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Alzheimer’s disease (AD) is more commonly found in women than in men as the
risk increases with age. Phytochemicals are screened in silico from Punica
granatum peels for their antioxidant activity to be utilized for Alzheimer’s
disease. Alzheimer’s disease is inhibited by the hormone estrogen, which
protects the brain from the bad effects of amyloid beta and acetylcholine
(ACh), and is important for memory processing. For the purpose, a library of
about 1,000 compounds from P. granatumwere prepared and studied by applying
integrated computational calculations like 3D-QSAR, molecular docking, MD
simulation, ADMET, and density functional theory (DFT). The 3D-QSAR model
screened the active compounds B25, B29, B35, B40, B45, B46, B48, B61, and
B66 by the field points and activity atlas model from the prepared library. At the
molecular level, docking was performed on active compounds for leading hit
compounds such as B25 and B35 that displayed a high MolDock score, efficacy,
and compatibility with drug delivery against the antioxidant activity. Optimization
of the structure and chemical reactivity parameter of the hit compound was
calculated by DFT. Moreover, ADMET prediction was evaluated to check the
bioavailability and toxicity of the hit compound. Hesperidin (B25) is found to be a
hit compound after the whole study and can be synthesized for potent drug
discovery in the future.
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GRAPHICAL ABSTRACT

1 Introduction

Antioxidants are compounds that prevent the oxidation step
from starting and its growth. Numerous disorders, including those
affecting the brain, diabetes, Parkinson’s disease, heart, and arthritis,
are caused due to deficiency of antioxidants (Young and Woodside,
2001). By reducing oxidative stress, regular use of natural
antioxidants offers protection against cancer, age-related diseases,
and cardiovascular disorders (Søholm, 1998). Additionally, an
excess of free radicals due to oxidative stress is linked to the
pathogenesis of Alzheimer’s disease (AD). Several oxidative
stress-related disorders, including cancer and neurological
diseases, can be avoided by consuming Punica granatum because
of their phytochemicals exhibiting antioxidant properties
(Benchagra et al., 2021). Alzheimer’s disease (AD) is a serious
neurological condition that primarily affects elder people.
Although the exact causes of AD are unknown, three current
mechanisms, namely, the activation of oxidative stress, the
termination of cholinergic synapses, and the creation of beta-
amyloid, are assumed to cause AD (Kihara and Shimohama, 2004).

The class of drug best examined for potential help in preventing
Alzheimer’s disease (AD) is estrogens. These steroids produce
actions that are compatible with their potential utility in the
inhibition of Alzheimer’s disease and are powerful
neuroprotectants both in vivo and in vitro (Kendall et al., 2005).
This includes the avoidance of the conversion of amyloid precursor
protein (APP) into beta-amyloid (Russo et al., 2005). Deficiency of
acetylcholine (ACh) and the accumulation of β-amyloid plaques in
the human brain are the two main contributors to Alzheimer’s
disease (Georgiev et al., 2012). Neuronal structural flaws are caused

by the slow accumulation of β-amyloid plaques and ongoing
oxidative stress (Tuppo and Arias, 2005). Functional, mental, and
behavioral abnormalities and death might result from this process.
The risk of Alzheimer’s disease is increased by pathophysiological
circumstances that speed up the formation of amyloid plaques in the
brain (Melo et al., 2015).

In order to cure diseases linked to free radicals, the discovery of
antioxidants from natural sources is increasing (Zhang and Tsao,
2016). Reactive oxygen species (ROS) are produced by an organism’s
regular biological and physiological activities (Min and Min, 2014).
Several oxidative stress-related disorders, including AD, may be
caused by the disproportion of radical overproduction (Choi et al.,
2014). Reduced synthesis of acetylcholine (ACh), a neurotransmitter
in the brain involved in memory, thought, and decision-making,
further supports the idea that the loss of cholinergic synapses causes
Alzheimer’s disease (AD) (Rao et al., 2007). The two main enzymes
involved in the progression of AD are acetylcholinesterase (AChE)
and butyrylcholinesterase (BChE). The effectiveness of
cholinesterase inhibitors against minor, moderate, and severe
forms of AD has been consistent (Anand and Singh, 2013).
Treatments using inhibitors of the acetylcholinesterase enzyme,
however, are subject to several negative effects. Galantamine is an
anti-cholinesterase medication that is derived from plant extracts
(Rao et al., 2007). Therefore, expanding the selection of naturally
occurring compounds containing acetylcholinesterase inhibitor
potential might be beneficial. One of the key pathological
characteristics of AD is the β-amyloid protein, which is a pro-
inflammatory substance.

Punica is a tiny genus of deciduous shrubs that yield fruits.
Pomegranate (P. granatum) is a more widely known species
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FIGURE 1
FDA-approved drugs used for drug designing.

TABLE 1 Screened out active compounds by the 3D-QSAR model.

