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The development of novel medicines to treat autoimmune diseases and SARS-
CoV-2 main protease (Mpro), a virus that can cause both acute and chronic
illnesses, is an ongoing necessity for the global community. The primary objective
of this research is to use CoMFA methods to evaluate the quantitative structure-
activity relationship (QSAR) of a select group of chemicals concerning
autoimmune illnesses. By performing a molecular docking analysis, we may
verify previously observed tendencies and gain insight into how receptors and
ligands interact. The results of the 3D QSARmodels are quite satisfactory and give
significant statistical results: Q_loo∧2 = 0.5548, Q_lto∧2 = 0.5278, R∧2 = 0.9990,
F-test = 3,101.141, SDEC = 0.017 for the CoMFA FFDSEL, and Q_loo∧2 = 0.7033,
Q_lto∧2 = 0.6827, Q_lmo∧2 = 0.6305, R∧2 = 0.9984, F-test = 1994.0374, SDEC =
0.0216 for CoMFA UVEPLS. The success of these two models in exceeding the
external validation criteria used and adhering to the Tropsha and Glorbaikh
criteria’s upper and lower bounds can be noted. We report the docking
simulation of the compounds as an inhibitor of the SARS-CoV-2 Mpro and an
autoimmune disorder in this context. For a few chosen autoimmune disorder
receptors (protein tyrosine phosphatase, nonreceptor type 22 (lymphoid) isoform
1 (PTPN22), type 1 diabetes, rheumatoid arthritis, and SARS-CoV-2 Mpro, the
optimal binding characteristics of the compounds were described. According to
their potential for effectiveness, the studied compounds were ranked, and those
that demonstrated higher molecular docking scores than the reference drugs
were suggested as potential new drug candidates for the treatment of
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autoimmune disease and SARS-CoV-2 Mpro. Additionally, the results of analyses of
drug similarity, ADME (Absorption, Distribution, Metabolism, and Excretion), and
toxicity were used to screen the best-docked compounds in which compound
4 scaled through. Finally, molecular dynamics (MD) simulation was used to verify
compound 4’s stability in the complex with the chosen autoimmune diseases and
SARS-CoV-2 Mpro protein. This compound showed a steady trajectory and
molecular characteristics with a predictable pattern of interactions. These
findings suggest that compound 4 may hold potential as a therapy for
autoimmune diseases and SARS-CoV-2 Mpro.

KEYWORDS

autoimmune disorder, type 1 diabetes, rheumatoid arthritis, SARS-CoV-2, CoMFA,
docking, MD simulations

1 Introduction

Over 80 chronic, frequently life-threatening conditions in the
family of autoimmune diseases were brought on by immune
system deficiencies that caused the body to attack its tissues,
organs, and cells (Fugger et al., 2020). Even though a lot of
these illnesses are uncommon, they collectively affect 14.7 to
23.5 million people worldwide, and for unknown reasons, their
prevalence is increasing (Sunagawa et al., 2020). Patients with the
majority of autoimmune diseases must endure a lifetime of illness
and treatment because there are currently no cures (Edache et al.,
2022a). They frequently experience crippling symptoms, organ
function loss, decreased productivity at work, and high medical
costs (Elkhalifa et al., 2018). A significant burden is placed on
patients’ families and society because most of these infections
excessively influence ladies and are among the main sources of
death for youthful and moderately aged ladies. Type 1 diabetes is
one example of an autoimmune condition (DT1) (Reed and
Herold, 2015). Among the most prevalent causes of death is
diabetes. 463 million adults worldwide have diabetes as of 2019,
claims the International Diabetes Federation (IDF) (International
Diabetes Federation, 2019; Andalia et al., 2022). That number is
anticipated to increase to about 700 million by 2045 (International
Federation Federation, 2019). 79% of diabetes-affected adults
reside in low- and middle-class nations. In Nigeria, there were
1,702,900 diabetes cases in 2015 (Rahamon, 2020). With
3.9 million diabetics, Nigeria had the highest prevalence as of
2016. By 2045, this amount will have doubled. Diabetes in Nigeria
was not well understood in the 1990s. Today, diabetes is a concern
for the typical household (International Federation Federation,
2019; Rahamon, 2020). Diabetes is the primary factor in many
serious illnesses, including heart failure, cardiovascular conditions
like stroke, sexual dysfunction, nephropathy, retinopathy, vascular
dysfunction, blindness, and various cancers (Jassim et al., 2021).
Most diabetic patients experience non-healing wounds, which can
result in the amputation of hands, feet, and other body parts.
Additionally, the main risk factor for chronic kidney disease is
diabetes (International Diabetes Federation, 2019; International
Federation Federation, 2019; Rahamon, 2020; Jassim et al., 2021).
Nigeria’s healthcare system is among the worst in the world, and its
poverty rate is extremely low (Jassim et al., 2021). Rheumatoid
arthritis (RA) is yet another condition that is autoimmune in
nature (Edache et al., 2022a). One of the most inflammatory

illnesses is RA. It is a long-lasting autoimmune condition that
causes symmetrical and bilateral joint inflammation (Khither et al.,
2020). Symmetrical, multiple-joint inflammatory lesions that have
been present for a while dominate the clinical picture of RA (Zhou
et al., 2019; Edache et al., 2022a). As the disease progresses, other
body organs and systems may also be impacted, including the eyes,
heart, lungs, kidneys, physical fitness, and other internal organs
(Derksen et al., 2017; Oh et al., 2022). As a result of joint
inflammation, RA typically causes fever and swollen, and
painful joints (Zhou et al., 2019). The actual causes and
mechanisms triggering the onset and progression of rheumatoid
arthritis (RA) are not well understood (Lin et al., 2020). But it is
understood that this dysfunction is characterized by a long-lasting
autoimmune condition that primarily affects the synovial joint
lining (Mrid et al., 2022). As of 2018, the World Health
Organization estimates that RA affected more than 30 million
people worldwide, with an average occurrence of 0.5%–1% among
adults (Heijde et al., 2018). Teenagers, adults, and seniors can
develop it, however, women around the ages of 40 and 60 make up
the majority of patients (Zhou et al., 2020). Acute respiratory
distress syndrome (ARDS) and cytokine storm may be linked to
serious outcomes for patients with autoimmune disorders who are
more vulnerable to viral infections (Yang, 2021).

The virus can damage organ tissue and cause multiple organ
dysfunction syndrome by infecting cells in the lungs, kidneys, heart,
and intestine (Wu et al., 2020). Direct interaction with people and
facial matter may involve in the transmission of SARS-CoV-2, which
is primarily spread through respiratory droplets (Edache et al.,
2022b). SARS-CoV-2 primarily affects the respiratory tract,
starting with the symptoms of a cold, fever, dry cough,
exhaustion, sore throat, and diarrhea and progressing to severe
pneumonia, breathing difficulties, and patient death (Zhou et al.,
2020). Risk factors for viral infection include DT1 and RA.
According to Alqahtani et al. (2020), older adults with chronic
comorbidities like diabetes mellitus have been identified as having
the most severe SARS-CoV-2 cases. According to a team of
researchers, 68% of MERS patients also had an autoimmune
disease, such as diabetes (Assiri et al., 2013). Diabetes has been
linked to a higher risk of MERS, according to particular
circumstance research (Alraddadi et al., 2014). According to
Yang et al. (2017), autoimmune diseases like diabetes have also
been linked to a higher mortality rate inMERS patients. Diabetes has
been linked to immune responses that are dysregulated in animal
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studies, which leads to lung pathology that is more severe and lasts
longer after MERS-CoV infection (Kulcsar et al., 2019). In
comparison to patients without autoimmune disorders, patients
with autoimmune diseases (DT1 and RA) and viral SARI would
experience a challenging illness with far worse consequences.

