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SOX9, a member of the SRY-related HMG-box transcription factors, has been
reported to critically regulate fetal development and stem cell homeostasis. Wnt
signalling is a highly conserved signalling pathway that controls stem cell fate
decision and stemness maintenance throughout embryonic development and
adult life. Many studies have shown that the interactions between SOX9 and the
canonical Wnt signalling pathway are involved in many of the physiological and
pathological processes of stem cells, including organ development, the
proliferation, differentiation and stemness maintenance of stem cells, and
tumorigenesis. In this review, we summarize the already-known molecular
mechanism of cross-interactions between SOX9 and the canonical Wnt
signalling pathway, outline its regulatory effects on the maintenance of
homeostasis in different types of stem cells, and explore its potential in
translational stem cell therapy.
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1 Introduction

SRY, a sex-determining gene, was first found in human and mouse Y-chromosomes in
1990 (Gubbay et al., 1990; Sinclair et al., 1990). The SOX family is a group of transcription
factors that contain the DNA-binding domain of the SRY-related high-mobility group
(HMG) box (Moradi et al., 2017). The HMG domain contains 79 amino acids and binds with
the minor groove of special DNA with consensus sequences (A/TA/TCAAA/TG) (Jo et al.,
2014). Over the last several decades, more than 20 SOX genes have been found based on the
homology analysis of highly conserved HMG boxes, and they have been further classified
into eight subgroups (SOX A-H) (Bowles et al., 2000; Schepers et al., 2002).
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WNT is a ligand family that is composed of 19 proteins. In
mammalian cells, the Wnt signalling pathway plays a critical role
in the self-renewal and fate determination of stem cells (Nakatsu
et al., 2011), as well as tumorigenesis and metastasis (Sugimura
and Li, 2010). WNT proteins activate the transcription of target
genes either in a β-catenin-dependent pathway (canonical
pathway) or through a β-catenin-independent cascade
(noncanonical pathway). In the absence of WNT ligands, a
destruction complex that is composed of adenomatous
polyposis coli (APC), the scaffolding protein AXIN, casein
kinase I alpha (CKIα), and glycogen synthase kinase 3 beta
(GSK3β) causes the phosphorylation and ubiquitylation of β-
catenin, ending up with its proteasome-dependent degradation
and the inactivation of the canonical pathway (Nusse and
Clevers, 2017; Rim et al., 2022; Shah and Kazi, 2022).
However, when WNT proteins are present, they combine with
frizzled-class receptors (FZDs) and two low-density-lipoprotein-
receptor-related protein (LRP5/6) co-receptors, inhibit the
activity of the destruction complex, and increase the stability
of β-catenin. Then, β-catenin translocates into the cell nucleus,

interacts with other transcriptional factors, such as the T-cell
factor/lymphoid enhancer factor (TCF/LEF) transcription
factors (Eastman and Grosschedl, 1999), and induces the
transcription of downstream target genes (Figure 1).

It has been reported that both the canonical and noncanonical
Wnt signalling pathways have interactions with the SOX family,
which participates in various physiological activities and
pathological conditions of stem/progenitor cells (Moradi et al.,
2017). For example, SOX5 inhibits the transcriptional activity of
β-catenin and regulates the cell cycle in neural progenitors
(Martinez-Morales et al., 2010). WNT7b enhances the self-
renewal and osteogenic differentiation of bone marrow
mesenchymal stem cells by activating the Ca2+/
NFATC1 signalling pathway and inducing elevated expression of
SOX11 (Yu et al., 2020).

SOX9, a member of the SOXE family, is an important
transcription factor involved in sexual determination, stem cell
development, and tumorigenesis (Bastide et al., 2007; Sellak et al.,
2012; She and Yang, 2015). In recent years, there has been a
growing number of studies reporting that SOX9 has complicated

FIGURE 1
Diagram of the canonical Wnt Signalling Pathway In the absence of WNT proteins, a destruction complex, which is composed of Axin, APC, CKI and
GSK3β, phosphorylates β-catenin and induces its degradation in a ubiquitination/proteasome-dependent manner. Without the presence of nuclear β-
catenin, TCF combines with co-repressor Groucho, and the transcription of downstream target genes is suppressed. When WNT protein is present,
phosphorylated LRP causes decomposition of the destruction complex andGSK3β inactivation. Then, dephosphorylated β-catenin translocates into
nucleus, combines with TCF, and initiates the transcription of downstream target genes.