S. no. Compound name Compound structure IC50 Predicted IC50 Reference

1. Edaravone 0.3 Reference (standard drug) Rothstein (2017)

2. Hesperidin (B25) 0.43 0.39 Shalaby et al. (2019)

3. Apigenin (B29) 0.824 0.664 Singh et al. (2018)

4. Corilagin (B35) 0.32 0.427 Das et al. (2021)

5. Ellagic acid (B40) 0.70 0.625 Das et al. (2021)

(Continued on following page)
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TABLE 1 (Continued) Screened out active compounds by the 3D-QSAR model.

S. no. Compound name Compound structure IC50 Predicted IC50 Reference

6. Kaempferol (B45) 0.85 0.658 Das et al. (2021)

7. Myricetin (B46) 0.092 0.637 Sharma and Maity (2010)

8. Luteolin (B48) 0.59 0.66 Das et al. (2021)

9. Taxifolin (B61) 0.31 0.645 Farag et al. (2020)

10. Quercetin-3-glucoside (B66) 1.9 0.514 Shalaby et al. (2019)

TABLE 2 Preparation of proteins for molecular docking.

Sr. no. PDB
ID

Protein name Ligand Resolution
(Å)

Molecule Organism Reference

1. 7KOQ Acetylcholine receptor with epibatidine Epibatidine 3.60 Acetylcholine Homo sapiens https://www.rcsb.org/
structure/7KOQ

2. 5ONP Alzheimer’s amyloid-beta complex with
thermolysin

Cadmium
ion

1.34 Beta-amyloid Homo sapiens https://www.rcsb.org/
structure/5onp

3. 1GWR Estrogen receptor ligand complex with
estradiol

Estradiol 2.40 Estrogen Homo sapiens https://www.rcsb.org/
structure/1gwr

4. 4AA6 Estrogen receptor through a side chain Zinc ion 2.60 Estrogen Homo sapiens https://www.rcsb.org/
structure/4aa6
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that belongs to the Punicaceae family (Levin, 1994). Phenolic
antioxidants are abundant in pomegranate (P. granatum) and
its manufacturing byproducts. In current studies, the scientific
information demonstrating this fruit’s multiple health benefits

increases its interest (Al-Jarallah et al., 2013). In reality,
pomegranate bio-actives may lower the chance of
developing cancer and Alzheimer’s disease (Ambigaipalan
et al., 2016).

FIGURE 2
Pharmacophore generation shows hydrophobicity in orange color, negative electrostatics in red, positive electrostatics in blue color, and van der
Waals descriptors in yellow color (4,021 is a reference drug).

FIGURE 3
Molecular insight of structures shows electrostatic and steric coefficients, and variance from the QSAR model. (A) Electrostatic variance, (B) steric
variance, (C) electrostatic coefficient, (D) steric coefficient, and (E) field points to predicted activity.
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Pomegranate (P. granatum) is a small, long-lived tree that is
grown across the Mediterranean region, Southeast Asia, the
Himalayas, California, and the United States. In historical
applications, pomegranate is utilized in many medicines for
several diseases (Levin, 1994). The combined effects of
pomegranate’s components appear to be more effective than
their individual effects. Frequent studies on the antioxidant
activity of pomegranate components have been published in
the last 10 years, with an emphasis on the treatment and
avoidance of cancer, diabetes, antibiotic resistance, and skin
damage brought on by UV radiation (Amorim et al., 2003).
Pomegranate-mediated antioxidant activity has a vast range of
additional medicinal benefits, including the treatment and
prevention of disorders such as Alzheimer’s disease, arthritis, male
infertility, obesity, diabetes, dental issues, and erectile dysfunction
(Jurenka, 2008). Pomegranate fruits have been shown to contain
bioactives and antioxidants that are essential for enhancing human
health. The compounds from pomegranate fruit and juice are
beneficial for human health but in higher quantities from its peels
(Akhtar et al., 2015). In order to benefit humanity, scientists are
interested in finding useful phytochemicals in fruit peels and using
them in food processing sectors and pharmaceutical industries.
Pomegranate peel contains the highest concentration of
phytochemicals including flavonoids, phenolic acid, and tannins
(Singh et al., 2017).

P. granatum has been the focus of numerous studies examining
its characteristics and prospectives in medicinal applications,
according to the search results (Rahimi et al., 2012) The P.
granatum plant study is “excitingly novel” because it is
thoroughly studied for its anti-inflammatory, antibacterial,
antioxidant, and anticancer properties (Ranjha et al., 2021).
Direct intake of pomegranate fruit is also very useful for health
instead of using it through medicine.

In in silico studies, phytochemicals previously isolated from
the peels of pomegranate were screened to inhibit Alzheimer’s
disease. Screening of phytochemicals used for drug design, such
as gallic acid (B1), Quercetin (B4), proanthocyanidin (B8),
cinnamic acid (B13), and catechol (B18), is FDA-approved
(Figure 1). Drug repurposing is a technique used to improve
an outdated drug to treat some diseases with pharmacological
applications (Rudrapal et al., 2020). Hesperidin (B61) is an FDA-
approved drug used for the prevention of allergies and high blood
pressure but is now used to inhibit Alzheimer’s disease via the
process of drug repurposing.