There is currently no effective treatment for autoimmune
disorders (DT1 and RA), and those that are used aim to lessen
joint inflammation, stop irreversible bone loss, and keep joints
functioning as much as possible (Guo et al., 2018). Patients with
an autoimmune disorder are tired of a regular lifestyle, tired of
feeding like they are a piece of an experiment, and also sick of drugs
day in and day out without signs of improvement. Lymphoid
tyrosine phosphatase (LYP) encoded by the gene PTPN22 has
been found to increase the risk of many autoimmune diseases
(Lee et al., 2007; Ban et al., 2010). The protein tyrosine
phosphatase LYP, which is specific to lymphocytes, is essential
for controlling T cell receptor activation (Rieck et al., 2007; Ban
et al., 2010). The PTPN22 gene encodes this phosphatase. The
autoimmunity predisposing PTPN22 is a gain-of-function mutant
suggesting that a specific small-molecule inhibitor could eliminate
its effect. In the creation of new SARS-CoV-2 inhibitors, the main
protease (Mpro), which has an important function in the virus
mitotic phase, has been regarded as a possible target. The substantial
role of PTPN22 and Mpro makes it an attractive target for
developing anti-autoimmune disorders and SARS-CoV-2 agents
(Edache et al., 2022a; Edache et al., 2022c).

The process of creating a drug molecule is iterative, starting with
a lead molecule with an ideal living organism’s trait and concluding
with its improvement, leading to the choice of a candidate molecule
for drug development (Adedirin et al., 2018). The process of
discovering new drugs is extremely complicated and involves an
interdisciplinary effort to develop medicines that are both efficient
and marketable (Gurung et al., 2021). A computer is incredibly
important in pharmaceutical, medical, and other scientific research,
even in the creation of novel compounds in the search for more
effective therapeutic agents. To find novel therapeutic agents,
structural biology and rational drug design are combined. Using
computer-aided drug design (CADD) also referred to as in silico
techniques, is one way to improve the efficacy of developing new
drugs. These methods take a computational chemistry approach to
the process of finding new drugs (Maia et al., 2020) To find new
chemical entities, the CADD center collaborates with structure
biologists, biophysicists, and computational scientists. Tools like
CADD and bioinformatics can help accelerate drug search and
production while also saving money, reducing time to market,
and learning more about how drugs interact with their receptors.
Every drug undergoes a lengthy development and discovery process
that starts with scientific research on the disease, identification of
target receptors, selection of active compounds from a large pool of
compounds, etc. CADD is now a crucial tool for accelerating the
development of posttranscriptional inhibitors by assisting with
compound collection, design, and lead identification.

For this study, a group of 31 carefully chosen compounds with
potent and specific affinities for autoimmune disorders [https://
pubchem.ncbi.nlm.nih.gov/bioassay/435024] were chosen to
determine a detailed connection between their organizational
structures, interactions, and activities. To find new molecules that
are effective against autoimmune disorders and the SARS-CoV-

2 virus, several computational techniques have been used, including
molecular docking and the analysis of dynamics interaction. To
ensure the validity of the 3D-QSAR analysis, the precise binding
modes of the selected compounds against autoimmune disorder and
the SARS-coronavirus-2 virus were examined through docking
simulations and molecular dynamics simulations. This research is
anticipated to offer a theoretical direction for the investigation,
forecasting, and creation of novel agonists to treat autoimmune
disorders and the SARS-coronavirus-2 virus.

2 Materials and methods

The molecular structure of the selected molecules, as depicted in
Table 1, obtained from the PubChem database (AID 435024) was
pre-optimized with Avogadro v1.2 software (Hanwell et al., 2012)
and then optimized to standard convergence criteria by semi-
empirical method with MOPAC v22.0.4 (Stewart, 2013).

2.1 Molecular modeling for 3D-QSAR
(Alignment and CoMFA analysis)

By taking, the observed IC50 values of all compounds in M were
converted into pIC50 = -Log (1/IC50), which was then used as the
dependent variable. For the categorization of the compounds into
training and test sets in this research, QSARINS v2.2.4 (Gramatica
et al., 2013) was used in the most random manner possible. The data
set has a homogenous distribution and includes two sets: a training set
(20 compounds, 70%) and a test set (11 compounds, 30%). The
PubChem CID number, IUPAC name, and inhibitory activities were
listed in Table 1. The open3DALIGN tools’ docking-based alignment was
used to superimpose the compounds (Tosco et al., 2011). Compound
4 was chosen as the format to line up other compounds because of its
strong autodocking rating and the alignment was finished by the
open3DALIGN software as depicted in Figure 1. The calculation of
molecular field descriptors was then applied to the compound alignment.

The electrostatic field was determined utilizing a volume-less
+1 charge test (Tosco and Balle, 2011), though the steric field was
determined utilizing a carbon molecule test for the Open3DQSAR
programming (Kumar et al., 2015). Some erroneous variances were
eliminated to shrink the partial least square (PLS) framework. As
part of the data pre-treatment operation, additional N-level variable
removal was carried out (Kumar et al., 2015). These N-level variables
posit a distribution of only N values across a constrained number of
training set objects. The Smart Region Definition (SRD) algorithm,
which is rooted in factor connectedness in 3D space, was then used
to group the variables (Pastor et al., 1997). Then, a variety of variable
selection techniques, such as Fractional Factorial Design (FFDSEL)
and Uninformative Variable Elimination-Partial Least Square
(UVE-PLS) variable selection (Baroni et al., 1992; Centner et al.,
1996), were used to develop the best PLS models. Cross-validated
LOO (Leave-One-Out), LTO (Leave-Two-Out), or LMO (Leave-
Many-Out) paradigms were used to compute PLS models (Tosco
and Balle, 2011; Abdel Samee et al., 2012; Abdel Samee, 2020; Nawaz
et al., 2022). Last but not least, the Maestro graphics package was
used to visualize PLS coefficient grid maps or the activity-correlating
molecular regions in the form of iso-contour maps.
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2.2 Protein setup

For the present study, two different crystallized structures of
type 1 diabetes (PDB ID: 1JK8 and 1XW7), rheumatoid arthritis
(PDB ID: 2AXJ and 2FSE), one for protein tyrosine phosphatase,

nonreceptor type 22 (lymphoid) isoform 1 (PTPN22) (PDB ID:
4J51), and one for SARS-CoV-2main protease (PDB ID: 6LU7) were
used to test the validity of Autodocking vina docking program with
Assisted Molecular Docking with AutoDock4 and Autodocking
Vina (AMDock) v1.5.2 (Valdés-Tresanco et al., 2020).