Frontiers in Molecular Biosciences frontiersin.org02

Wang et al. 10.3389/fmolb.2023.1250530

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1250530


interactions with the Wnt signalling pathway. In this narrative
review, we summarize the molecular mechanism of the
interactions between the SOX9 transcription factor and the
canonical Wnt signalling pathway. The effect of the SOX9-
Wnt axis on the development and homeostasis maintenance of
stem cells is also reviewed so as to explore its potential in
translational stem cell therapy.

2 Structure of the SOX9 protein

Like other members of SOX family, the SOX9 protein is
characterized by an SRY-related HMG domain that has three α-
helices (Figure 2A) with 50% amino acid similarity (Kamachi and
Kondoh, 2013). The HMG domain of SOX9 contains two
independent nucleus localization signal (NLS) sequences and one
nuclear export signal (NES) sequence (Jana et al., 2020), which
determine the location of the SOX9 transcription factor in either the
cell nucleus or cytoplasm. Moreover, the N-terminal dimerization

domain (DIM) facilitates the homologous dimerization of two SOX
proteins, while the C-terminal transactivation domain (TAC)
promotes the interaction of SOX9 with coactivators or other
transcription factors (Figure 2B) (Huang et al., 2015; She and
Yang, 2015). Additionally, a proline-glutamine-alanine (PQA)-
rich motif, which maps to residues 340–379 of SOX9, enhances
the transactivation potency of TAC (Barrionuevo and Scherer,
2010).

3 Molecular mechanism of cross-
regulation between SOX9 and the
canonical Wnt signalling pathway

SOX9 and the canonical Wnt pathway have complicated
interactions and cross-regulation (Figure 3). Their mutual
antagonism or enhancement has been reported in different types
of stem cells and developmental phases, and they form a subtle
balance to maintain normal physiological activities.

FIGURE 2
Protein structure of human SOX9 and β-catenin (A) Predicted 3D structure of human SOX9 and β-catenin proteins (produced by Software AlphaFold
(Jumper et al., 2021; Varadi et al., 2022)). pLDDT refers to per-residue confidence score between 0 and 100. The dark blue portion of SOX9 with very high
pLDDT corresponds to its HMG domain, while the dark blue portion of β-catenin corresponds to its 12 ARM repeats. (B) Functional domains of human
SOX9 and β-catenin protein. Numbers refer to amino acid residues. ARM, armadillo; CTD, C-terminal domain; DIM, dimerization domain; HMG,
high-mobility group; NES, nuclear export signal; NLS, nucleus localization signal; NTD, N-terminal domain; PQA, proline-glutamine-alanine-rich; TAC,
C-terminal transactivation domain. *Controversially.
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3.1 SOX9 represses the canonical Wnt
signalling pathway

SOX9 is an important antagonist of the canonical Wnt signalling
pathway (Figure 4). Nevertheless, the underlyingmechanism has not
been clearly addressed. Its molecular mechanism is possibly
involved in three aspects: promoting the degradation of β-
catenin, inhibiting the formation of a β-catenin-TCF/LEF
complex and prohibiting its transcriptional activity, and
transcriptionally activating Wnt-related antagonists.

3.1.1 SOX9 impairs the stability of β-catenin and its
nuclear translocation

SOX9 prohibits the activity of β-catenin in four ways:
ubiquitination/proteasome-dependent degradation, lysosomal
breakdown, mastermind-like transcriptional coactivator 2
(MAML2)-related turnover, and a reduced nuclear translocation
level of β-catenin.