Nowadays, computational techniques are frequently used in
biological research. In silico studies can assist in discovering
pharmacological targets by the use of bioinformatics tools
(Krovat et al., 2005). Additionally, they can be used to create
candidate compounds, analyze the structure of the target for
binding sites, assess how similar they are to drugs, target docks
with these molecules, optimize the molecules, and rank them
according to their binding affinities (Venkatesan et al., 2010). An
in silico approach to drug design significantly reduces the expense
and amount of time needed for a molecule throughout the drug
discovery process. In in silico studies with virtual screening has a
lot of potential for finding new medication candidates (Laskar
et al., 2014). The effective discovery of drugs for treatment of
many diseases is critical, but it is an expensive and long-term
cycle. So, computational methods are used to find ligands from P.
granatum peels, which are effective in drug discovery. To learn
about the structural properties of active compounds, QSAR is
used to check the structure–activity relationship, docking
performance for lead compounds with scoring function, DFT
for an optimized structure with chemical reaction description,
and ADMET to check the bioavailability and toxicity of the hit
compound.

FIGURE 4
Optimized sites of active compounds by the SAR analysis model.
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TABLE 3 Activity cliff summary of electrostatics, hydrophobics, and shapes along with average electrostatics, hydrophobics, and shapes of actives.

Compound
name

Activity cliff summary of
electrostatics

Activity cliff summary of
hydrophobics

Activity cliff summary of
shape

Average electrostatics
of active

Average hydrophobics of
active

Average shape
of actives

Edaravone
(reference drug)

Hesperidin (B25)

Apigenin (B29)

Corilagin (B35)
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TABLE 3 (Continued) Activity cliff summary of electrostatics, hydrophobics, and shapes along with average electrostatics, hydrophobics, and shapes of actives.

Compound
name

Activity cliff summary of
electrostatics

Activity cliff summary of
hydrophobics

Activity cliff summary of
shape

Average electrostatics
of active

Average hydrophobics of
active

Average shape
of actives

Ellagic acid (B40)

Kaempferol
(B45)

Myricetin (B46)

Luteolin (B48)
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TABLE 3 (Continued) Activity cliff summary of electrostatics, hydrophobics, and shapes along with average electrostatics, hydrophobics, and shapes of actives.

Compound
name

Activity cliff summary of
electrostatics

Activity cliff summary of
hydrophobics

Activity cliff summary of
shape

Average electrostatics
of active

Average hydrophobics of
active

Average shape
of actives

Taxifolin (B61)

Quercetin-3-
glucoside (B66)
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FIGURE 5
Protein–ligand interaction of B25 with 7KOQ. (A) Protein; (B) protein–ligand interaction; (C) hydrophobicity; and (D) 2D diagram.

FIGURE 6
Protein–ligand interaction of B25 with 5ONP. (A) Protein; (B) protein–ligand interaction; (C) hydrophobicity; and (D) 2D diagram.
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2 Materials and methods

2.1 Approaches used for data collection and
structural preparation for 3D-QSAR

Previous literature reports showed that a total of
1,000 phytochemicals were isolated from P. granatum peels.
Later, from the literature and databases, including PubChem
(https://pubchem.ncbi.nlm.nih.gov/), ZINC database (https://zinc12.
docking.org/search/), DNP (https://dnp.chemnetbase.com/chemical/
ChemicalSearch.xhtml?dswid=-3450), ChEMBL (https://www.ebi.ac.
uk/chembl/), Natural II database (https://bioinf-applied.charite.de/
supernatural_3/subpages/compounds.php), and published articles,
almost 55 ligands were screened with good antioxidant activity
(Supplementary Table S1). A 3D-QSAR model was used to learn
the antioxidant activity against Alzheimer’s disease. Then, 55 ligands
were divided into training and test sets, with ratios of 80% and 20%.
The experimental IC50 value was changed into the predicted IC50

value by using the following formula: pIC50 = −log (IC50). ChemDraw
and Chem3D Ultra were used to draw the 2D and 3D structures by
energy minimization performed in two steps (Alam and Khan, 2017).

All ligands were included on an Excel sheet along with their
experimental and predicted IC50 values to generate a CSV file.

In the 3D-QSAR model, the “Flare module of Cresset” tool was
used for minimization and pre-processing of all the compounds and
pharmacophore generation (Verma et al., 2022a). This tool gives us
the best, good-quality, and high-resolution pictures compared to
other QSAR tools like Maestro Schrodinger and QSAR-clouds.