TABLE 1 Retrieval of chemical compounds from PubChem Database.

S/N PUBCHEM_CID Compound name pIC50

1 647,501 1-ethyl-6-methyl-3-phenyl-1H,5H,6H,7H-pyrimido [5,4-e][1,2,4]triazine-5,7-dione 4.9821

2 654,089 (3aR,4S,9bS)-6-hydroxy-3H,3aH,4H,5H,9bH-cyclopenta [c]quinoline-4-carboxylic acid 5.0783

3 573,747 3,4-bis(thiophene-2-carbonyl)-2,3-dihydro-1,2,5-oxadiazol-2-ol 5.9066

4 3,239,469 4-[(12-{1,4-dioxa-8-azaspiro [4.5]decan-8-yl}-8-oxo-15-oxa-14-azatetracyclo [7.6.1.02,⁷.01³,1⁶]hexadeca-1(16),2(7),3,5,9,11,13-
heptaen-10-yl)amino]butanoic acid

4.208

5 66,541 1,6-dimethylpyrimido [5,4-e][1,2,4]triazine-5,7-dione 5.9066

6 460,747 1,3,6-trimethyl-1H,2H,5H,6H,7H,8H-pyrimido [5,4-e][1,2,4]triazine-5,7-dione 5.9066

7 1,973,720 3-[(2-hydroxyethyl)dimethylamino]-N-[2-methyl-1-(trihydroxy-λ⁴-sulfanyl)propan-2-yl]propanamide 5.3898

8 2,012,947 4-[(5Z)-5-{[5-(1,3-benzothiazol-2-yl)furan-2-yl]methylidene}-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]butanoic acid 5.3212

9 3,116,376 (1S,2S,3aS,4R,9bS)-8-acetyl-1-chloro-2-[(2-nitrophenyl)sulfanyl]-1H,2H,3H,3aH,4H,5H,9bH-cyclopenta [c]quinoline-4-carboxylic
acid

4.2377

10 1,714,876 N-{4-[(5-ethyl-1,3,4-thiadiazol-2-yl)sulfamoyl]phenyl}-2-oxo-8-(prop-2-en-1-yl)-2H-chromene-3-carboxamide 5.0256

11 86,261,486 N’-[(E)-(2-hydroxy-3-methoxyphenyl)methylidene]-5-nitro-1-benzothiophene-2-carbohydrazide 4.8825

12 1,334,608 2-{[5-(ethoxycarbonyl)-12-(2-hydroxybenzoyl)-4-methyl-2-oxo-6-thia-1,8-diazatricyclo [7.4.0.0³,⁷]trideca-3 (7),4,8,10,12-pentaen-
10-yl]sulfanyl}acetic acid

5.6209

13 9,564,046 4-[(2-bromo-4-{[(4Z)-2,5-dioxoimidazolidin-4-ylidene]methyl}-6-ethoxyphenoxy)methyl]benzoic acid 4.4251

14 9,595,043 2-{4-[(E)-{[(4-hydroxyphenyl)formamido]imino}methyl]phenoxy}-N-(3-nitrophenyl)acetamide 5.3295

15 5,995,173 2-{2-ethoxy-4-[(E)-{[(4-{2-[(4-methylphenyl)amino]-1,3-thiazol-4-yl}phenyl)formamido]imino}methyl]phenoxy}acetic acid 5.9066

16 2,545,524 2-(4-{[(2Z,5Z)-3-[2-(1H-indol-3-yl)ethyl]-2-[(4-methoxyphenyl)imino]-4-oxo-1,3-thiazolidin-5-ylidene]methyl}phenoxy)acetic
acid

5.6946

17 2,975,144 3-{[5-(ethoxycarbonyl)-12-(2-hydroxy-5-methoxybenzoyl)-4-methyl-2-oxo-6-thia-1,8-diazatricyclo [7.4.0.0³,⁷]trideca-3
(7),4,8,10,12-pentaen-10-yl]sulfanyl}propanoic acid

4.314

18 2,229,326 4-[(3aR,4R,9bS)-8-[(3-chloro-2-methylphenyl)sulfamoyl]-3H,3aH,4H,5H,9bH-cyclopenta [c]quinolin-4-yl]benzoic acid 4.8054

19 5,756,371 4-({2-bromo-4-[(1E)-2-cyano-2-(3-fluorophenyl)eth-1-en-1-yl]phenoxy}methyl)benzoic acid 4.9317

20 3,164,059 1-ethyl-6-methyl-3-[(1E)-2-phenylethenyl]-1H,5H,6H,7H-pyrimido [5,4-e][1,2,4]triazine-5,7-dione 5.7964

21 7,217,786 1,6-dimethyl-3-propyl-1H,5H,6H,7H-pyrimido [5,4-e][1,2,4]triazine-5,7-dione 4.415

22 9,595,032 5-chloro-2-methoxy-N-(3-{[1,2,4]triazolo [4,3-b]pyridazin-6-yl}phenyl)benzamide 5.9066

23 25,250,764 2-{4-[(E)-{[(4-{2-[(4-chlorophenyl)amino]-1,3-thiazol-4-yl}phenyl)formamido]imino}methyl]phenoxy}acetic acid 5.0665

24 6,104,167 4-(3-{[(E)-N’-[(E)-[(2H-1,3-benzodioxol-5-yl)methylidene]amino]carbamimidoyl]sulfanyl}-2,5-dioxopyrrolidin-1-yl)benzoic acid 5.3562

25 1,587,127 3-(2-{[(4E)-1-(4-chlorophenyl)-2,5-dioxoimidazolidin-4-ylidene]methyl}-1H-pyrrol-1-yl)benzoic acid 5.5599

26 1,516,220 4-{3-[(5Z)-5-[(3,4-dimethoxyphenyl)methylidene]-4-oxo-2-sulfanylidene-1,3-thiazolidin-3-yl]propanamido}benzoic acid 5.1922

27 8,853,383 3-[(2E)-3-{4-[(4-chlorophenyl)methoxy]phenyl}-2-cyanoprop-2-enamido]benzoic acid 4.9512

28 2,354,598 5-methyl-2-[(1E)-2-(4-methyl-3-nitrophenyl)ethenyl]-4-oxo-3H,4H-thieno [2,3-d]pyrimidine-6-carboxylic acid 5.9066

29 2,867,365 3-[(2E)-3-{4-[(4-bromophenyl)methoxy]-3-ethoxyphenyl}-2-cyanoprop-2-enamido]benzoic acid 4.8247

30 1,889,464 4-methyl-3-[2-(4-nitrophenyl)-1,3-dioxo-2,3-dihydro-1H-isoindole-5-amido]benzoic acid 4.8604

31 2,545,467 3-{5-[(3Z)-1-{[(4-methoxyphenyl)carbamoyl]methyl}-2-oxo-2,3-dihydro-1H-indol-3-ylidene]-4-oxo-2-sulfanylidene-1,3-
thiazolidin-3-yl}propanoic acid