It has been reported that direct binding of β-catenin with the
C-terminus of SOX9 (Figure 2B) results in the degradation of β-
catenin in a ubiquitination/26S proteasome-dependent way
(Figure 4Ⅰ) (Akiyama et al., 2004). Nevertheless, the
indispensability of the C-terminus remains controversial because
comparisons of the ability to induce β-catenin degradation between
the SOX9 C-terminal deleted mutant (SOX9 △C) and full-length
SOX9 had conflicting results (Akiyama et al., 2004; Topol et al.,
2009; Au et al., 2023). Moreover, SOX9 induces the proteasome-
dependent degradation of β-catenin in the cell nucleus. The
N-terminal of SOX9 including the HMG domain is capable of
inducing the nuclear translocalization of GSK3β and promoting
its binding with β-catenin, thus leading to the phosphorylation and
degradation of β-catenin in the nucleus (Figure 4B) (Topol et al.,
2009).

Apart from ubiquitination/proteasome-dependent degradation,
SOX9 has the ability to impair the stability of β-catenin in a
lysosome-dependent way (Figure 4Ⅱ). After transfection with

FIGURE 3
Diagram of the cross-regulation between SOX9 and the canonical Wnt pathway in different stem/progenitor cells. The molecular mechanism of
their mutual antagonism or enhancement is complicated and involved in different types of stem/progenitor cells and/or physiological activities. Post-
transcriptional modification includes phosphorylation and SUMOylation. Red block signs and rectangles refer to INHIBITION, green arrows and
rectangles refer to ACTIVATION.
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tagged SOX9, the stability of total β-catenin in HEK293 cells is
maintained by lysosome inhibitor (NH4Cl) rather than proteasome
inhibitor (MG132) (Cheng and Genever, 2010).

It should be noted that SOX9 activates the transcription of
MAML2 (Figure 4C), a type of Notch signalling coactivator and
β-catenin antagonist (Sinha et al., 2021). MAML2-dependent β-
catenin degradation is the predominant way of restraining the
canonical Wnt signalling pathway in circumstances with high
levels of SOX9 and WNT protein (Figure 4Ⅲ). In contrast, the
destruction complex is the overwhelming means of β-catenin
turnover in the cytoplasm when the levels of SOX9 and WNT
protein are low.

In addition, SOX9 regulates the nucleocytoplasmic shuttling
of β-catenin. It has been reported that SOX9 induces a re-
localization of β-catenin from the nucleus to the cytoplasm
(Figure 4D) in a colon cancer cell line (Prevostel et al., 2016).
However, its underlying mechanism needs further study to be
clearly addressed.

3.1.2 SOX9 binds with β-catenin and prohibits the
formation of a β-catenin/TCF complex and its
transcriptional activity

The prevailing view is that SOX9 is able to directly bind with β-
catenin and inhibit Wnt signalling (Akiyama et al., 2004; Abdel-Samad
et al., 2011; Prevostel et al., 2016; Dash et al., 2021). β-catenin contains
781 amino acids, including a 130-amino-acid-long N-terminal domain
(NTD), 12 ARM repeats, and a C-terminal domain (CTD) with
100 amino acids (Figure 2) (Lustig and Behrens, 2003; Shah and
Kazi, 2022). The ARM repeats of β-catenin facilitate its binding with
other transcription factors, such as TCF, in the nuclei (Bienz and
Clevers, 2003). However, the TAC of SOX9 could compete with TCF/
LEF and directly bind with the ARM repeats (Figure 2B), leading to the
arrested formation of the β-catenin-TCF/LEF complex (Figure 4A)
(Akiyama et al., 2004; Sellak et al., 2012). Moreover, a similar HMG
domain that identified consensus-DNA-binding sequences was found
in both SOX9 and TCF (Clevers and van de Wetering, 1997). As
reported, SOX9 is capable of replacing the TCF/LEF-β-catenin complex,