2.2 Approaches used for pharmacophore
generation in the development of 3D-QSAR

In pharmacophore generation, the hypothesis of 3D conformation
for active ligands is generated with its field points by using flares
(Table 1). Four molecular fields were determined by field
points such as geometry, hydrophobicity, and electrostatics
(negative and positive) to develop a pharmacophore pattern.
Screened phytochemicals from P. granatum peels are arranged
as the test and training sets using a sphere exclusion algorithm
on a flare for a 3D-QSAR study. These 55 screened compounds
are divided into 34 compounds in the training set and

FIGURE 7
Protein–ligand interaction of B35 with 1GWR. (A) Protein; (B) protein–ligand interaction; (C) hydrophobicity; and (D) 2D diagram.
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20 compounds in the test set, and one reference drug was also
added. Edaravone is a reference drug that is also FDA-approved
and selected from the literature for antioxidant activity. The PLS
(partial least squares) model was also used to develop a good
field QSAR model for compounds (Wold et al., 2001).

2.3 Use of different regression coefficients
for 3D-QSAR model validation

The 3D-QSAR model provides us a better understanding of the
structure–activity relationship (SAR) of many ligands in terms of the
characteristics of shape, positive and negative van der Waals forces, and
hydrophobicity. The regression coefficient (r2), cross-validated coefficient
of determination (q2), and the conformer scores for active compounds
with respect to the axis were used to validate the best model. The leave-
one-out (LOO)methodwas used to evaluate the developedQSARmodel
in order to improve the prediction of the activity model. One of the best
techniques for the validation of regression models with limited training
datasets is LOO cross-validation (Alam and Khan, 2014). The
activity atlas model provides data about the cliff summary that shows
the positive and negative electrostatics, an average of actives, and
hydrophobicity.

2.4 Molecular docking technique

Molecular docking of screened compounds from P. granatum
peels was performed by Molegro Virtual Docker (MVD). MVD is
a protein–ligand docking simulation program that enables us to
simulate the docking in the full computational environment
(Kusumaningrum et al., 2014). MVD includes the entire
docking process including the arrangement of protein’s
binding sites, the prediction of ligand modes, and the creation
of the pose by MolDock re-ranked (Bitencourt-Ferreira and
Azevedo, 2019).

MVD software used protein and ligand docking, where
structures of proteins were imported and water molecules
were removed (Boittier et al., 2020). The MVD tool gives us
more reliable results regarding protein–ligand complexes
(Ozalp et al., 2018). This tool consumes less time and energy
for docking compared to AutoDock 4, AutoDock Vina, and
rDock.

2.4.1 Protein–ligand preparation
In MVD, the SDF format of the ligand 3D structure

downloaded from PubChem was loaded on the workspace with
the targeted protein. Proteins linked to estrogen and acetylcholine

FIGURE 8
Protein–ligand interaction of B25 with 4AA6. (A) Protein; (B) protein–ligand interaction; (C) hydrophobicity; and (D) 2D diagram.
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hormones were downloaded from RCSB: PDB (https://www.rcsb.
org/) (protein structure database) and must be Homo sapiens
organisms with a resolution of less than 2.50Å for good results
(Table 2).

2.5 Molecular dynamics (MD) simulation

MD simulation of protein–ligand complexes was performed on
an iMOD server (https://imods.iqfr.csic.es/) that can be used for
structural flexibility assessment for all the proteins. The root-
mean-square fluctuation (RMSF) was attained on the basis of
nuclear magnetic resonance (NMR) with the default option. The
simulation time of 10 ns was adjusted, although the other parameters
were also adjusted as default values (Yao et al., 2016). The structural
dynamics and the molecular motion determination of the docking
compounds were analyzed by the iMOD server. The stability of
protein–ligand complexes was portrayed with reference to
eigenvalue, deformability, covariance map, B-factor, and elastic
network.

The 3D structures of corilagin and hesperidin compounds were
downloaded from PubChem in the SDF format (Kim et al., 2019).
After that, it was converted into theMOL2 formats by opening Babel
software. The proteins 1GWR, 4AA6, 5ONP, and 7KOQ were
downloaded from the RCSB: PDB server with better resolution
scores (Burley et al., 2019). The residues and warnings were
removed using Molegro Virtual Docker.

Molecular dynamics simulation was performed using the iMOD
online server, which exploits the advantages of normal mode analysis
(NMA) classification (Lopéz-Blanco et al., 2011). iMOD can also
calculate the vibrational modes of protein’s multiple chains and
support the ligand. iMOD is a faster free online tool that consumes
less memory than other MD simulation tools like GROMACS and
Maestro Schrodinger, which are highly expensive.

2.6 Computed approaches employed for the
optimization of phytochemical geometries

The phytochemical structure optimized from P. granatum peels was
evaluated using density functional theory for theoretical studies, and its
chemical properties were calculated (Obot et al., 2015). The parameters of
DFT show the dipole moment, electronegativity, chemical hardness and
softness, chemical potential, and energy gap. DFT was performed on hit
leading compounds to check their HOMO and LUMO values and the
geometry of the optimized structure.