5.9066
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2.3 Molecular docking

Molecular docking simulations, as a right approach, were
employed using the AMDock v1.5.2 (Valdés-Tresanco et al.,
2020) to discover the structural interaction mechanism between
ligands and the diabetes type 1, rheumatoid arthritis, and SARS-
CoV-2 main protease receptors. The 3D crystallized structure of
diabetes type 1, rheumatoid arthritis, PTPN22, and SARS-CoV-
2 main protease receptors was made available by Protein Data Bank.
To create docking simulations, the docking rule’s setup procedures
were used. The co-crystallized ligand and all water molecules were
separated from the protein using the Discovery Studio client
software, and the binding modes were calculated using Optimal
box size 1.1 (Feinstein and Brylinski, 2015) and AutoLigand (Harris
et al., 2008) embedded in AMDock software. The AMDock
experimental tool with the autodocking Vina method (Trott and
Olson, 2010) was employed to find the best-docked ligands with the
receptors. The Discovery Studio 2020 client software was used to
analyze the results of the studies of ligand-protein interactions. The
results of the docking were represented by the binding affinity scores
as affinity/ΔG (Kcal/mol), and they were further converted to the
estimated inhibition constants (Ki). The following formula was used
to calculate the Ki parameters from the binding affinity values for
each docked pose:

KI � exp
ΔG
RT( ) (1)

where ΔG is the binding affinity or the calculated docking score
value, R was Boltzmann gas constant (= 1.987 cal/mol/K), and T was
the temperature (= 298 K), respectively.

In comparison to the affinity, the estimated Ki is a much more
useful quality because it is more closely related to frequently
measured experimental parameters. On the other hand, ligand
efficiency (LE) is a crucial informative factor when choosing a
lead compound (Kenny, 2019). The following equation is used to
determine LE in this situation:

LE � −ΔG( )/HA (2)
where HA is the ligand’s total number of heavy (non-hydrogen)
atoms. Potential lead compounds are indicated by compounds
with LE 0.3 (Schultes et al., 2010). For additional molecular
dynamics simulations, the receptor-ligand binding conformation
with the largest negative docking score (binding affinity) was
examined.

2.4 Molecular dynamics (MD) simulation

To assess the stability, Molecular Dynamics (MD) simulations
were run and probed the dynamic conformational changes of the
selected complexes using Nano Scale Molecular Dynamics (NAMD
v2.14) software (Phillips et al., 2005). The receptor-ligand complex
obtained from molecular docking simulations was the initial
structure used for MD simulations. In CHARMM-GUI, the
topologies and parameter files for the complexes (protein-ligand)
were generated using Solution Builder (Jo et al., 2008; Jo et al., 2014;
Lee et al., 2016; Kim et al., 2017). The system is solvated by adding
the TIP3P model to the solvation box, and the counter ions (NaCl
0.15M) were used to neutralize the simulation box. The complex is

FIGURE 1
3Dmodeling of Compound 4 and its alignment. Part (A): Compound 4 structure was used as a template 513 for docking-based alignment; Part (B):
the alignment for the autoimmune disorder was derived from 514 the docking-based alignment obtained from Open3DALIGN.
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then subjected to the CHARMM36m force field (Huang et al., 2016)
at a constant number of molecules, volume, and temperature (NVT).
The steepest descent algorithm was used to complete 20,000 steps of
energy minimization. The energy-minimized frameworks were then
put to use for simulations at a constant number of molecules,
pressure, and temperature (NPT) using Langevin dynamics
parameters, the temperature at 310K, and for 10 ns under
constant Periodic Boundary conditions to compare trajectories.
The MD trajectories were analyzed using the script in the VMD
v1.9.3 software (Humphrey et al., 1996), including root mean square
deviation (RMSD), root mean square variation (RMSF), solvent
accessible surface area (SASA), and radius of gyration (Rg).

2.5 Binding free energy calculation
(MM-GBSA)

The Molecular Mechanics/General-Boltzmann Surface Area
(MM-GBSA) method was performed to estimate the binding free
energy ( ΔGbinding) of the protein-ligand complex, which is a popular
endpoint technique for calculating free energy (Wang et al., 2019).
Using MolAlCal (Bai et al., 2021), the binding free energies of the
complex in liquid/solution were calculated by Eq. 3:

δGbind � δGcomplex − δGprotein + δGligand( ) (3)

where, δGbind, δGcomplex, δGprotein, and δGligand are calculated free
binding energy, calculated free binding of the complex, calculated
free binding of the protein, and calculated free binding energy of the
ligand, respectively.

2.6 Prognostication of ADMET by
computational analysis

Drug research time has been significantly shortened in the past
few years by the creation of computerized (in silico) modeling
techniques to evaluate absorption, distribution, metabolism,
excretion, and toxicity (ADMET) attributes. It is easier to exclude
compounds with prospective ADMET issues when these attributes
can be predicted quickly and accurately. This aids researchers in
making decisions about which compounds to generate and test first
(Mary et al., 2021)

3 Results and discussion

3D-QSAR models were created using autoimmune disease
inhibitors. Table 2 summarizes the findings of the CoMFA
[fractional factorial design (FFDSEL) and uninformative variable

elimination-partial least square (UVEPLS)] studies. The values for
the R̂2, F-test, SDEC, Q_loô2, Q_l2ô2, Q_lmô2, and SDEP were
calculated according to the PLS analysis definitions. The CoMFA
FFDSEL analysis Q_l2ô2 value of 0.5278, and a Q_loô2 value of
0.5548 respectively. The fitting PLS analysis yields a coefficient of
determination R̂2 of 0.9990, F-test = 3101.1411, and a standard
deviation of the error of training set predictions (SDEC) of
0.0173 for CoMFA FFDSEL analysis. The commitments from
steric and electrostatic forces were, 44.93% and 55.07%,
respectively. These findings suggest that the binding affinity was
primarily influenced by the electrostatic field.

The CoMFA (UVEPLS) model was created by combining the
steric and electrostatic fields; the outcomes are (Q_loô2 = 0.7033,
Q_ltô2 = 0.6827, Q_lmô2 = 0.6305, R̂2 = 0.9984, F-test = 1994.0374,
SDEC = 0.0216) from combining these 2 fields with the
5 components. The corresponding field contributions are 54.58%
(steric) and 45.42% (electrostatic), this indicates that the steric of the
molecule affects its ability to act as an inhibitor The higher worth of
the F-test, the more prominent the likelihood that the 3D-QSAR
model is considerable. The F-test measures for the CoMFA
(FFDSEL) and CoMFA (UVEPLS) models were 3101.1411 and
1994.0374 respectively. The level of statistical confidence is
represented by the F-test value. Table 3 compares predicted and
actual pIC50 values for CoMFA, and their residues (for the training
and test sets).

The actual vs. the predicted activities for various compounds are
also displayed in Figure 2, supporting the Open3DQSAR model’s
superior predictive power. The activities predicted by the CoMFA
model, and the experimental data agree well, as shown in Figure 2,
suggesting that the CoMFA model has respectable predictive power.
The CoMFA FFDSEL and UVEPLS models show a small statistical
difference, indicating that the two fields contribute nearly equal
amounts to the relationship.