FIGURE 4
Diagram of the molecular mechanism of SOX9 inhibiting the canonical Wnt pathway. In the cytoplasm, SOX9 induces degradation of β-catenin via
ubiquitination/proteasome (I), lysosome (II) or MAML2 (III). In the nucleus, SOX9 inhibits the canonical Wnt pathway through following ways: competitive
binding with β-catenin and prohibited formation of β-catenin/TCF complex (A); GSK3β (translocated by SOX9)-mediated β-catenin degradation (B);
promoting the expression of Wnt/β-catenin signalling antagonists (C); inducing the re-localization of β-catenin from nucleus to cytoplasm (D);
replacing β-catenin/TCF complex and competitive binding with Wnt target genes (E); and inhibiting the transcriptional activity of β-catenin/TCF
complex (F).
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occupying the consensus-DNA-binding site of Wnt target genes, and
prohibiting their transcription (Figure 4E) (Huang et al., 2010). Even
after the successful binding of the β-catenin/TCF4 complex to the
promoter of Wnt target genes, SOX9 could also prohibit its
transcriptional activity (Figure 4F) (Akiyama et al., 2004; Blache
et al., 2004). The C-terminus of SOX9 is indispensable for this
inhibition (Bastide et al., 2007; Topol et al., 2009; Au et al., 2023).

3.1.3 SOX9 promotes the expression of Wnt/β-
catenin signalling antagonists

It has been reported that SOX9 increases the transcriptional activity
of many inhibitory molecules of the canonical Wnt pathway
(Figure 4C) (Kormish et al., 2010; She and Yang, 2015), such as
Tab2 (Huang et al., 2017), MAML2 (Sinha et al., 2021), the
inhibitor of β-catenin and Tcf (ICAT), and the Groucho-related
(Gro/TLE/Grg) family (Bastide et al., 2007). Moreover, SOX9 itself
could be the transcriptional inhibitor of cyclin-dependent kinase 1
(CDK1), one of the target genes of the Wnt signalling pathway (Huang
et al., 2017).

3.2 SOX9 activates the canonical Wnt
signalling pathway

Many studies suggest that SOX9 has the potential to activate the
canonical Wnt/β-catenin signalling pathway (Figure 5) in stem/
progenitor cells or cancer cells. It has been proven that
SOX9 activates the canonical Wnt signalling pathway
predominantly by promoting the stability and nucleus
translocation of β-catenin (Figures 5A, B) (Kormish et al., 2010;
Kawai et al., 2016; Zhang et al., 2019; Chen et al., 2022; Li et al.,
2023), in which the inactivation of GSK3β by SOX9 via the
phosphorylation of Ser9, an increased level of β-catenin
translocation into cell nuclei, and the enhanced transcriptional
activity of the β-catenin/TCF complex are involved (Huang et al.,
2019). Moreover, SOX9 could directly bind to the enhancer of Wnt
target genes in conjugation with TCF and promote their
transcription (Figure 5C) (Ramakrishnan et al., 2023).

It is also notable that SOX9 plays a critical role in promoting
the transcription of receptors and co-receptors of the Wnt

FIGURE 5
Diagram ofmutual activation between SOX9 and the canonical Wnt pathway. In cytoplasm, SOX9 phosphorylates GSK3β, improves the stability of β-
catenin (A) and promotes its nuclear translocation (B). In the nucleus, the binding of SOX9/TCF complex to Wnt-responsive enhancer promotes the
transcription of downstream molecules including SOX9 (C). The transcription of Wnt signalling pathway components and amplifiers, such as FZD, LRP
and TCF4, could be activated by SOX9 and further promotes the canonical Wnt/β-catenin signals (D).
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signalling pathway (Figure 5D), including FZDs, LRP family
members and TCF4 (Wang et al., 2013; Leung et al., 2016; Ma
et al., 2016). The findings of ChIP-sequencing demonstrated that
SOX9 bound to the enhancers of Fzd8 and Sox4 and promoted
their transcription in intestinal stem cells (ISCs) (Huang et al.,
2017). In lung tip progenitors, SOX9 directly upregulated the
transcription of LGR5 and CD44, which are the amplifiers of the
Wnt signalling pathway (Sun et al., 2022). Moreover, SOX9 was
also reported to bind the promoter of ubiquitin-specific peptidase
22 (USP22), a deubiquitinating enzyme, promote its
transcription, and activate the Wnt/β-catenin pathway (Miao
et al., 2022).