2.7 ADME-toxicity determination to check
drug-likeness

In the process of drug discovery, physiochemical, lipophilicity, and
pharmacokinetics properties increase productivity through predictive
tools (Li, 2001). For the study of compounds, computational methods

FIGURE 9
RMSF profiles by MD simulation of (A) 1GWR, (B) 4AA6, (C) 5ONP, and (D) 7KOQ.
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are developed for absorption, distribution, metabolism, excretion, and
toxicity (ADME-Tox) properties. SwissADME is an online free server
used to check the absorption and distribution of compounds
(http://www.swissadme.ch/). ADMET was performed for the hit
compound to check its efficiency and toxicity. ProTox-II is also a
free online server used to check the toxicity of compounds (https://tox-
new.charite.de/protox_II/).

3 Results and discussion

3.1 Conformation hunt and pharmacophore
generation of active compounds by the
3D-QSAR study

In a previous study, there was no specific work on
antioxidant activity for the inhibition of Alzheimer’s disease
that showed the mechanism of action. QSAR is a field-based
technique of molecules showing the SAR of compounds using
flare software. Nine active compounds, namely, B25, B29, B35,

B40, B45, B46, B48, B61, and B66 were used as templates to
conduct a conformation hunt (Figure 2). The calculated field
points for the deduced perception of the active compounds
were then interpreted, leading to the discovery of a 3D-field
point’s pattern (Sadekar et al., 2021). The XED force field
was used to create field points. These active compounds are
used to create a template of pharmacophore for further
screening.

3.1.1 Alignment of compounds from 3D-QSAR in
the training set

All the 55 ligands in the training set of selected field templates for
Alzheimer’s disease were aligned for a model of 3D-QSAR. The
experimental values were changed into the positive scale logarithm
using the equation pIC50 = log (IC50). The 3D-QSARmodel set the data
by splitting them into two sets with 34 in the training set, 20 in the test
set, and 1 as the reference drug. The activity graph analysis that
displayed the predicted or experimental value comparison graph
using cross-validation was used to illustrate the robustness of the
proposed 3D-QSAR model.

FIGURE 10
Molecular mobility of docked complexes by NMA. (A) 1GWR-corilagin, (B) 4AA6-hesperidin, (C) 5ONP-hesperidin, and (D) 7KOQ-hesperidin
complexes.

Frontiers in Molecular Biosciences frontiersin.org14

Parveen et al. 10.3389/fmolb.2023.1252178

http://www.swissadme.ch/
https://tox-new.charite.de/protox_II/
https://tox-new.charite.de/protox_II/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1252178


3.1.2 Field points of identification and control by
Alzheimer’s disease

The 3D-QSAR model was generated to study the activity
relationship of the structure for understanding the
phytochemicals with antioxidant activity. Active ligands in the
training set as the coefficient and the variance field points were
explored in the three-dimensional structure form. Edaravone
(reference drug) was also used to inhibit Alzheimer’s disease by
hormones, and model points were compared for a better
understanding of field points. The model showed the regions
where it appears from the equation that local fields significantly
affect the biological activity. There is a strong correlation between
the electrostatic and steric fields in this position, and consequently,
higher values of affinity enhance the biological activity. The results
show that the green color specifies a positive steric coefficient leading
to higher activity, while the red color shows a positive coefficient and

the cyan color shows a negative coefficient of electrostatics.
Electrostatic and steric field points with a large variance indicated
significant changes, whereas those with a low variance show no
changes (Figure 3).

3D-QSAR is a field-based study that shows the fields to
predict activity performed on Alzheimer’s disease fit in a
region of structural field points and also regulates the
predicted activity. Geometry shows blue-, red-, and purple-
colored field points, and the electrostatic and steric field
points with positive and negative regulation toward the
predicted activity (Figure 3E).

3.1.3 Visualization activity atlas model through the
SAR study

The activity atlas model of visualization explains the
structure–activity relationships that show the features of

FIGURE 11
Outputs byMD simulation for 7KOQ: (A) B-factor and deformability, (B) variance and eigenvalue graph, (C) networkmodel, and (D) co-variancemap.
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antioxidant-active phytochemicals and lead to the optimization and
designing of a drug for new analogs. A cliff summary of the average
actives and activity of Alzheimer’s disease was studied. Inside the
structure of active compounds, antioxidant activity shows a region
of the positive field in red color as this region is higher than the
activity, the average shape region is shown in white color, and
hydrophobic interactions are shown in yellow color that control the
antioxidant activity (Figure 4). Results also show the favorable,
unfavorable, and weak regions the in SAR mechanism.

3.1.4 Validation of themodel by the use of activities
in the training and test sets

In the SAR model, the molecular properties of active ligands are
used to control Alzheimer’s disease through hormones with
antioxidant activity, and compounds were screened for further
prediction of antioxidant activity. According to the literature, in
the QSAR model, binding targets are identified for ligand fields that
are applied in virtual screening later (Table 3).

3.2 Molecular docking using MVD

All active compounds from the 3D-QSAR model undergo
docking by using the Molegro Virtual Docker that gives hit lead
compounds. Molecular docking is performed to check the
binding mode of the predicted activity of compounds as a
pose of the highest rank and with MolDock score in
between −60 and −200. It also gives information about
proteins and the ligand and binding sites where they attach to
inhibit Alzheimer’s disease. Auspicious poses and binding sites
are automatically identified by docking of actives.