3.1 Analysis of the contour map

CoMFA figure plots were created to depict the regions in 3D space
around the compound where changes in the steric and electrostatic
fields were predicted to increase or decrease activity to speculate about
the information content of the derived 3D QSAR model. A full
assessment of the obtained contours identifies the crucial
physicochemical factors governing the activity and explores the
crucial role played by the complex formation in their 3D
orientation. The CoMFA contour map was created using
Compound 4 as the reference structure. Figure 3A depicts the
steric contour map for the CoMFA FFDSEL model. Areas, where
the large groups do not encourage activity, are indicated by red
contour maps (negative region), while these areas that encourage
large groups are indicated by blue contour maps (positive region).

TABLE 2 Computed data for the CoMFA (FFDSEL and UVEPLS) models.

Model R2 F − test SDEC Q2
loo SDEPloo Q2

l2o SDEPl2o Q2
lmo SDEPlmo ± SD

CoMFA (FFDSEL) 0.9990 3,101.1411 0.0173 0.5548 0.3604 0.5278 0.3712 0.4721 0.391 ± 0.0336

CoMFA (UVEPLS) 0.9984 1994.0374 0.0216 0.7033 0.2942 0.6827 0.3043 0.6305 0.3276 ± 0.0224
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Electrostatic interactions are depicted in Figure 3B by contours in
maroon and green colors. Green regions only increase activity with
negative charges, while maroon regions indicate that positive charges
are preferred. To generate higher an-ti-autoimmune disease activity, a
bulky or large group is not preferred, according to the region of the
steric contourmapwith the large percentage of red color. For instance,
due to fewer bulky groups in that area, the other compounds have
higher anti-autoimmune disease activity than compound 4. The

reference compound (compound 4) is surrounded by a maroon
region on the electrostatic contour map, which suggests that the
activity of the electron-withdrawing substituent may be improved.
The anti-autoimmune disease activity of certain compounds is found
to be increased by an electron-withdrawing group (such as 9, 13, 19,
22, 25, 27, and 29). The involvement of an electron-rich substituent is
advantageous at this position, as shown by the green electrostatic
contour surrounding the reference compound 4. It suggests that
alkoxy groups, such as -OCH3, are preferred in that position over
the -CO group because they are more electron-rich and easily accept
donated electrons while being incapable of ionization.

The 3D contour maps created using the CoMFAUVEPLSmodel
to suggest a 3D-QSAR model on the target are shown in Figure 4.
Red and blue contours stand in for steric interactions, while maroon
and green contours stand for electrostatic interactions. The blue
contours in this diagram indicate the areas where the involvement of
bulkier groups (53% contribution) would contribute to improving
biological activity, while the red contours (47% contribution) show
the areas where such bulkier groups have the opposite effect and
cause biological activity to decrease. The influences of the steric field
are shown in Figure 4A. The maroon and green contours on the
CoMFA UVE-PLS electrostatic contour maps are depicted in
Figure 4B. The blue contours (44% contribution) show the
regions where the involvement of electron-rich (electronegative)
groups would enhance biochemical activity, while the maroon
contours (contribution of 56%) show the areas where the
positively charged (or reduced negatively charged) group leads to
an increase in biochemical activity.

FIGURE 2
Graph of autoimmune disease inhibitors predicted pIC50 of
training and test set from CoMFa (A) FFDSEL and (B) UVEPLs analysis.

TABLE 3 Actual and predicted pIC50 for Autoimmune disease inhibitors of
training and test set for the CoMFA (FFDSEL and UVEPLS) models.

Cpd No. pIC50 FFDSEL Residues UVEPLS Residues

1 4.9821 5.0353 0.0532 5.0368 0.0547

2 5.0783 5.0828 0.0045 5.1028 0.0245

3 5.9066 5.8914 −0.0152 5.8623 −0.0443

4 4.208 4.2022 −0.0058 4.1777 −0.0303

5T 5.9066 5.6841 −0.2225 5.7253 −0.1813

6 5.9066 5.9134 0.0068 5.9163 0.0097

7T 5.3898 5.4963 0.1065 5.3324 −0.0574

8T 5.3212 5.0325 −0.2887 4.9931 −0.3281

9T 4.2377 4.7993 0.5616 4.7328 0.4951

10 5.0256 5.032 0.0064 5.0316 0.006

1T 4.8825 4.9605 0.078 4.991 0.1085

12 5.6209 5.6058 −0.0151 5.6225 0.0016

13 4.4251 4.4022 −0.0229 4.4206 −0.0045

14T 5.3295 5.1948 −0.1347 5.0565 −0.273

15 5.9066 5.9134 0.0068 5.9018 −0.0048

16 5.6946 5.7065 0.0119 5.7177 0.0231

17 4.314 4.316 0.002 4.3208 0.0068

18 4.8054 4.8019 −0.0035 4.8041 −0.0013

19 4.9317 4.9092 −0.0225 4.9552 0.0235

20 5.7964 5.7713 −0.0251 5.7755 −0.0209

21T 4.415 5.4392 1.0242 5.4792 1.0642

22T 5.9066 5.1667 −0.7399 5.2997 −0.6069

23 5.0665 5.0541 −0.0124 5.0475 −0.019

24T 5.3562 5.8161 0.4599 5.8035 0.4473

25 5.5599 5.5712 0.0113 5.5696 0.0097

26 5.1922 5.1893 −0.0029 5.1659 −0.0263

27 4.9512 4.9748 0.0236 4.9329 −0.0183

28 5.9066 5.9155 0.0089 5.9257 0.0191

29 4.8247 4.8182 −0.0065 4.8278 0.0031

30 4.8604 4.8719 0.0115 4.8626 0.0022

31 5.9066 5.8916 −0.015 5.8922 −0.0144

T Test set compounds.
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3.2 Docking analysis and FDA-approved
drugs (standards)

The thirty-one selected compounds and some FDA-approved
drugs (as standard) were studied in silico to select the least binding
affinity with the active site of some autoimmune diseases and SARS-
coronavirus-2 Mpro, using the AMDock software with AD-Vina
algorithm. The docking scores, estimated inhibition constants (K_i),
and ligand efficiency (LE) of the binding site of all the receptors used
in these studies are summarized in Supplementary Table S1. At first,
to choose the best hit-lead compound, the binding affinity of the
PTPN22 receptor was used as a criterion to select the least docking
score. Based on the findings of the docking screening, eight
(International Federation Federation, 2019) compounds with the
strongest binding affinity than the standard drugs were decided to
portray the binding mode of some autoimmune diseases and SARS-
CoV-2 Mpro. The top eight (International Federation Federation,
2019) compounds are presented in Table 4. Whereas compounds
(Assiri et al., 2013; Elkhalifa et al., 2018; Zhou et al., 2020; Zhou et al.,
2020; Mrid et al., 2022) were found to be consistent as the first eight
least binding affinities in the other receptors as presented in Table 4.