3.3 TheWnt signalling pathway regulates the
expression of SOX9

The expression of SOX9 is regulated and maintained by the
Wnt/β-catenin signalling pathway, as supported by many studies
(Blache et al., 2004; Snowball et al., 2015; Liang et al., 2022; Liu
et al., 2022; Sun et al., 2022). In tracheal cartilage and human lung
bud tip progenitors, the elevation of either the WNT protein or
Wnt signalling pathway amplifier enhanced the expression of
SOX9 and maintained its level in the cell nucleus (Nasr et al.,
2021; Hein et al., 2022). β-catenin participated in this process
because it could partially rescue the loss of the
SOX9 transcription and protein level that was caused by the
absence of Wnt signalling activators (Sun et al., 2022).
Meanwhile, the β-catenin/TCF4 complex could directly bind
to the promoter of the Sox9 gene and activate its transcription
(Figure 5C) (Blache et al., 2004). Notably, post-transcriptional
modifications are also involved in the regulation of the Wnt
signalling pathway on SOX9. During neural crest delamination,
the canonical Wnt signalling indirectly induces the
phosphorylation of SOX9 on S64 and S181 and facilitates the
modification of SOX9 by small ubiquitin-like modifier (SUMO)
(Liu et al., 2013).

The Wnt/β-catenin pathway also plays an important role in
inhibiting SOX9. It not only silences the Sox9 gene via DNA
methylation in limb bud mesenchymal cells (Kumar and Lassar,
2014), but also promotes the degradation of SOX9, which is
predominantly in a ubiquitin/26S proteasome-dependent way
(Akiyama et al., 2004; Jin et al., 2006). Microtubule-associated
serine/threonine kinase 4 (Mast4), the stability of which is
maintained by Wnt signals, might participate in this
degradation (Kim et al., 2022). Moreover, β-catenin inhibits
the transcriptional activity of SOX9 in a dose-dependent
manner (Akiyama et al., 2004). However, the molecular
mechanism of this inhibition remains unclear.

In summary, many parts of signalling transduction are involved
in the cross-regulation between SOX9 and the canonical Wnt/β-
catenin signalling pathway, including the expression and stability
maintenance of key proteins, the nuclear translocation of signal
molecules, the formation and activity of transcription complex, and
selective downstream target genes, all of which form a complicated
signal network. The effect of SOX9-Wnt cross-regulation and
underlying mechanisms are tissue- and cell type-specific, and
might have changes during the development or under

pathological conditions, which will be addressed in details in the
next section.

4 The role of SOX9-Wnt cross-
regulation in the homeostatic
maintenance of stem cells

Strong evidence has shown that the cross-talk between
SOX9 and the Wnt signalling pathway regulates the delicate
balance among stem cells, progenitor cells, and differentiated
cells during development in normal tissues. Perturbation of such
balances is associated with pathological conditions, such as dysplasia
and cancer.

4.1 Airway progenitor cells

The effects of SOX9-Wnt interactions on airway progenitors
are space-specific. For instance, the canonical Wnt/β-catenin
signalling pathway is required to upregulate the expression of
SOX9 and maintain the homeostasis of distal lung tip epithelial
progenitors during cell differentiation and tissue development
(Ustiyan et al., 2016; Ostrin et al., 2018; Hein et al., 2022; Sun
et al., 2022). In contrast, β-catenin inhibits the expression of
SOX9 in the progenitors of proximal airway epithelial cells
(Ustiyan et al., 2016). The absence of β-catenin further leads
to the expanded expression of SOX9 in the proximal airway
(Rockich et al., 2013). These findings support the hypothesis
that the space-specific control of SOX9 by β-catenin maintains
a normal proximal–peripheral patterning of lung tubules
during pulmonary branching morphogenesis (Ustiyan et al.,
2016).

