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Background: Primary ciliary dyskinesia (PCD; MIM 242650) is a rare genetic
disorder characterized by malfunction of the motile cilia resulting in reduced
mucociliary clearance of the airways. Together with recurring infections of the
lower respiratory tract, chronic rhinosinusitis (CRS) is a hallmark symptom of PCD.
Data on genotype–phenotype correlations in the upper airways are scarce.

Materials and methods: We investigated the prevalence, radiologic severity, and
impact on health-related quality of life (HrQoL) of CRS in 58 individuals with
genetically confirmed PCD. Subgroup analysis was performed according to the
predicted ultrastructural phenotype based on genetic findings.

Results: Among 58 individuals harboring pathogenic variants in 22 distinct genes
associated with PCD, all were diagnosed with CRS, and 47% underwent sinus
surgery. A total of 36 individuals answered a German-adapted version of the 20-
item Sinonasal Outcome Test (SNOT-20-GAV) with a mean score of 35.8 ± 17,
indicating a remarkably reduced HrQoL. Paranasal sinus imaging of 36 individuals
showed moderate-to-severe opacification with an elevated Lund–Mackay Score
(LMS) of 10.2 ± 4.4. Bilateral agenesis of frontal sinus (19%) and sphenoid sinus
(9.5%) was a frequent finding in individuals aged 16 years or older. Subgroup
analysis for predicted ultrastructural phenotypes did not identify differences in
HrQoL, extent of sinus opacification, or frequency of aplastic paranasal sinuses.

Conclusion: PCD is strongly associated with CRS. The high burden of disease is
indicated by decreased HrQoL. Therefore, the upper airways of PCD individuals
should be evaluated and managed by ear–nose–throat (ENT) specialists.
Genetically determined PCD groups with predicted abnormal versus (near)
normal ultrastructure did not differ in disease severity. Further studies are
needed to gain evidence-based knowledge of the phenotype and
management of upper airway manifestations in PCD. In addition, individuals
with agenesis of the frontal and sphenoid paranasal sinuses and chronic
respiratory symptoms should be considered for a diagnostic evaluation of PCD.
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1 Introduction

Motile cilia have a highly ordered ultrastructure with a
canonical 9 + 2 microtubule-based organization (Wallmeier
et al., 2020). Multiple motile cilia lining the cell surface of
different tissues beat in a coordinated slow backward and fast
forward stroke in order to clean the airways. The upper airways
also comprise the nose, paranasal sinuses, and middle ears.
Primary ciliary dyskinesia (PCD; ORPHA:244) is a rare
genetic disorder affecting the function of motile cilia (Mirra
et al., 2017). This results in impaired mucociliary clearance
and a wide spectrum of clinical symptoms and manifestations
in various organ systems (Werner et al., 2015; Paff et al., 2021).
To date, pathogenic variants in more than 50 genes are related to
PCD (Wallmeier et al., 2020). The severity and course of the
disease differ based on the genotypes (Paff et al., 2021). Some of
these ciliary defects cause ultrastructural changes that are
detectable by transmission electron microscopy (TEM),
whereas others do not (Shoemark et al., 2020). Therefore, the
diagnostics of PCD are complex, and several tests, including
measurement of nasal nitric oxide, high-speed video microscopy
of vital ciliated epithelial cells (i.e., collected by nasal brushes),
immunofluorescence analyses, TEM, and genetic analyses, are
needed (Lucas et al., 2017a).

There is no cure for PCD, and its management focuses on
symptomatic treatment (Paff et al., 2021). As good clinical evidence
is missing, the management of PCD is often adopted to experiences
in the more frequent and well-investigated respiratory disease cystic
fibrosis (CF) (Lucas et al., 2017b; Marthin et al., 2021). Both diseases
show an impaired mucociliary clearance leading to bacterial
colonization, recurring/chronic infections, and progressive
changes of the upper and lower airways (i.e., bronchiectasis)
(Marthin et al., 2021). However, the pathophysiology is different,
and some highly effective therapies in CF, such as inhalation of
recombinant human dornase alfa, do not benefit individuals with
PCD (Paff et al., 2021).

The majority of individuals with PCD suffer from symptoms
related to the paranasal sinuses, and half of these patients fulfil the
formal criteria for chronic rhinosinusitis (CRS) (Sommer et al.,
2011; Bhatt et al., 2019). Zawawi et al. demonstrated that nasal
congestion (83%) and nasal discharge (77%) were the most frequent
upper airway symptoms in a cohort of children with PCD and that
sinonasal disease can lead to a decrease in health-related quality of
life (Zawawi et al., 2021). Pifferi et al. investigated the sense of smell
in individuals with PCD and showed an inverse correlation between
loss of smell and radiologic grading of CRS. In the cohort, sense of
smell was reduced in PCD individuals with abnormal ciliary
ultrastructure compared to PCD individuals with normal
ultrastructure due to pathogenic variants in DNAH11 (Pifferi
et al., 2018). However, data on CRS in individuals with PCD
remain limited, including detailed genotype–phenotype correlation.