The pharmacological properties and toxicity of inhibitors in
living beings were calculated using SwissADME (http://www.

swissadme.ch/) and ADMETlab 2.0 (https://admetmesh.scbdd.
com/) web servers on the top 8 compounds. According to
Lipinski’s “rule of five,” (Lipinski et al., 2001) good absorption or
permeation is more likely when the molecular weight (MW) is
500 Da or less, there are five or fewer hydrogen bond donors present,
LogP is five, and there are ten or more hydrogen bond acceptors
present. Two additional pertinent descriptors were found by Veber
et al. (2002) to be the number of rotatable bonds (NBR) 10 and the
polar surface area (PSA) 140 Å2. The results showed that all
inhibitors satisfied Lipinski and Veber Rule. All the compounds
also show moderately soluble lipid and water solubility except
compounds (18 and 23) (Table 5). According to the literature,
drugs typically have seven rotatable bonds, whereas toxins only
have three (Khanna and Ranganathan, 2009). We discovered that
the number of rotatable bonds in the compounds (Rieck et al., 2007;
Elkhalifa et al., 2018; Zhou et al., 2020; Zhou et al., 2020) ranges from
0 to 7 (Table 5). The BOILED-Egg is an easy-to-use model for
foretelling the biodistribution of organic compounds (Daina and
Zoete, 2016). Two compounds were located inside the egg, which
represents an appropriate physicochemical space for
biodistribution, when we mapped WLOGP and TPSA of the
virtual screening hits to the BOILED egg (Figure 5). Lead
compounds found in egg white, which indicates human intestinal

FIGURE 3
Shape guides of CoMFA FFDSEL: (A) steric feild and (B) electronstatic field in view of comound 4.
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absorption (HIA) without blood-brain barrier (BBB) permeation,
would be favored for faster drug development related to the
treatment of autoimmune diseases. While 4 compounds are still
close to egg white and would have better bioavailability profiles
during a drug development phase, 6 compounds are in the gray area
and fall into this category. Compounds inside the egg white are
molecules 1 and 7, that is compounds 4 and 27, respectively.

CYP1A2, CYP2C19, CYP2C9, CYP2D6, and CYP3A4 are five
major cytochrome P450 isoforms that have a significant role in
drug metabolic activities and abolition. As a result, these isozymes
play an important role in controlling drug reactions, which in turn
can determine effectiveness and undesirable effects. Data on the
ability of top virtual screening hits to inhibit significant CYP
isozymes can be found in Supplementary Table S2. We
discovered that compound 4, which would inhibit four
isozymes, is likely to show more response to therapy. The
remaining compounds may display two or three isozymes. We
then calculated the toxicity statuses of the chosen compounds
using the ADMETlab webserver and OSIRIS Property Explorer
(Dong et al., 2018). Eight of the chosen compounds could have
high toxicities, as shown in Supplementary Table S3. It should be
noted that compound 4 is expected to have high reproductive
effectiveness. Compound 10 is predicted to have high irritants.
Compounds with high hepatotoxicity are compounds (4, 10, 16.
18, 23, and 27). Compounds with high ames mutagenicity are
compounds 14 and 16. Compound 4 appears to be a better lead
without significant toxicity, on the other hand.

One compound stood out when we looked at the ADMET
profiles of the top eight hits from the target identification
(Figure 3). These molecules are predicted not to cross the BBB,
have rheological properties suitable for absorption and

FIGURE 4
Charts of CoMFA UVEPLS (A) steric field and (B) electrostatic field grounded on compound 4.

TABLE 4 Present and absent of the first hit compound against the selected
targets.

Compound PTPN22 T1D T1D RA RA SARS

4 √ √ √ √ √ √

10 √ √ — — √ —

14 √ — — — — —

16 √ √ √ √ √ √

18 √ √ √ √ √ √

23 √ √ √ √ √ √

27 √ √ — — — —

30 √ — √ √ √ √

NB: √ = Present; - = absent.
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bioavailability, and appear to carry no or lower toxicity risks. The
radar charts show that the properties of these biomolecules that
favor absorption and bioavailability are lipophilicity, size, polarity,
insolubility, instauration, and flexibility (Figure 6). It’s noteworthy
that com-pound 4 occupies the entire physicochemical region for
absorption and bioavailability. It is also tempting to mention that,
out of the top eight hits, compound 4 poses only reproductive
effective as toxicity risks (Supplementary Table S3). Compound 4’s
analyses, as seen in Table 3; Supplementary Table S2, revealed no

offenses of these guidelines, indicating that they would exhibit well-
behaved absorption or permeation.

3.3 Docking interactions of compound 4

Under the results of toxicity and ADME analyses of the top eight
compounds, compound 4 with favored oral bioavailability attributes
was selected for docking visualization/interactions with the receptors.

TABLE 5 Calculated physicochemical properties of the top 8 compounds.

Name Physicochemical properties Lipid solubility Water solubility

MW Rotatable
bonds

H-bond
acceptors

H-bond
donors

TPSA WLOGP Consensus
log P

ESOL
log S

ESOL class

Cpd 4 463.48 6 7 2 114.13 3.09 2.85 −4.75 Moderately
soluble

Cpd 10 496.56 9 7 2 167.88 4.69 3.69 −5.4 Moderately
soluble

Cpd 14 434.4 10 7 3 145.84 2.89 2.13 −4.29 Moderately
soluble

Cpd 16 527.59 9 6 2 129.52 5 2.13 −4.29 Moderately
soluble

Cpd 18 494.99 5 4 3 103.88 5.97 4.4 −6.39 Poorly soluble

Cpd 23 506.96 10 6 3 141.15 5.43 4.56 −6.33 Poorly soluble

Cpd 27 432.86 8 5 2 99.42 4.71 4.11 −5.59 Moderately
soluble

Cpd 30 445.38 6 7 2 149.6 3.08 2.3 −4.51 Moderately
soluble

FIGURE 5
Top 8 compounds schemed on the BOILED-Egg using TPSA and WLOGP.
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Figure 7 displays numerous interactions of compound 4 with the least
docking score with PTPN22 (4J51.pdb), diabetes type 1 (1JK8.pdb),
and rheumatoid arthritis (2FSE.pdb) also interact with the critical
residues of the SARS-CoV-2 main protease (6LU7.pdb). Molecular

docking calculations confirmed that compound 4 can occupy the
catalytic sites of all the receptors and produce a net of hydrogen
(Figures 7A–D). From the results, it has been observed that
compound 4 formed two conventional hydrogen bonds and one