Moreover, during the development of the fetal lung,
SOX9 amplifies Wnt signalling, promotes lung tip epithelial
progenitor cell proliferation, and prohibits precocious airway
differentiation (Sun et al., 2022). In the proximal airway, the
reciprocal crosstalk between Wnt/Lef1 signalling pathway and
SOX9 also dynamically controls the healing of superficial airway
epithelium after injuries by regulating the asymmetrical division
of submucosal gland progenitors, with one SOX9+Wnt− daughter
cell maintaining stemness and quiescence and the other
SOX9−Wnt+ cell maintaining proliferation (Ievlev et al., 2022).
Apart from its activity in epithelial cells, Wnt signalling is also
required to activate SOX9 during the differentiation of tracheal
mesenchymal stem cells and tracheal cartilage development
(Snowball et al., 2015).

4.2 Pancreatic and intestinal progenitor cells

It was found that SOX9 phosphorylates GSK3β, upregulates
the level of nuclear β-catenin, and promotes the proliferation and
differentiation of pancreatic progenitors (McDonald et al., 2012).
Another study indicated that miR-690 induces Sox9 silencing and
inactivates Wnt signalling, which leads to the arrested
differentiation of β-cells from iPSC-derived insulin-producing
cells (Xu et al., 2019). Nevertheless, the activation of Wnt
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signalling arrests the generation of β-cells by attenuating SOX9-
dependent multipotent pancreatic progenitor cells (Dettmer
et al., 2021). These findings collectively suggest that during
SOX9-dependent pancreatic development and β-cell
differentiation, the cross-regulation between SOX9 and Wnt
signalling prevents the over-activation of SOX9. Intriguingly,
the inactivation of SOX9 and a relatively low Wnt signalling level
are crucial for the maintenance of functional adult β-cells, as
evidenced by a study that found that aberrant activation of Wnt
signalling and SOX9 in adult β-cells resulted in diabetes mellitus
(Puri et al., 2013).

It has been demonstrated that the expression of SOX9 in the
intestinal crypts, which is regulated by the Wnt signalling
pathway, is indispensable for the development of Paneth cells,
a type of highly specialized secretory epithelial cell that
constructs the niches for ISCs (Blache et al., 2004; Bastide
et al., 2007; Mori-Akiyama et al., 2007). Moreover, high-
mobility group A1 (Hmga1) chromatin remodeling proteins
upregulate Wnt agonist receptors and SOX9 and maintain ISC
niches by expanding the Paneth cell compartments (Xian et al.,
2017). Apart from its involvement with Paneth cells, SOX9 is also
involved in the maintenance of an undifferentiated phenotype of
intestinal epithelial progenitors in a Wnt-dependent manner
(Blache et al., 2004). The molecular mechanism of the SOX9-
Wnt axis in regulating the proliferation of ISCs was also explored.
In diabetic mice, SOX9 transcriptionally activated the repressors
of the canonical Wnt signalling pathway, such as Wnt4 and Tab2
(Huang et al., 2017). The absence of SOX9 led to the
overactivation of the Wnt signalling pathway and abnormal
proliferation and differentiation of ISCs. A bimodal role of
SOX9 was proposed: A low level of Wnt-dependent
SOX9 promoted ISC proliferation in the stem/progenitor cell
compartment, whereas a high level of Wnt-independent
SOX9 prohibited cell proliferation and induced terminal
maturation of enteroendocrine precursors (Formeister et al.,
2009).

4.3 Osteochondroprogenitors

The SOX9-Wnt signalling axis controls the lineage decisions of
osteoblasts and chondrocytes (Akiyama et al., 2004; Hill et al., 2005).
On one hand, the inactivation of Wnt/β-catenin signalling by
SOX9 promotes cell differentiation from mesenchymal stem/
progenitor cells (MSCs) into chondrocytes and the formation of
cartilage nodules at the expense of osteogenesis (Hill et al., 2005;
Topol et al., 2009; Dy et al., 2012; Venkatesan et al., 2012). On the
other hand, the canonical Wnt/β-catenin signalling pathway
represses the expression of SOX9, prohibits the chondrogenic
potential of osteochondroprogenitors, and stimulates
differentiation towards the osteoblast lineage (Hill et al., 2005;
Kumar and Lassar, 2014; Lefebvre and Bhattaram, 2016). In
addition, phase-specific mutual antagonism between SOX9 and
β-catenin was found to be involved in the lineage decisions of
osteochondroprogenitors. It was found that in
D0 osteochondroprogenitors, SOX9 combined with the promoter
of the target gene Ccn2, while β-catenin/TCF complex competed
with SOX9 and bound to Ccn2 in D26 hypertrophic chondrocytes

(Huang et al., 2010). Such phase-specific regulations coordinate
osteoblast recruitment, cartilage renewal, and bone formation.