In this study, we investigated the impact of CRS in a large cohort
of individuals with genetically confirmed PCD on health-related
quality of life (HrQoL), and we graded CRS severity based on
radiologic imaging and the Lund–Mackay scoring system. We
grouped PCD individuals based on genetic defects that are
predicted to cause either (near) normal or abnormal ciliary
ultrastructure for genotype–phenotype correlation.

2 Materials and methods

2.1 Study design and population

We performed prospective analyses of HrQoL and retrospective
analyses of computed tomography (CT) and magnetic resonance
imaging (MRI) scans of paranasal sinuses in individuals with a
genetically confirmed diagnosis of PCD.

The study population included individuals from the PCD cohort
of the University Hospital Muenster, Germany (https://pcdregistry.
uni-muenster.de/), who were referred between 02/2011 and 09/
2021 for PCD diagnostics. Only patients with genetically
confirmed PCD and available paranasal sinus imaging and/or
SNOT-20-GAV were included. Each participant or their legal
guardian(s) gave written informed consent prior to participation.
The study was approved by the local ethics committee of the
Westphalian Wilhelms-University of Muenster (Muenster,
Germany; AZ 2011-270-f-S). PCD diagnosis was confirmed
following the ERS diagnostic guideline (Lucas et al., 2017a).

Mutations in many different genes can cause PCD due to
marked genetic heterogeneity. We divided the individuals into
two groups depending on the mutated genes, as described
previously (Raidt et al., 2022; Kinghorn et al., 2023). One gene
group predicted abnormal axonemal ultrastructure detectable by
TEM. This group comprised i) outer dynein arm (ODA)-, ii)
combined inner dynein arm (IDA)/ODA-, and iii) microtubular
disorganization and IDA defects (Shoemark et al., 2020). The other
gene group predicted normal or near-normal ultrastructural
phenotypes [referred to as (near) normal ultrastructure] of the
respiratory ciliary axonemes (Raidt et al., 2022; Kinghorn et al.,
2023). Please refer to Table 1 for the different gene groups.

CRS was diagnosed in accordance with the EPOS guidelines
(Fokkens et al., 2020). Basic clinical information was collected from
the International PCD registry (Werner et al., 2016). HrQoL was
evaluated by using the German-adapted 20 item Sino-Nasal
Outcome Test (SNOT-20-GAV) (Baumann et al., 2007), and
radiologic staging of chronic rhinosinusitis was determined using
Lund–Mackay scores (LMS) (Lund and Mackay, 1993).

2.2 Genetic analyses

Genetic diagnoses were established using regular gene testing
including Sanger sequencing of PCD genes. In most cases, targeted
PCD gene panels were used as previously described (Raidt et al.,
2022; Aprea et al., 2023). In a few cases, whole-exome sequencing
was performed, and data were analyzed only for DNA variants in
previously published PCD genes. Only individuals with pathogenic
autosomal-recessive bi-allelic variants or a pathogenic heterozygous
dominant or hemizygous X-linked variant were included.
Segregation analysis was performed when parental DNA was
available. All DNA variants were evaluated according to the
guidelines of the American College of Medical Genetics and
Genomics and the Association for Molecular Pathology (ACMG/
AMP) (Richards et al., 2015), and only pathogenic (class 5)/likely
pathogenic variants (class 4) were included. The pathogenicity of
genetic variants was determined as previously described using in
silico calculation programs (e.g., Varsome) (Raidt et al., 2022;
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TABLE 1 Genetic findings and predicted ultrastructure for each individual. Abbreviation: ID, Identification number; Var. class, Variant classification; 4 likely
pathogenic, 5 pathogenic.

ID Allele 1 Allele 2 Predicted ciliary
ultrastructure

Mutation Protein level Var.
Class

Mutation Protein level Var.
Class

(Near)
normal

Abnormal

1-15 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 X

1-16 ODAD1(NM_144577.4):
c.742G>A

(p.Ala248Thr) 5 ODAD1(NM_144577.4):
c.742G>A

(p.Ala248Thr) 5 X

1-18 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 ZMYND10(NM_015896.4):
c.490dup

(p.Gln164ProfsTer19) 4 X

1-19 DNAI1(NM_012144.4):
c.48+2dup

(p.?) 5 DNAI1(NM_012144.4):
c.912C>G

(p.Tyr304Ter) 5 X

1-25 DNAH5(NM_001369.3):
c.2710G>T

(p.Glu904Ter) 5 DNAH5(NM_001369.3):
c.2710G>T

(p.Glu904Ter) 5 X

1-28 DNAH11(NM_001277115.2):
c.4333C>T

(p.Arg1445Ter) 5 DNAH11(NM_001277115.2):
c.4942C>T

(p.Gln1648Ter) 4 X

1-32 DNAI1(NM_012144.4):
c.48+2dup

(p.?) 5 DNAI1(NM_012144.4):
c.1569G>A

(p.Lys523 = ) 4 X

1-39 DNAH11(NM_001277115.2):
c.12751_12756del

(p.Val4251_
Lys4252del)