FIGURE 6
Rundown of pharmacokinetic properties of the top, restricting phytocompounds.
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carbon-hydrogen bonds interactions with the PTPN22 receptor was
shown in Figure 7A. Docking analysis of the PTPN22 receptor with
compound 4 allowed us to recognize certain residues, viz. ARG266,
TYR44, PRO45, LYS42, LYS39, and SER35, within the
PTPN22 receptor binding pocket, which is crucial to ligand
binding affinity. The modes of interaction between compound
4 and the active site diabetes type 1 (PDB ID: 1JK8) are shown in
Figure 7B, which shows four conventional hydrogen bonds and three
carbon-hydrogen bond interactions between the ligand and amino
acids GLY20, VAL34, TYR22, LYS147, SER19, GLU134, and
SER136 respectively. Thus, the one pi-pi T-shaped bonds with the
amino acids PHE137. In addition, two pi-alkyl-type interactions are
observed between the compound and the amino acids VAL116 and
TYR33, respectively. However, compound 4 does not show any
carbon-hydrogen-like bond with rheumatoid arthritis (PDB ID:
2FSE). The two-dimensional visualization indicates that compound
4 inter-acted with the amino acid TYR13 via conventional hydrogen
bonds. Compound 4 was also bound to the ILE82 site by an alkyl
bond. Additional van der Waals bonds also occurred at the ASP66,
PHE12, GLU11, HIS143, PHE154, SER113, THR74, ASN15, LEU70,
and LEU14 sites (Figure 7C). These results provide evidence of the
critical role of the amino acids tyrosine (TYR), lysine (LYS), and serine
(SER) for the stability of the compound 4 in the active site of
autoimmune receptors. Therefore, these amino acid residues
should be taken into account to improve the biological inhibitory
activity of compound 4 analogs against autoimmune disorders.

The two crucial peptides in the catalytic site of the SARS-CoV-
2 target site are CYS145 and HIS41. Studies have shown that the
catalytic dyad formed by CYS145 and HIS41 increases the reactivity of

the nucleophile by acting as a base and a nucleophile, respectively. The
SARS-CoV-2 Mpro is then released after the inhibitor attacks the dyad
to create an alternate complex. Compound 4 interacts with CYS145 and
HIS41 in our study, indicating that these substances may have
inhibitory activity against SARS-coronavirus-2 Mpro. Asymmetric
aromatic disulfides may fight with the substrate in the SARS-CoV-
2 Mpro cysteine protease as an inhibitor (competitive inhibitor). We
think compound 4 has the potential to be an enzyme inhibitor and, as a
result, could be a drug candidate for both autoimmune disease and the
SARS-CoV-2 virus. An in vitro study against autoimmune disorder and
SARS-CoV-2 Mpro is advised to verify this hypothesis.

3.4 Comparing the docking poses of
compound 4 and the standard drugs

In the case of the PTPN22 enzyme, the control compound
(Sulfasalazine) has the highest docking affinity than the rest of the
standard drugs. The sulfasalazine-4J51 complex was stabilized by the
formation of conventional hydrogen bonds with SER35 (4.22 Å),
SER271 (4.17 Å), and THR46 (3.59 Å) of protein with PTPN22. The
complex was also stabilized by hydrophobic interactions, including
pi-pi T-shaped interaction with TYR44, Amide-pi stacked bond
with TYR66, and pi-alkyl bonds (with PRO270, PRO45, LYS39, and
LYS42), as shown in Supplementary Figure S1A. The amino acid
residue for compound 4 and sulfasalazine complexes revealed from
docking simulations results shows that (GLY20, LYS147, VAL34,
TYR22, SER35, SER271, and THR46) are essential for the binding of
ligands to the enzyme of PTPN22.

FIGURE 7
Docked poses of compound 4 with (A) protein tyrosine phosphatase, nonreceptor type 22 (lymphoid) isoform 1 (PTPN22) (PDB ID: 4J51), (B) Type
1 diabetes (PDB ID: 1JK8), (C) Rheumatoid arthritis (PDB ID: 2FSE), and (D) SARS-CoV- 2 (PDB ID: 6LU7).
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Furthermore, for the type 1 diabetes receptor, among the two
control drugs, sotagliflozin has the highest docked score of −7.3 kcal/
mol. Sotagliflozin has no single hydrogen bond but was stabilized
with the formation of hydrophobic interactions, including Alkyl
interactions with TYR33, VAL116, TYR16, pi-Alkyl interaction with
LEU36, and pi-pi- T-shaped interaction with PHE137. The most
common amino acid residue involved in the interactions of
compound 4 and sotagliflozin drugs is TYR33, LEU36, PHE137,
VAL116, and TYR16. The docking interactions of both compounds
revealed that GLY20, VAL34, TYR55, SER19, TYR33, LEU36,
PHE137, VAL116, and TYR16 are essential for the binding of
ligand to the enzyme of type 1 diabetes (PDB id: 1JK8).

Here, for rheumatoid arthritis protein, sulfasalazine (standard drug)
has the highest docked score of −7.7 kcal/mol. In the complex of PDB id
2FSE with sulfasalazine, three conventional Hydrogen bonds were

formed by sulfasalazine with ARG44 (5.08 Å), TYR150 (6.92 Å), and
ASP29 (3.55 Å) of 2FSE (Supplementary Figure S1C). Other than
conventional H-bonds, the hydrophobic interactions such as pi-Alkyl
bonds (with LEU45, ILE31, ALA52), pi-pi stacked bonds (with PHE28),
pi-pi T-shaped bonds (with PHE28), and electrostatic interaction (pi-
cation) with ARG44 were involved in the stabilization of the complex.
The amino acid residue for compound 4 and sulfasalazine complexes
against rheumatoid arthritis revealed from docking simulations results
shows that TYR13, ARG44, TYR150, ASP29, and ARG44 are essential
for the binding of ligands to the enzyme (PDB id 2FSE).

Lastly, for the SARS-CoV-2 protein (PDB id: 6LU7), the control
drug hydroxychloroquine has a binding affinity of −6.3 kcal/mol.
Hydroxychloroquine formed two conventional hydrogen bonds with
THR190 (4.22 and 4.38 Å) of SARS-CoV-2 protein in the
hydroxychloroquine-6LU7 complex (Supplementary Figure S1D).

FIGURE 8
(A) Root means square deviation (RMSD) plots of backbone atoms of the four selected complexes (B) Radius of gyration (RG) of the four selected
complexes (C) Root mean square fluctuation (RMSF) plots of backbone atoms of the four selected complexes and (D) solvent accessible surface area
(SASA) of the four complexes during 10 ns.
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TABLE 6 Calculated free binding energy for the complexes estimated using MM/GBSA analysis and the values of the average variation.

Parameter PTPN22 DT1 RA SARS-2

δ E (internal) X 10.5977 12.7555 −19.6068

δ E (electrostatic) + δ G (sol) X −17.4634 −29.3878 −5.8592

δ E (VDW) X −38.2881 −25.4669 −38.1391

δ G binding (kcal/mol) X −45.1538±0.3823 −42.0993±0.4699 −63.6051 ± 0.464

RMSD (Å) 0.98 1.74 1.50 1.33

RG (Å) 20.19 18.82 18.70 22.52

RMSF (Å) 0.39 0.38 0.47 0.41

SASA (Å
2
) 16,368.53 12,768.89 12,794.09 15,792.73

FIGURE 9
Interactions of compound 4 and key residues for (A) PTPN22, (B) type 1 diabetes, (C) rheumatoid arthritis, and (D) SARS-CoV-2 main protease
receptors after simulations.
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Further, this complex was also stabilized by one carbon-hydrogen bond
with GLN189 (4.43 Å), one pi-cation ionic interaction with HIS41, and
hydrophobic (pi-Alkyl and Alkyl) interactions with CYS145 and
MET49. The common amino acids involved in the interactions with
compound 4 and the standard drug hydroxychloroquine are HIS41,
CYS145, and MET49. Therefore, the interactions revealed that amino
acids ASN142, MET165, THR190, GLN189, HIS41, CYS145, and
MET49 are essential for the binding of ligands to the enzyme (PDB
id 6LU7). Dhankhar et al. (2020), Kumar et al. (2021), and Dhankhar
et al. (2021), examined research on ligand access channels in SARS-
CoV-2 receptor and found that amino acid residuesMet49, Cys145, and
Gln189 in particular may play a significant function in ligand binding
interactions. Our data corroborate that hypothesis and identify Met49,
Cys145, andGln189 as an amino acid residues implicated in the binding
of SARS-CoV-2 Mpro.