3.2.1 Protein–ligand interaction
During visualization of the protein–ligand interaction of active

compounds, reference drugs show a low MolDock score as
compared to other compounds with proteins. For this,
interaction proteins are selected against Alzheimer’s disease, such
as 7KOQ from acetylcholine, 5ONP from beta-amyloid, and 1GWR
and 4AA6 from estrogen hormones.

3.2.1.1 Protein of acetylcholine (Ach) hormone
Docking was performed for all the active ligands, namely, B25,

B29, B35, B40, B45, B46, B48, B61, and B66, with protein 7KOQ.

B25 (hesperidin) showed the highest MolDock score of −151.961 in
comparison to the reference drug that showed the lowest MolDock
score of −86.768 with 16 interactions. Hesperidin (B25) showed
11 interactions with hydrogen bonding (TYR128, LYS142, GLU188,
GLU128, PHE186, TYR92, LYS142, CYS141, LYS144, TYR187, and
HIS140) and five with van der Waal interactions (ASN93, LYS142,
LYS142, LYS144, and LYS142). Ligand interaction, hydrophobicity,
and 2D structure are shown in Figure 5 (Supplementary Table S2).

3.2.1.2 Protein of beta-amyloid.
After docking with all active compounds, B25 was found as a

lead compound with the highest MolDock score by interacting with
5ONP protein. Hesperidin (B25) displayed nine interactions with
hydrogen bonding, namely, ASN111, TYR193, LEU202, TYR211,
TYR193, LIG1:H29, LEU202, LEU202, and LEU202, and one with
van der Waals force, namely, TYR110 (Figure 6) (Supplementary
Table S2). B25 also showed the highest MolDock score (−111.712),
while the reference drug showed a MolDock score (−66.613) with
zero interaction.

3.2.1.3 Proteins of estrogen hormone
All the active compounds, namely, B25, B29, B35, B40, B45,

B46, B48, B61, and B66 are docked with 1GWR protein to get the
hit compound. B35 (corilagin) showed the highest MolDock score
(−149.02), whileB25 (hesperidin) showed a little lessMolDock score
(−144.915) and also a lead compound in comparison to the reference
drug (−82.238). Corilagin (B35) compound showed 14 hydrogen
interactions, namely, LYS362, LYS362, ALA743, LEU744, ARG746,
ARG746, TYR747, TYR747, LEU748, LEU748, LEU749, LEU749,
ASP750, and LYS362, and eight interactions with van der Waals
forces, namely, ILE358, LEU372, VAL376, LEU379, MET543,
ALA743, LEU744, and TYR747 (Figure 7) (Supplementary
Table S2).

After docking all active compounds with 4AA6, B25
(hesperidin) was found to be the hit lead compound with the
MolDock score (−154.322), and the reference drug showed a
MolDock score (−68.848) with zero interactions. Hesperidin
(B25) showed three interactions with hydrogen bonding, namely,
ASN232, LIG1:H5, and ASN232, and two with van der Waals
interactions, namely, LYS235 and LYS235 (Figure 8)
Supplementary Table S2.

After docking all active compounds, hesperidin showed good
MolDock scores with 7KOQ, 5ONP, and 4AAP proteins, while

TABLE 4 Results of molecular docking with MolDock scores and H-bonding.

Compound name Hesperidin (B25) Hesperidin (B25) Corilagin (B35) Hesperidin (B25)

Proteins 7KOQ 5ONP 1GWR 4AA6

MolDock score −151.96 −111.71 −149.02 −154.32

H-bonding −20.801 −10.861 −18.877 −4.997

TABLE 5 Toxicity analysis of lead compounds.

Sr. no. Compound name Hepatotoxicity Carcinogenicity Mutagenicity Cytotoxicity

1. Hesperidin -(0.81) -(0.93) -(0.90) -(0.52)
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FIGURE 12
Outputs byMD simulation for 5ONP: (A)B-factor and deformability, (B) variance and eigenvalue graph, (C) networkmodel, and (D) co-variancemap.

FIGURE 13
RMSF overlapping graph of (A) 7KOQ and (B) 5ONP.
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corilagin showed the best MolDock score with 1GWR protein
against Alzheimer’s disease (Table 4).

3.3 MD simulation analysis

Molecular dynamics (MD) was performed for checking the
stability of protein–ligand complexes, and it also evaluated the
ligand-induced modification in the structure of proteins. The
root-mean-square fluctuation (RMSF) profile for proteins was
created using the iMOD server to check amino acid flexibility.
The minimum value of RMSF shows less motion of the system,
and the maximum value of RMSF shows more flexibility throughout
the MD simulation.