5 DNAH11(NM_001277115.2):
c.852_854del

(p.Arg285del) 4 X

1-47 FOXJ1(NM_001454.4):
c.868_871dup

(p.Thr291LysfsTer12) 5 X

1-49 DNAAF1(NM_178452.6):
c.329dup

(p.Asp110GlufsTer8) 5 DNAAF1(NM_178452.6):
c.572T>G

(p.Leu191Arg) 5 X

1-52 CFAP300(NM_032930.3):
c.198_200delTTTinsCC

(p.Phe67ProfsTer10) 5 CFAP300(NM_032930.3):
c.198_200delTTTinsCC

(p.Phe67ProfsTer10) 5 X

1-57 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 X

1-74 HYDIN(NM_001270974.2):
c.6140C>G

(p.Ser2047Ter) 5 HYDIN(NM_001270974.2):
c.6140C>G

(p.Ser2047Ter) 5 X

1-77 DNAAF6(NM_173494.2):
400 kb deletion

(p.?) 5 X

1-83 DNAI1(NM_012144.4):
c.48+2dup

(p.?) 5 DNAI1(NM_012144.4):
c.48+2dup

(p.?) 5 X

1-91 ODAD2(NM_018076.5):
c.2976del

(p.Asp993ThrfsTer14) 4 ODAD2(NM_018076.5):
c.2976del

(p.Asp993ThrfsTer14) 4 X

1-93 ODAD1(NM_144577.4):
c.226C>T

(p.Gln76Ter) 4 ODAD1(NM_144577.4):
c.226C>T

(p.Gln76Ter) 4 X

1-96 DNAH11(NM_001277115.2):
c.8719C>T

(p.Pro2907Ser) 5 DNAH11(NM_001277115.2):
c.8719C>T

(p.Pro2907Ser) 5 X

1-100 ODAD2(NM_018076.5):
c.2528dup

(p.Leu843PhefsTer52) 5 ODAD2(NM_018076.5):
c.2528dup

(p.Leu843PhefsTer52) 5 X

1-106 DNAH5(NM_001369.3):
c.5563dup

(p.Ile1855AsnfsTer6) 5 DNAH5(NM_001369.3):
c.5066T>A

(p.Leu1689Ter) 5 X

1-108 HYDIN(NM_001270974.2):
c.6140C>G

(p.Ser2047Ter) 5 HYDIN(NM_001270974.2):
c.6140C>G

(p.Ser2047Ter) 5 X

1-109 DNAH5(NM_001369.3):
c.10815del

(p.Pro3606HisfsTer23) 5 DNAH5(NM_001369.3):
c.13486C>T

(p.Arg4496Ter) 5 X

1-113 CFAP300(NM_032930.3):
c.198_200delTTTinsCC

(p.Phe67ProfsTer10) 5 CFAP300(NM_032930.3):
c.353A>G

(p.Asp118Gly) 4 X

(Continued on following page)
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TABLE 1 (Continued) Genetic findings and predicted ultrastructure for each individual. Abbreviation: ID, Identification number; Var. class, Variant classification;
4 likely pathogenic, 5 pathogenic.

ID Allele 1 Allele 2 Predicted ciliary
ultrastructure

Mutation Protein level Var.
Class

Mutation Protein level Var.
Class

(Near)
normal

Abnormal

1-115 DNAH5(NM_001369.3):
c.10815del

(p.Pro3606HisfsTer23) 5 DNAH5(NM_001369.3):
c.10615C>T

(p.Arg3539Cys) 4 X

1-116 DNAAF1(NM_178452.6):
c.871dup

(p.Ala291GlyfsTer6) 5 DNAAF1(NM_178452.6):
c.871dup

(p.Ala291GlyfsTer6) 5 X

1-121 RSPH4A(NM_001010892.3):
c.1105G>C

(p.Ala369Pro) 5 RSPH4A(NM_001010892.3):
c.1105G>C

(p.Ala369Pro) 5 X

1-123 DNAI1(NM_012144.4):
c.48+2dup

(p.?) 5 DNAI1(NM_012144.4):
c.180G>A

(p.?) 4 X

1-128 DNAH5(NM_001369.3):
c.5177T>C

(p.Leu1726Pro) 5 DNAH5(NM_001369.3):
c.885dup

(p.Lys296GlnfsTer3) 5 X

1-134 CCDC39(NM_181426.2):
c.610–2A>G

(p.?) 5 CCDC39(NM_181426.2):
c.610–2A>G

(p.?) 5 X

1-135 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 ZMYND10(NM_015896.4):
c.47T>G

