoglobulin population stabilized after 4 months, with
the antibody titer count of IgG1+ IgG2 (antibodies that are involved
in long-term immunity) and IgM+IgG being approximately
20,000 for 100,000 antigens per ml (Figure 6B), indicating that
the immune system has produced a significant amount of antibodies
against the pathogen, which should provide strong protection.
T-helper (TH) cells reached up to 8,000 cells per mm3 after
20 days of the first injection (Figure 6C), with a doubling of
TH1-active cells. Resting and active TH cell population stabilized
at 1,000 cells per mm3 after 300 days. TH cells have a relatively short
lifespan and are continuously produced and replaced by the immune
system. Therefore, the stabilization of the TH cell population may
not necessarily imply a lack of long-term protection. Immune
response to the vaccine was not uniform across all T-cell
populations. The TC memory cell population remained stable,
while non-memory cells fluctuated, with active cells decreasing
and resting cells increasing after 4 months of vaccination
(Figure 6D).

FIGURE 5
RMSF plots of the vaccine construct bound with (A) TLR1. (B) TLR1/2. (C) TLR4. (D) HLA-A*0201. (E) HLA-B*5301. (F) HLA-CW3. (G) HLA-DRA1. (H)
HLA-DRB1. (I) HLA-DP1. (J) HLA-DP2. (K) HLA-DQA1. (L) HLA-DQB1.
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3.5 Cloning of C4

In silico cloning allows researchers to test different cloning
strategies and find the best combination of restriction enzymes
and vector sequences to use without the need to perform
multiple trial-and-error experiments in the laboratory. This can
save time and resources in the cloning process. C4 was cloned in the
pET-30a (+) vector in E. coli K12 (Figure 7).

The pET-30a (+) vector is commonly used in molecular
biology as it contains several useful features for protein
expression in E. coli, such as strong promoters, a His-tag for
protein purification, and antibiotic resistance markers for
selection. The choice of HindIII and BstEII enzymes was
based on their ability to generate compatible overhangs or
“sticky ends” that can be easily ligated to the corresponding
ends of the pET-30a (+) vector. C4 was then inserted in the vector
and cloned in E. coli. This approach of in silico cloning could help
save time and money by allowing the design and test of virtual
constructs before actually synthesizing or cloning them in the
laboratory.

4 Discussion

Proteins known to be involved in iron acquisition in bacteria are
potential targets for vaccine development (Schryvers and
Stojiljkovic, 1999; Glanfield et al., 2007; Ismail et al., 2022). We
aimed to utilize the conserved domain of TBDRs involved in iron
and nutrient acquisition for vaccine design against the K. kingae
reference strain ATCC 23330. For this purpose, we scanned the
proteome of K. kingae and identified two homologs of the TBDR
protein (TbpA and hpuB) comprising the TBDR β-barrel domain.
Previous studies identified TbpA and hpuB proteins as important
virulence factors in other bacteria, such as Actinobacillus
pleuropneumoniae (Klitgaard et al., 2010) and Neisseria
gonorrhoeae (Lin et al., 2022). Finney et al. showed that
antibodies against these proteins can protect against Neisseria
lactamica meningococcal infection in rabbits (Finney et al.,
2008). The TBDR transporter of Neisseria gonorrhoeae,
i.e., TbpB, has also been targeted for vaccine design, in addition
to TbpA, and shown to invoke an immune response in mice
(Greenawalt, 2021). Additionally, several vaccine candidates

FIGURE 6
Immune cell population post-C4 injection. (A) Graph depicting the change in the B-cell population. (B) Varied antibody titer. (C) Altered TH cell
population. (D) TC cell population for active, resting, duplicating, and anergic states.
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targeting TBDRs have been developed for various bacterial
pathogens, including Acinetobacter baumannii, Pseudomonas
aeruginosa, and Klebsiella pneumonia (Wang et al., 2021).
Therefore, we used the beta-barrel domain of TBDR from the K.
kingae reference strain ATCC 23330 for creating a vaccine construct
by predicting B- and T-cell epitopes. The selected ones fulfilling all
criteria were manually arranged with adjuvants, linkers, etc., to
assemble a vaccine construct. The generation and use of B- and
T-cell epitopes through computational servers is an established
strategy for fabricating a vaccine construct capable of inducing
protective immune responses against a pathogen (Wang et al.,
2020). B-cell epitopes are regions on the surface of a pathogen
that can be recognized by antibodies (Ponomarenko and Van
Regenmortel, 2009), while T-cell epitopes are fragments of a
pathogen’s proteins that can be recognized by T cells (Khatoon
et al., 2017). By including both types of epitopes in a vaccine
construct, the immune system is activated to generate a robust
and specific immune response. Population coverage analysis (>98%)
of the prioritized epitopes suggests that the antigens are likely to be
effective against a majority of individuals within the world
population.