3.5 Molecular dynamics (MD) simulations
analysis

The energetic motion and level of stability of the complexes were
examined and understood using the MD simulation. MD simulation
for all the complexes of compound 4 is performed for 10 ns
(Figure 8). RMSD of alpha carbon atoms, the radius of gyration
(RG), RMSF, and solvent accessible surface area (SASA) of the
complexes are investigated. Figure 8A shows how compound
4 complexes are stable before 10 ns and how the RMSD of the
protein backbone and compound 4 are related. Interestingly, none of
the complexes showed RMSD values greater than 2, which supports
the strict specificity of the most active complexes. Throughout the
remainder of the simulation, these complexes kept their RMSD
profile stable. When compound 4 is tested against the
PTPN22 protein, it exhibits the lowest RMSD value compared
with the remaining complexes, indicating that it is more stable
and stays in the protein’s pouch (Table 6). To determine the stability
of receptors through MD simulation, the RG of complexes with
compound 4 was also estimated (Figure 8B). In comparison to other
receptors, the rheumatoid arthritis receptor generally exhibits less
variation in RG values. The average RG values of receptors with
compound 4 are 20.19, 18.82, 18.70, and 22.52 Å, respectively. The
complexes’ stability is indicated by this small value (Table 6). The
RMSF study provided insightful data on the structural fluctuations
of various protein regions. Increased variations in the residues
indicate that the protein is less stable. The consistency of
compound 4 with the sample protein is indicated by the fact that
the RMSF of the complexes, which is depicted in Figure 7C,
remained below 0.5 for most of the receptors’ amino acids.
Nevertheless, a few variations are seen at the terminal, which
might be a result of these residues’ high plank position in the
rheumatoid arthritis receptor. The SARS-CoV-2 Mpro receptor
exhibits some variations as well, which could be brought on by
compound 4’s dynamic characteristics in the bonding zone. To
further examine the trajectories of compound 4, the average RMSF
of com-pound 4 was also calculated. This calculation revealed some
variation, indicating a kinetic shift from their start point. Compound
4 must therefore be categorized as a drug. Additionally, following
MD simulation, the lowest RMSF value of compound 4 against type
1 diabetes (PDB ID: 1JK8) was also discovered. Calculating the

changes in SASA allowed for further confirmation of the stability.
The SASA of the receptors with compound 4 are shown in
Figure 8D. The SASA of diabetes type 1 with compound
4 complex is similar to rheumatoid arthritis with compound 4.
Likewise, PTPN22 and SARS-CoV-2 with compound 4 are similar,
further confirming the stability of compound 4 with all the protein
crystal structures. The average SASA values for all the receptors-
compound 4 are presented in Table 6.

The MM/GBSA approach is used to evaluate the calculated free
binding energy of compound 4 from each receptor. The free binding
energy for each complex was calculated using the molecular dynamics
trajectory from the previous 2 ns (100) frames. The effects of other non-
bonded interaction energies were predicted along with the calculated
free binding energy of each compound 4-receptor complex. With
diabetes type 1 protein, compound 4 has a calculated free binding
energy of −45.1538 ± 0.3823 kcal/mol, whereas, with rheumatoid
arthritis protein, compound 4 has a calculated binding energy
of −42.0993 ± 0.4699 kcal/mol. Interactions like internal energy, van
derWaals energy, electrostatic, and solvation energy is governed. Across
all types of interactions, the van der Waals and the sum of electrostatic
and the calculated free binding energy were mainly influenced by
solvation energies. The internal energy, on the other hand, made the
smallest contribution to the final calculated free binding energies.
Moreover, the internal energy interaction values of compound 4 and
SARS-CoV-2Mpro protein complexes demonstrated high contribution
after van der Waals energy (Table 6). Figure 9A shows that compound
4 in the catalytic pocket of the PTPN22 protein has undergone a
significant geometric change in the pose after simulation (10 ns), and
Figures 9B–D shows that compound 4 in the catalytic pocket of
DT1 and RA has also undergone a significant elongated change
after the simulation (10 ns) (curved to straight). Effectively
receptor—ligand acquisition and interactions with residues result
from these conformational changes, which increase stability and
binding energy (shown in Table 6). Therefore, MM-GBSA
calculations from MD simulation trajectories were well supported by
the binding affinity found in the docking results. In addition, the last
frame (10 ns) of MD simulation showed the positional change of the
compound 4 and protein targets as compared to docking (shown in
Figure 7), indicating the best binding position for effectively fitting in
the catalytic pocket of the protein (see Figure 9).

To further analyze the binding between compound 4 and the
receptor complexes, the contactFreq.tclmodule inVMD (cut-off of 4 Å)
was used. The proportion of compound 4 contact frequency with the
receptors’ binding amino acid residues was reported, and the results
indicate that certain residues are engaged in compound 4’s ongoing
interactions with those residues (Supplementary Table S4).

4 Conclusion

Several 3D QSAR methods are used in the current article to
explore the design constraints of anti-autoimmune disease inhibitors.
The most suitable model was chosen based on its higher levels of
internal and external predictability. We have employed standard
statistical parameters to assess the efficacy of these methods. In
general, it can be concluded that UVEPLS and FFDSEL CoMFA
analyses produced similar findings in terms of the compounds’
structural requirements. Molecular docking was performed on
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31 compounds known as an anti-autoimmune disorder. A large
number of these compounds have demonstrated impressive
binding interactions with SARS-coronavirus-2 Mpro and
autoimmune receptors. The results have demonstrated that the
chosen compound 4, in-silicoly, has a strong ability to combat
SARS-coronavirus-2 Mpro and autoimmune receptors. The
location and perception of compound 4 in the catalytic site
changed after the MD simulation was complete. This significant
finding demonstrated the value of using MD simulation after
docking compound 4. The ligand-receptor complex from the
molecular dynamics simulation revealed order-binding residues,
changed the other residues in the catalytic site identified by
docking, and revealed some new residues that were nearby
compound 4 and might be involved in the interaction. To
determine whether compound 4 could be a drug applicant to cure
autoimmune diseases and SARS-coronavirus-2, additional in vitro
and in vivo research needs to be done. This research may represent an
in silico strategy for the discovery of brand-new inhibitors of anti-
autoimmune disorders and anti-SARS-coronavirus-2.
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