(p.Val16Gly) 5 X

1-144 DNAH11(NM_001277115.2):
c.5506C>T

(p.Arg1836Ter) 4 DNAH11(NM_001277115.2):
c.13065_13067del

(p.Leu4356del) 4 X

1-148 RSPH1(NM_080860.4):
c.680dup

(p.Pro228AlafsTer15) 5 RSPH1(NM_080860.4):
c.680dup

(p.Pro228AlafsTer15) 5 X

1-151 DNAH5(NM_001369.3):
c.10384C>T

(p.Gln3462Ter) 5 DNAH5(NM_001369.3):
Duplication Exon 54-70

(p.?) 5 X

1-153 CCDC40(NM_017950.4):
c.248del

(p.Ala83ValfsTer84) 5 CCDC40(NM_017950.4):
c.248del

(p.Ala83ValfsTer84) 5 X

1-154 SPAG1(NM_172218.3):
c.427–2A>G

(p.?) 4 SPAG1(NM_172218.3):c.595
+ 2T>G

(p.?) 4 X

1-171 DNAAF6(NM_173494.2):
c.355C>T

(p.Gln119Ter) 5 X

1-179 DNAH5(NM_001369.3):
c.12705 + 1G>T

(p.?) 5 DNAH5(NM_001369.3):
c.10615C>T

(p.Arg3539Cys) 4 X

1-190 DNAH11(NM_001277115.2):
c.12597dup

(p.Pro4200SerfsTer15) 5 DNAH11(NM_001277115.2):
c.13420C>T

(p.Gln4474Ter) 4 X

1-193 DNAH5(NM_001369.3):
c.12279 + 1G>A

(p.?) 4 DNAH5(NM_001369.3):
c.5177T>C

(p.Leu1726Pro) 5 X

1-194 RSPH4A(NM_001010892.3):
c.1391G>A

(p.Gly464Glu) 4 RSPH4A(NM_001010892.3):
c.1391G>A

(p.Gly464Glu) 4 X

1-205 DNAH9(NM_001372.4):
c.5106T>G

(p.Tyr1702Ter) 4 DNAH9(NM_001372.4):
c.9211_9214dup

(p.Gly3072GlufsTer8) 5 X

1-207 CCDC40(NM_017950.4):
c.940-1G>C

(p.?) 5 CCDC40(NM_017950.4):
c.940-1G>C

(p.?) 5 X

1-211 CCDC40(NM_017950.4):
c.2440C>T

(p.Arg814Ter) 5 CCDC40(NM_017950.4):
c.2440C>T

(p.Arg814Ter) 5 X

1-214 DNAH11(NM_001277115.2):
c.11663G>A

(p.Arg3888His) 4 DNAH11(NM_001277115.2):
c.11663G>A

(p.Arg3888His) 4 X

1-218 DNAAF4(NM_130810.4):
c.583del

(p.Ile195Ter) 5 DNAAF4(NM_130810.4):
c.583del

(p.Ile195Ter) 5 X

1-220 DNAH5(NM_001369.3):
c.1715T>G

(p.Leu572Trp) 4 DNAH5(NM_001369.3):
c.5146C>T

(p.Arg1716Trp) 5 X

(Continued on following page)
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Aprea et al., 2023). Gene nomenclature was used according to the
current approved HGNC [human genome organization (HUGO);
(https://www.genenames.org/)] (Bruford et al., 2020).

2.3 Imaging analyses

We analyzed available CT and MRI scans of the paranasal
sinuses stored in the Picture Archiving and Communication
System (PACS) of the University Hospital Muenster. CT scans
were assessed in bone windows in axial and coronal slices, while
T1-and T2-weighted coronal and axial slices were analyzed from
MRI scans as described previously (Lin and Bhattacharyya, 2009).
MRI was acquired on different machines with a magnetic field
strength of 1.5 or 3.0 Tesla, and spin-echo sequences were used. The
slice thickness varied between 3 and 5 mm. Pneumatization of the
paranasal sinuses is linked to age, especially of the frontal and
sphenoid sinuses (Lee et al., 2022). The most recent imaging was
evaluated for statistical analyses.

Scans were evaluated for mucosal thickening and opacification
of each of the sinuses and the ostiomeatal complex according to the
Lund–Mackay scoring system (0 = no opacification/mucosal
swelling; 1 = partial opacification; 2 = complete opacification).
Ostiomeatal complexes were either scored as 0 (not obstructed)

or 2 points (obstructed) (Hopkins et al., 2007). Agenesis of sinuses
was scored with 0 points. Single values were summed, leading to a
score between 0 (indicating no opacification at all) and 24
(indicating full opacification of all scored sites). Scoring was
performed independently and blinded by both a pediatrician
(AS) and a rhinologist (AGB).

Agenesis of the frontal sinus was defined as the absence of
supraorbital pneumatization of the frontal bone. Agenesis of the
sphenoid sinus was defined as the absence of pneumatization of the
sphenoid bone. Paranasal sinus agenesis was only evaluated in
individuals aged 16 years or older.

2.4 Health-related quality of life

HrQoL was evaluated by using the SNOT-20-GAV, a validated
and slightly adapted German translation of the SNOT-20 (Piccirillo
et al., 2002; Baumann et al., 2008). The questionnaire contains
20 items addressing upper airway and general symptoms. Compared
to the SNOT-20, the SNOT-20-GAV replaces two items addressing
night sleep with items addressing CRS symptoms (nasal congestion
and reduced sense of smell) (Baumann, 2009). Subscores were
calculated as suggested by Baumann et al., (2008). Individuals
with PCD and of at least 18 years of age answered the

TABLE 1 (Continued) Genetic findings and predicted ultrastructure for each individual. Abbreviation: ID, Identification number; Var. class, Variant classification;
4 likely pathogenic, 5 pathogenic.