Adjuvants enhance the immune response (Bastola et al., 2017),
and the best construct in this study (C4), with the highest
antigenicity, had a β-defensin adjuvant. β-defensin is an
antimicrobial peptide that can stimulate the innate immune
system (dendritic cells and macrophages) and enhance antigen-
specific immune responses (Shelley et al., 2020). β-defensin may be
induced by inflammatory mediators in the body and has broad-

spectrum antimicrobial activity against bacteria, viruses, and fungi
(Gao et al., 2021). After assembling the construct, it was subjected to
3D structure modeling to analyze its capability to bind the immune
system components like HLA alleles and TLRs, and invoke an
immune response. Recent advances in deep learning techniques
have led to the development of AlphaFold (Jumper et al., 2021), an
AI-based tool for predicting protein structures with remarkable
accuracy. We attempted 3D structure modeling of C4 using
AlphaFold, and it was noted that the structure consisted of four
natural disulfide bonds. Disulfide bonds are formed between two
cysteine residues, where the thiol groups (-SH) on each cysteine
react to form a covalent bond (-S-S-) under oxidizing conditions
(Saito et al., 2003; Barford, 2004). These are crucial for maintaining
the stability and conformation of the protein in the context of
vaccine design and can be engineered into the construct to enhance
its stability and immunogenicity (Scheiblhofer et al., 2017).
However, in C4, these were present naturally, depicting a stable
construct. C4 was then docked with critical components of the
immune system using ClusPro (Comeau et al., 2004). ClusPro is a
widely used tool for predicting protein–protein interactions, and it
has been applied in several studies to predict the interaction between
vaccine constructs and immune system components. One such
example is a study between TLR9, HLA class I/II alleles, and a
vaccine construct against Kaposi’s sarcoma (Chauhan et al., 2019),
while another study on Candida auris vaccine design reported
docking between TLR5 and MHC class-II HLA DRB_0101 with
scores in a similar range (Akhtar et al., 2021). The docked results
indicated that C4 has a high binding affinity with all the target

FIGURE 7
Cloned C4 in the pET-30a+ vector, shown in red.
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proteins, with hydrophobic interactions and hydrogen bonds
stabilizing the interactions. However, it is important to consider
that binding affinity alone does not guarantee an effective immune
response or protection against a specific pathogen. Other factors,
such as the overall immunogenicity of the antigen, the activation of
appropriate immune pathways, and the generation of memory
responses, are also critical in achieving a robust and protective
immune reaction.

Normal mode analysis was then performed to investigate the
flexibility and dynamics of C4 with immune components. Low-
frequency vibrations, representing the collective movements of
the atoms in the protein, were calculated, and the results showed
that C4 had major fluctuations around residues Pro30 and Thr40,
and between the residues at position 160–170 (DCSGRVIKGSG).
These residues were in the loop regions and, therefore, more
flexible than the rest of the structure (Supplementary Figure S5).
Loop regions are segments of the protein structure that connect
secondary structural elements such as ɑ-helices and β-sheets
(Chavan, 2014). These regions are often more flexible and
exhibit more conformational changes than the other parts of
the protein (Papaleo et al., 2016). Loop regions have
immunogenic characteristics and are used in vaccine design
for HIV (Montero et al., 2008), Leptotricha buccalis
(Alshammari et al., 2022), and dengue virus (Urakami et al.,
2017). Previously, Ismail et al. described fluctuations in the loop
regions of the vaccine construct against Enterobacteriaceae, with
loops inferred to adopt a stable conformation with increasing
time, during the simulation (Ismail et al., 2020). They suggested
that this might help in flexible binding with host immune
components. Previously, the CDR H3 loop-dominated
recognition of CD4 epitopes was also reported for HIV
(Pancera et al., 2017). Thus, it is inferred that these regions
may become displaced and help in flexible binding with HLAs
and TLRs of the immune system. The varying levels of structural
stability and flexibility observed through the RMSD and RMSF
plot of different receptors via MD simulation also have
implications for understanding immune responses and guiding
the development of vaccines with improved efficacy. The stability
and specificity of these interactions may be optimized to enhance
the C4-mediated immune response.