This server shows the model structure with output files and
RMSF in a graph for the calculation of fluctuation in proteins.
1GWR showed the maximum value of fluctuation (8.23057E-01Å)
at 242 residue numbers and the minimum value of fluctuation
(1.61593E-01Å) at 6 residue numbers (Figure 9A). 4AA6 indicated
the maximum value of fluctuation (9.05256E-01Å) at 73 residue
numbers and the minimum value of fluctuation (1.00000E-01Å) at
72 residue numbers (Figure 9B). 5ONP exhibits the maximum value
of fluctuation (8.88434E-01Å) at 88 residue numbers and the
minimum value of fluctuation (1.32875E-01Å) at 24 residue
numbers (Figure 9C). 7KOQ demonstrated the maximum value
of fluctuation (9.33859E-01Å) at 300 residue numbers, whereas the
minimum value of fluctuation (1.56757E-01Å) occurred at
54 residue numbers (Figure 9D).

By using the iMOD server, MD simulation was performed to
assess the physical properties and stability of docked compounds.
Normal mode analysis (NMA) was applied to check the slow
dynamics for docked compounds and the exhibited
conformational fluctuations with high amplitude. NMA for these
docked complexes, such as the 1GWR-corilagin complex, 4AA6-
hesperidin complex, 5ONP-hesperidin complex, and 7KOQ-
hesperidin complex, is given in Figure 10.

Deformability indicates the flexibility of proteins, and its main
chain is a measure having the capability to deform the given
molecule at its each residue. The site of the main chain “hinges”
can be regulated from the high region of deformability. The
flexibility of proteins is shown by deformability, and the mobility
of proteins is shown by B-factor. The peaks that show the hinge

regions have higher deformability, as shown in Figure 11A. The
B-factor is measured to quantify the uncertainty and flexibility in the
proteins. The values of B-factor can be calculated by NMA, and the
graph shows a clear visualization of docked complexes between
NMA and PDB (López-Blanco et al., 2014). The NMA of proteins
depends on the assumption that the low frequencies shown by a
vibrational normal mode designate the maximum movement of
proteins, which are functionally significant. The NMA of
protein–ligand complexes deals with vibrational and dynamic
modes rather than colored properties.

Mobility profiles of docked complexes are obtained by B-factor
and deformability. The B-factor and deformability of 7KOQ-
hesperidin and 5ONP-hesperidin complexes showed peaks that
relate to the protein region. The top peaks demonstrated high
deformability in that region. The B-factor and deformability
graphs for 7KOQ are relatable, having a high peak at
approximately residues 310–340, in both the graphs. However, in
5ONP, the deformability graph has a high peak at residues ranging
from 80 to 90, while the B-factor graph has a high peak between
residues 230 and 300. A high B-factor for a particular region of
protein denotes an increase in the mobility of that region. The
B-factor and deformability of 7KOQ-hesperidin are shown in
Figures 11A,B.

The variance and eigenvalue were inversely related in every
mode. The purple-colored bars displayed the individual variance,
and the green-colored bars displayed the cumulative variance in the
graph of variance of 7KOQ-hesperidin and 5ONP-hesperidin. The
eigenvalue of each complex is given in Supplementary Table S3.

The correlations among the complex residue obtained by the
covariance matrix of 7KOQ-hesperidin and 5ONP-hesperidin are
shown in Figures 12A,B. A decent correlation is represented by the
red color between residues, whereas uncorrelated motion is
represented by white color. A high correlation indicated that the
complexes were good. The dark gray color in the elastic maps
showed that a stiffer portion was specified.

3.3.1 RMSF overlapping
RMSF analysis was executed tomeasure the flexibility of each atom,

and very similar fluctuations of complexes appeared that showed high
flexibility. In addition, they also demonstrate the interaction of active-
site residues in contrast to reference compounds. RMSF overlapping of
7KOQ-hesperidin and 5ONP-hesperidin complexes is shown in

FIGURE 14
(A) Plot of the Cα-RMSD value from iMOD and (B) radius of gyration.
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Figure 13. 5ONP-hesperidin showed the highest variation among both
proteins that indicates greater flexibility.

3.3.2 Root-mean-square deviation (RMSD)
RMSD was found to be low in the targeted structure, while the

starting structure was deformed through the lowest modes that
stimulate the transition. For studying RMSD, the coarse-grained
(Cα) backbone atoms of protein–ligand complexes were determined
for conformational variations and dynamic stability in the dynamic
simulation. The ligand binding at the protein-binding site was

shown to be stable and had no effect on the protein’s C-alpha
backbone stability. After attaining the lead targeted protein 5ONP
chains and intermediate structure, the conformational transition
pathways were started. After the calculation is finished, the graph
indicates the 1.4 Å Cα-RMSD value, as shown in Figure 14A.

3.3.3 Radius of gyration (Rg)
The radius of gyration (Rg) shows the overall compression of the

structure of proteins during molecular dynamics simulation. During a
given period of time, it calculates the distance between the terminal and

FIGURE 15
Optimization structure of (A) hesperidin and (B) corilagin.
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the center of mass of each protein atom. A protein structure’s dynamic
stability is determined by a slightly lower change in the radius of
gyration, which is also a sign of a stable folded structure of protein. For
the 5ONP protein, the graph shows a high value of the radius of
gyration of 28.264 at residue number 10, as shown in Figure 14B.