ID Allele 1 Allele 2 Predicted ciliary
ultrastructure

Mutation Protein level Var.
Class

Mutation Protein level Var.
Class

(Near)
normal

Abnormal

1-221 CCNO(NM_021147.5):
c.926del

(p.Pro309ArgfsTer18) 5 CCNO(NM_021147.5):
c.926del

(p.Pro309ArgfsTer18) 5 X

1-226 DNAAF11(NM_012472.6):
c.630del

(p.Trp210CysfsTer12) 5 DNAAF11(NM_012472.6):
c.630del

(p.Trp210CysfsTer12) 5 X

1-228 DNAAF4(NM_130810.4):
c.583del

(p.Ile195Ter) 5 DNAAF4(NM_130810.4):
c.808C>T

(p.Arg270Ter) 5 X

1-232 DNAAF11(NM_012472.6):
c.630del

(p.Trp210CysfsTer12) 5 DNAAF11(NM_012472.6):
c.630del

(p.Trp210CysfsTer12) 5 X

1-233 ODAD4(NM_001350319.2):
c.245del

(p.Lys82ArgfsTer29) 5 ODAD4(NM_001350319.2):
c.397 + 1G>A

(p.?) 5 X

1-238 CCDC40(NM_017950.4):
c.248del

(p.Ala83ValfsTer84) 5 CCDC40(NM_017950.4):
c.736_755dup

(p.Ser252ArgfsTer43) 4 X

1-242 ODAD1(NM_144577.4):
c.742G>A

(p.Ala248Thr) 5 ODAD1(NM_144577.4):
c.742G>A

(p.Ala248Thr) 5 X

1-255 DNAH5(NM_001369.3):
c.2710G>T

(p.Glu904Ter) 5 DNAH5(NM_001369.3):
c.2710G>T

(p.Glu904Ter) 5 X

1-258 RSPH4A(NM_001010892.3):
c.1963_1966del

(p.Asp655IlefsTer83) 4 RSPH4A(NM_001010892.3):
c.1963_1966del

(p.Asp655IlefsTer83) 4 X

1-261 DNAAF1(NM_178452.6):
c.1349dup

(p.Pro451AlafsTer6) 5 DNAAF1(NM_178452.6):
c.1349dup

(p.Pro451AlafsTer6) 5 X

1-265 SPAG1(NM_172218.3):
c.1282_1294del

(p.Ala428ProfsTer17) 5 SPAG1(NM_172218.3):
c.1282_1294del

(p.Ala428ProfsTer17) 5 X

1-292 SPEF2(NM_024867.4):
c.910C>T

(p.Arg304Ter) 5 SPEF2(NM_024867.4):
c.2629del

(p.Ile877PhefsTer6) 4 X
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questionnaire during routine consultations in the outpatient clinic
between June 2017 and October 2020. SNOT-20-GAV scores were
correlated with LMS, where paired data were available.

2.5 Statistics

Statistics were mainly calculated with Graphpad Prism
9.2.0 for Windows. Intraclass correlation (ICC), Fisher’s exact
test, and chi-squared test were calculated using IBM SPSS
Statistics version 28.0.1.0. For LMS and SNOT scores,
Gaussian distribution was assumed, and unpaired t-test was
calculated between ultrastructural groups and sex. Correlation
between LMS, SNOT-20-GAV, and their subscores was evaluated
by Pearson correlation. Concordance of Lund–Mackay Scores
and sinus agenesis assessment was quantified using the intraclass
correlation coefficient with a two-way mixed model for absolute
agreement on average measures. Dependency of ciliary
ultrastructure on agenesis of paranasal sinuses was analyzed
by chi-squared test, and relative risks for paranasal sinus
surgery between subgroups of predicted ultrastructure were
evaluated by Fisher’s exact test. Scatterplots show each data
point as individual points in the graph. The horizontal line
and error bars indicate mean and standard deviation. The
level of significance was determined as alpha = 0.05.

3 Results

3.1 Study cohort and genetic results

The cohort contained 58 individuals with genetically confirmed
PCD. Disease-causing variants were identified in 22 different PCD
genes. In most cases, these genetic variants were inherited in an
autosomal recessive manner (55/58), but in two individuals a rare
X-linked mutation in DNAAF6 and in one individual an autosomal
dominant mutation in FOXJ1 were reported (Table 1). An overview
of the detected genetic defects in this study cohort is summarized in
Table 1. There were 26 male and 32 female individuals included. The
mean age of the study cohort was 30.9 years (±14.5 SD, range
5–65 years) (Table 2). We characterized the cohort according to
the predicted ciliary ultrastructure as indicated by genetic defect. In
all, 42 individuals were classified into the group with predicted

abnormal ultrastructure (72%), including individuals with
pathogenic variants in CCDC39 (n = 1), CCDC40 (n = 4),
CFAP300 (n = 2), DNAAF1 (n = 3), DNAAF4 (n = 2), DNAAF 6
(n = 2),DNAAF11 (n = 2),DNAH5 (n = 10),DNAI1 (n = 4),ODAD1
(n = 3), ODAD2 (n = 2), ODAD4 (n = 1), SPAG1 (n = 2), and
ZMYND10 (n = 4). Meanwhile, 16 individuals were classified into
the subgroup with predicted (near) normal ultrastructure (28%),
including individuals with pathogenic variants in CCNO (n = 1),
DNAH11 (n = 6), DNAH9 (n = 1), FOXJ1 (n = 1), HYDIN (n = 2),
RSPH1 (n = 1), RSPH4A (n = 3), and SPEF2 (n = 1) (Table1). All
individuals in this cohort suffered from chronic rhinosinusitis
(100%). Moreover, 27 individuals (47%) underwent sinus surgery
at least once, 7 of whom underwent multiple surgeries (26%)
(Table 2). There was no difference in relative risk for paranasal
sinus surgery between the groups of predicted abnormal compared
to predicted (near) normal ultrastructure (relative risk 0.77; p =
0.392).