Immune response simulation analysis revealed that the
vaccine construct induced a robust initial immune response
against K. kingae infection through the introduction of tbpA
and hpuB proteins in the body. The production of
immunoglobulin antibodies and their subsequent stabilization,
along with the doubling of TH1-active cells, indicates strong
protection against the pathogen. However, the immune response
was not uniform across all T-cell populations. Although the long-
term protection provided by the TC memory cells remains stable,
the short-term immune response decreased after a few months of
vaccination. Fluctuations in some cells, e.g., the effector T cells,
may indicate a natural reaction of the immune system to the
vaccine and not a lack of efficacy. The immune system is complex
and dynamic, and its response to a vaccine can vary among
individuals and over time (Shen-Orr and Furman, 2013; Laserson
et al., 2014; Brodin and Davis, 2017). Therefore, it is important to
consider multiple parameters of the immune response when
assessing the efficacy of a vaccine. In silico immune

simulations can provide valuable insights into immune
responses, but they cannot fully capture the complexity of the
immune response (Russo et al., 2020) and, therefore, must still be
validated through in vitro and in vivo experiments. Hence,
further studies are needed to fully understand the dynamics of
the immune response over an extended period of time for this
vaccine construct against K. kingae.

There were several limitations to our work. In silico protein
structure prediction is challenging, and inaccuracies in the 3D
structure of the vaccine construct might have affected the
reliability of docked interaction findings. Mutations in the
proteins used for designing vaccines over time may alter their
antigenic properties, hence compromising the reliability of our
findings over time. Apart from this, biological systems are highly
complex, and many factors contribute to the immune response.
Vaccine efficacy depends on multiple factors, including innate and
adaptive immune responses, cellular and humoral immunity, and
long-term memory. Integrating all these factors accurately is
difficult, and computational models may oversimplify certain
reactions, leading to inaccuracies in predicting actual immune
responses. Our understanding of how the immune system
recognizes and responds to the computationally predicted
epitopes based on molecular docking analysis might not always
be accurate, and information about the induction of the desired
immune response is uncertain. Despite these limitations,
computational vaccine design remains a valuable tool that can
significantly accelerate the vaccine development process and
guide experimental research.

5 Conclusion

The K. kingae species hosts TBDRs, which acquire and transport
important substances like iron and vitamins. These can be used for
the design of a chimeric vaccine construct against the conserved
region (existing as a motif or domain). Chimeric vaccines can reduce
the risk of adverse reactions as they typically contain only selected
antigenic epitopes rather than whole pathogens or toxins. Therefore,
a multi-epitope vaccine construct was designed and tested for
immune response elicitation through docking with immune
system components and simulation. The use of computational
modeling and docking studies can provide valuable insights into
the interactions between vaccine components and immune system
components, which can inform the design and development of more
effective vaccines. RMSD and RMSF plots after MD simulation
revealed that different receptors exhibited varying levels of stability
and flexibility during the simulation, which depicted that C4 adapts
and interacts differently with different receptors. Immune response
simulation through agent-based modeling showed good binding
affinity along with a robust immune response elicitation for
C4 against K. kingae infection. However, the decrease in memory
B cells may indicate that the immunity provided by the vaccine
could wane over time, potentially leading to a higher risk of
reinfection and the need for booster doses. Additional
experimental validation through in vitro and in vivo studies is
suggested to confirm the efficacy of the vaccine construct in
inducing an immune response and improving the longevity of
immunity.
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