3.4 Frontier molecular orbital (FMO) studies

Lead compounds from docking B25 and B35 undergo further
screening by DFT analysis. The highest occupied molecular orbital
(HOMO), the lowest unoccupied molecular orbital (LUMO),
nucleophilicity, hardness, and softness are directly related to the
inhibitors that have the reactive ability. DFT is a theoretical
approach that provides precise, fundamental, and important
parameter values for extremely complicated molecules at a low
cost (Obot et al., 2015). All chemical descriptors in DFT were
measured using a basic set (6–311G B3LYP) (Supplementary Table
S4). Optimized structures of B25 and B35 along with their vectors
are shown in Figure 15.

The HOMO is a strong electron donor that donates electrons
that are accepted by the LUMO to increase biological activity.
The energy gap between B25 and B35 shows the stability of the
compound as the gap is smaller than the molecule, which is more

stable and reactive chemically (Figure 16.). Based on chemical
descriptors, both corilagin and corilagin compounds are
ranked as:

Lead compounds from docking B25 and B35 undergo further
screening by DFT analysis. Both hesperidin and corilagin show
good results through DFT optimization. All chemical descriptors
in DFT were measured using the basic set (6–311G B3LYP)
Supplementary Table S4.

3.4.1 MEP analysis
Interpretations about nucleophilicity, electrophilicity,

hydrogen-bond interaction, and drug reactivity are predicted
by molecular electrostatic potential studies. This model is used
to determine the behavior and response of molecules toward a
binding substrate with other compounds. In addition, the relative
polarity of molecules was also checked through the visual scheme.
In the MEP scale, the positive region of electrostatic potential in
the blue color shows the nucleophilic site, and the negative region
of electrostatic potential in red and yellow colors shows the
electrophilic site. The blue color shows the site of nucleophilic
attacks where hydrogen atoms are capable of reacting with the
nucleophile. The red and yellow colors show the site of
electrophilic attack where oxygen atoms are capable of
reacting with the electrophile. However, the green color shows

FIGURE 16
FMO diagrams along with the energy gap: (A) hesperidin and (B) corilagin.
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the reactivity where the benzene ring remains neutral. The results
show that B25 is the hit leading compound that undergoes
ADMET studies. The MEP structure and scales of B25 and
B35 compounds are shown in Figure 17.

3.5 ADME toxicity

A sufficient drug quantity must be distributed to the target
area with fewer side effects and toxicity for a medicine to be
considered an effective quality one. Pharmaceutical companies
select important ligands for experimentation based on ADME
toxicity analysis by envisaging pharmacokinetic and
physicochemical qualities before starting an expensive clinical
study (Li, 2001). So, ADMET is performed against lead
compounds from DFT to check their toxicity for the safety of
the drug by using the ProTox-II online server. Table 5 shows that
hesperidin (B25) does not affect cytotoxicity, hepatotoxicity, and
carcinogenicity.

4 Conclusion

Of all the active compounds, hesperidin (B25) is the hit lead
compound from the phytochemical screening of P. granatum
against antioxidant activity to inhibit Alzheimer’s disease by the
hormones acetylcholine (Ach) and estrogen (beta-amyloid). The
3D-QSAR model gives us information about the
structure–activity relationship of screened phytochemicals
and field-point generation that are generated by the
alignment of the training and test set compounds. The nine
active compounds, namely, B25, B29, B35, B40, B45, B46, B48,
B61, and B66, are screened from this model and can be
visualized by the activity atlas model. These active
compounds undergo further screening by molecular docking
with four proteins (7KOQ, 5ONP, 1GWR, and 4AA6) using
Molegro Virtual Docker software. We obtained two lead
compounds (B25 and B35) with the best MolDock score
along with hydrophobicity and ligand interaction. DFT gives

us the optimized structure, chemical reactivity descriptors, and
molecular electrostatic potential structure of active compounds.
So, DFT is performed with these lead compounds to obtain the
one-hit compound, and the low energy gap shows that the B25
compound is more chemically reactive because of its stability. In
the end, ADMET was performed for the B25 compound to check
its toxicity and efficiency against the inhibition of Alzheimer’s
disease. Hesperidin (B25) is the best hit-lead compound for
drug repurposing against Alzheimer’s disease with zero toxicity.

5 Future perspectives

The hesperidin compound is screened from the library of the P.
granatum plant against antioxidant actions. Hesperidin is a
bioflavonoid compound studied for pharmacological actions and
several health diseases. In silico studies of hesperidin can increase the
chances of drug discovery for antioxidant activity against
Alzheimer’s disease. The hesperidin (B25) compound will be
used as a drug with zero toxicity in the future. Furthermore,
retrosynthesis and synthesis of hesperidin can be performed for
effective drug discovery (Binkowska, 2020).
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