3.2 Imaging findings

Paranasal sinus CT (n = 25) and MRI (n = 11) scans were
available from 36 individuals. The mean age at the time of imaging
was 18.9 ± 9.2 years (range 4—43). When comparing CT and MRI
scans in this cohort, there was no difference in LMS between these
groups (CT 10.4 ± 4.3, MRI 9.9 ± 3.6, p = 0.74).

The amount of opacification was graded (0 = no opacification,
1 = partial opacification, 2 = complete opacification) from imaging
for each paranasal sinus and ostiomeatal complex on each side
(12 sites) according to the Lund–Mackay score (Lund and Mackay,
1993). The mean LMS was 10.3 ± 4.0, indicating moderate-to-severe
opacification (Figure 1). There was no significant difference in
radiologic grading (p = 0.98) between the PCD subgroups with
predicted (near) normal and abnormal ultrastructure (Figure 1F)
and between sexes (p = 0.71, Figure 2A).

Analysis of individuals aged 16 years or older (Figure 3)
demonstrated a high prevalence of bilateral agenesis of the
frontal (4/21, 19%) and sphenoid sinuses (2/21, 9.5%).
Genetic defects resulting in agenesis of the frontal (CCNO,
DNAAF1, DNAH11, and HYDIN) and sphenoid (HYDIN and
CCDC40) sinuses comprise genetic defects that are predicted to
result in both PCD with (near) normal and abnormal
ultrastructure.

TABLE 2 Clinical characteristics of the PCD cohort Shown are ratios, mean ± standard deviation (minimum—maximum), and counts (percentages). Abbreviations:
PCD, primary ciliary dyskinesia; CT, computed tomography; MRI, magnetic resonance imaging; SNOT, sino-nasal outcome test; m, male; f, female.

Characteristics PCD individuals n = 58 Sinus imaging n = 36, CT = 25, MRI = 11 SNOT n = 36

Sex (m:f) 26:32 14:22 14:22

Age in years 30.9 ± 14.5 (5—65) 24.3 ± 10,2 (5–48) 36.6 ± 13.7 (20—65)

Age on imaging/SNOT 18.9 ± 9.2 (4—43) 31.7 ± 13.2 (18—63)

Predicted ciliary ultrastructure (near) normal:abnormal) 16:42 9:27 12:24

Chronic rhinosinusitis [(near) normal:abnormal)] 58 (100%) [16:42] 36 (100%) [9:27] 36 (100%) [12:24]

Paranasal sinus surgery [(near) normal:abnormal)] 27 (47%) [9:18] 18 (50%) [5:13] 16 (44%) [5:11]

Resurgery [(near) normal:abnormal)] 7/27 (26%) [3:4] 5/18 (28%) [3:2] 4/15 (25%) [1:3]
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3.3 Quality of life assessment

HrQoL was assessed with the standardized questionnaire
SNOT-20-GAV that was answered by a total of 36 patients
during routine visits at outpatient clinics. The mean SNOT-
20-GAV was 35.8 ± 17 (Figure 4). This indicates a substantial
reduction in HrQoL. Subscores were highest for primary nasal
symptoms (44 ± 19), followed by secondary rhinogenic
symptoms (33.4 ± 17.6) and general items concerning quality
of life (32.7 ± 19.8). Cough, congested nose breathing, runny
nose, were the complaints with the highest scores (mean

2.6—3.2) in SNOT-20-GAV. Ear pain, dizziness, facial pain/
pressure, and sneezing were the least common (mean
0.66–0.83). HrQoL showed a slight tendency toward a reduced
HrQoL in female individuals (mean SNOT-20-GAV ±SD 39.4 ±
3.8) compared to male individuals (mean SNOT-20-GAV ±SD
30 ± 12.3), but the difference did not reach statistical significance
(p = 0.11, Figure 2B). The correlation between LMS and SNOT-
20-GAV (Pearson r = 0.35) was weak and did not reach statistical
significance. There was no significant difference HrQoL (p =
0.93) between the predicted (near) normal and abnormal
ultrastructure groups (Figure 4).

FIGURE 1
Abnormal opacification of paranasal sinuses and high Lund–Mackay Scores in PCD individuals. Coronal (A–C) and axial (D) CT slices of individuals
with PCD show (A) no opacification, (B) partial opacification, and (C) full opacification of the maxillary sinuses (asterisk) and ethmoid cells (arrowhead).
Chronic rhinosinusitis can lead to osteogenesis of ethmoid cells and medial orbital walls (C,D). Lund–Mackay Scores are calculated by grading six
different sites on each side with 0-2 points (0 = no, 1 = partial, and 2 = full opacification). The most severe score is 24. In this study, individuals with
PCD have moderate-to-severe opacification with a mean LMS of 10.3 ± 4 (E). There is no difference between PCD with predicted (near) normal (mean
LMS 10.2 ± 4.4) and abnormal (mean LMS 10.3 ± 4.4) ciliary ultrastructure based on genetic defects (F) (p = 0.98). Error bars indicate mean ± SD.
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4 Discussion

Reports on CRS in individuals with PCD are scarce. Here, we
investigated the clinical phenotype of the upper airways with a focus
on the paranasal sinuses in a large cohort of 58 individuals with
genetically confirmed PCD. Our cohort comprised PCD individuals
with disease-causing variants in 22 different genes illustrating the
high genetic heterogeneity of PCD (Wallmeier et al., 2020;
Pennekamp et al., 2023). We investigated the impact of CRS

based on radiologic imaging and the Lund–Mackay scoring
system (LMS) and health-related quality of life (HrQoL) to grade
CRS severity.

In this study, we decided not to modify LMS for the absence of
sinuses compared to other investigations (Pifferi et al., 2011;
Berkhout et al., 2016). The modification would increase the total
scores in case of sinus aplasia, implicating a higher disease severity.
However, aplastic sinuses cannot become inflamed, and a
modification of LMS would therefore distort the results. In
addition, available sinus imaging showed a moderate-to-severe
grade of opacification of sinuses, as indicated by a mean LMS of
10.3. An LMS of four or higher in adolescents and five or higher in
children is considered pathologic and highly predictive for the
diagnosis of CRS if applied using a CT scan (Fokkens et al.,
2020). Our cohort was evaluated by both CT and MRI. Based on
previous literature, Lund–Mackay scores based onMRI scans do not
overestimate sinus opacification (Lin and Bhattacharyya, 2009). This
is supported by our findings. When comparing CT andMRI scans in
this cohort, there was no difference in LMS between these groups

FIGURE 2
Sex-specific analysis of HrQoL and radiologic grading of CRS in
PCD individuals. Evaluation of HrQoL using SNOT-20-GAV and
radiologic grading by Lund–Mackay Score (LMS) in relation to sex
show no significant differences. (A) Radiologic grading for female
PCD individuals shows a mean LMS of 10.5 ± 3.8 and for male PCD
individuals of 9.9 ± 4.5 (p = 0.71). (B) The HrQoL shows a slight
tendency toward a reduced HrQoL in female individuals (mean SNOT-
20-GAV 39.4 ± 3.8) compared to male individuals (mean SNOT-20-
GAV 30 ± 12.3), but the difference does not reach statistical
significance (p = 0.11). Error bars indicate mean ± SD.

FIGURE 3
Increased prevalence of frontal and sphenoid sinus agenesis in
PCD. Supraorbital axial (A–C) and ventral coronal (D) CT slices of
individuals with PCD show (A) normal developed frontal sinus, (B)
unilateral agenesis (arrowhead) of frontal sinus, and (C,D)
bilateral agenesis of sinus frontalis. Paranasal sinus aplasia was
investigated for individuals aged 16 years or older as the
pneumatization of paranasal sinuses develops during adolescence
The prevalence of bilateral agenesis of the frontal sinus is 19% (4/21).
Bilateral agenesis of the sphenoid sinus occurs less often (9.5%, 2/
19) (E).

Frontiers in Molecular Biosciences frontiersin.org08

Schramm et al. 10.3389/fmolb.2023.1258374

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1258374


(CT 10.4 ± 4.3, MRI 9.9 ± 3.6, p = 0.74). Thus, MRI can be used for
future studies in order to reduce the radiation exposure.

The pneumatization of paranasal sinuses develops during
adolescence (Barghouth et al., 2002) and is therefore strictly
related to the age of individuals. Hence, we investigated paranasal
sinus aplasia only in individuals aged 16 years or older. Increased
frequency of aplasia of frontal and sphenoid sinus in PCD was also
reported previously (Pifferi et al., 2011; Bequignon et al., 2019a;
Bhatt et al., 2019). In our study, the frontal sinus was bilaterally
aplastic in 19% of individuals (16 years of age or older), and the
sphenoid sinus was aplastic in 9.5% of this cohort. This is more
frequent than in the general European population, in whom frontal
sinus aplasia occurs in only 5% of individuals (Butaric et al., 2020).
We demonstrate that frontal sinus aplasia can occur in different
genotypes without being prevalent in distinct genotypes or
subgroups. The sample size of the subgroups for individual genes
was too small for statistical analysis. Further studies with larger
samples are needed to uncover potential genotype–phenotype
correlations.

Sinus aplasia is not unique to PCD as individuals with cystic
fibrosis (CF) suffering from reduced mucociliary clearance, due to
abnormally viscous mucus, show a high prevalence as well (Orlandi
and Wiggins, 2009; Berkhout et al., 2016; Kang et al., 2017;
Halderman et al., 2019). Thus, our data indicate that clinicians
who examine patients with severe CRS and underdeveloped
paranasal sinuses should consider a disease with reduced
mucociliary clearance and, accordingly, refer them to a center
specialized in CF and PCD diagnostics, especially when chronic
respiratory symptoms are present.

CRS had a strong clinical impact in our cohort as at least 47% of
the individuals with PCD underwent sinus surgery once or multiple
times (Table 2). This rate might even be underestimated due to recall
bias as many adult participants were included who primarily
reported pulmonary symptoms. To reduce this bias, we analyzed
the imaging for signs of functional endoscopic sinus surgery (FESS).
We found seven additional individuals exhibiting signs of FESS who
were not reported in electronic health records. Thus, the majority of
the individuals with PCD underwent sinus surgery.

TheCRS-relatedQoLwas strongly reduced, as indicated by themean
SNOT-20-GAV score of 35. This is considerably higher than the impact
of CRS in the healthy general population (a SNOT-20-GAV of 13 is
expected) (Baumann et al., 2008) but comparable to the impact of CRS in
individuals with CF (mean SNOT-22 of >30) (Habib et al., 2015; Kang
et al., 2017) and the impact of primary CRS (Baumann et al., 2008).
Interestingly, some individuals reached even less than 5 points in the
questionnaire, emphasizing the broad spectrum of disease severity. For
CRS, it has been previously reported that female people show a significant
reduction in HrQoL (Fokkens et al., 2020). Therefore, we analyzed our
HrQoL-Data for sex-specific differences. We could not show any
significant sex-specific differences. However, there was a tendency
toward reduced HrQoL in female PCD individuals. Therefore, future
studies with larger patient cohorts should address this question again.

We also consider certain limitations to this study. First, HrQoL
was evaluated with SNOT-20-GAV rather than the highly regarded
SNOT 22 (Fokkens et al., 2020; Albrecht et al., 2021). At the time of
the initiation of this investigation, SNOT-20-GAV was the only
available validated German translation (Baumann, 2009; Albrecht
et al., 2021). Due to the recent implementation of SNOT-22 in
German (Albrecht et al., 2021), we aim to use a comparable
questionnaire for future meta-analyses.

Here, we further evaluated the upper airway symptoms in the
genetically defined PCD cohort by grouping PCD individuals based
on genetic defects that are predicted to cause either (near) normal
(28%) or abnormal (72%) ciliary ultrastructure. Previous studies
have shown that there are differences in diagnostic and clinical
findings between PCD with abnormal and PCD with (near) normal
ultrastructure (Raidt et al., 2022; Kinghorn et al., 2023). Previously,
we have shown that PCD individuals with (near) normal
ultrastructure have a higher nasal NO production rate, more
residual ciliary activity, and lower frequency of laterality defects
(Raidt et al., 2022; Pennekamp et al., 2023). We therefore studied if
there are also differences regarding upper airway disease.

Interestingly, our analyses did not find evidence for differences
in the CRS disease severity among those PCD subgroups because the
HrQoL and LMS scores did not differ significantly (Figures 1, 3).
Further subgroup analyses were not performed because of the
marked genetic heterogeneity present in our PCD cohort
(22 different PCD genes were affected).

Because of the high disease burden of CRS in PCD individuals and
the frequent paranasal sinus surgeries, our findings strongly support
that PCD individuals should be followed by ENT specialists on a regular
basis. Current therapy mainly focuses on secretion management by
nasal rinsing, nasal inhalation of hypertonic saline solution, and topical
steroids (Bequignon et al., 2019b; Paff et al., 2021). Although FESS in
PCD individuals showed a positive effect on HrQoL in a small clinical
trial with 24 PCD individuals (Alanin et al., 2017), the rates of
recurrence and re-intervention are high, as indicated by this

FIGURE 4
SNOT-20-GAV demonstrates high disease burden associated
with CRS in PCD. The German-adapted version of the 20-item sino-
nasal outcome test (SNOT-20-GAV) was obtained from PCD
individuals during routine consultations in the outpatient clinic.
The items address chronic rhinosinusitis (CRS) symptoms such as
nasal drip and general aspects such as fatigue. Participants rate each
item from zero points (no problem) to five points (problem as bad as it
can be). The total score ranges from 0 to 100 points, with higher
scores indicating a reduced quality of life. On average, individuals with
PCD score 35.1 ± 17 points in SNOT-20-GAV (A). The difference
between PCD with predicted (near) normal (mean SNOT-20-GAV
36.1 ± 17.3) and predicted abnormal ciliary ultrastructure (mean
SNOT-20-GAV 34.7 ± 17.2) does not reach statistical significance
(p = 0.83) (B). Error bars indicate mean ± SD.
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investigation. Therefore, surgical interventions should be considered
individually based on patient history, physical examination, and
reduction of HrQoL (Werner et al., 2015; Fokkens et al., 2020).

In summary, this is the first study to investigate the disease
burden of upper airways in a genetically defined cohort of PCD
individuals (n = 58). As demonstrated by the summary of affected
genes in Table 1, a challenge in current PCD investigations is the
broad spectrum of different affected genes (Wallmeier et al., 2020)
resulting in small subgroups for further genotype–phenotype
correlations. Therefore, international collaborative efforts such as
the ERNLUNG PCD study group aim to collect ENT data in a
systematic way using the international PCD registry (Werner et al.,
2016).
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