However, reciprocal inhibition between SOX9 and Wnt/β-catenin
signalling is disturbed in osteoblasts and chondrocytes under
pathological conditions. Hydrostatic pressure induces the activation
of Wnt/β-catenin signalling and, consequently, elevates the expression
of SOX9 in MSCs, leading to a higher level of chondrogenic
differentiation (Cheng et al., 2022). Nevertheless, during the
induction of osteonecrosis of the femoral head (ONFH), the
inhibition of SOX9 downregulates the Wnt/β-catenin signalling
pathway and suppresses osteogenic differentiation (Meng and Zhu,
2023). It was also reported that the perturbation of mutual SOX9-Wnt
inhibition contributed to dysplasia. In developing limbs, a truncated
SOX9mutant interfered with SOX9-mediatedWnt inhibition, resulting
in campomelia, a kind of genetic disorder with skeletal malformation
(Au et al., 2023). In addition,Wnt11, which instigates the noncanonical
Wnt signalling pathway, was reported to promote the transcription of
SOX9 and support the chondrogenic differentiation of MSCs (Liu et al.,
2014).

4.4 Neural crest cells

Neural crest cells (NCCs) are a transient population of
embryonic multipotent stem cells that give rise to a wide variety
of cell and tissue types, including cartilage and bone, most neurons,
and all glia of the peripheral nervous system (Achilleos and Trainor,
2012; Liu et al., 2013). Similarly to MSC-derived
osteochondrogenesis, during NCC-derived craniofacial
osteochondrogenesis, Wnt/β-catenin signalling enhances
osteogenic potential by counteracting SOX9, and arrests cell
differentiation towards chondrocytes in which Yap/Taz is
involved (Dash and Trainor, 2020; Zhao et al., 2022). In
addition, the absence of Med23 induces abnormally elevated
expression of SOX9, which leads to the inhibition of Wnt
signalling and the perturbation of NCC-derived mesenchymal
proliferation in the palatal shelf (Dash et al., 2021).

Apart from their involvement in osteochondrogenesis, NCCs
play a more important role in neural crest induction, which is
mediated by Wnt signals, with SOX9 serving as a crucial
downstream transcriptional activator (Lee et al., 2004). Yardley
and Garcia-Castro (Yardley and Garcia-Castro, 2012) confirmed
that the upregulation of WNT molecules is prior to the elevated
expression of the neural crest marker, SOX9, during the
transformation from non-neural ectoderm to the neural crest.
Moreover, during the initiation of neural crest delamination, the
canonical Wnt signalling promotes SOX9 phosphorylation and
SUMOylation (Liu et al., 2013). SOX9 was also reported as a
biomarker of adult neural-crest-derived stem cells, and it
interacted with the canonical Wnt signalling pathway to maintain
stemness (Hoving et al., 2021).

4.5 Limbal and follicle epithelial stem/
progenitor cells

It was proposed that in the limbal niches, SOX9 and Wnt/β-
catenin signalling mutually antagonize to achieve a balance among
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quiescence, proliferation, and differentiation of limbal epithelial
stem/progenitor cells (LEPCs). In cultured LEPCs, Sox9
knockdown caused a decreased level of GSK3β and increased
expression of canonical-Wnt-signalling-related genes, such as
CTNNB1 (encoding β-catenin) and WNT4, which repressed cell
proliferation and promoted differentiation (Menzel-Severing et al.,
2018). In turn, the expression of SOX9 was significantly suppressed
with the treatment of exogenous GSK3β inhibitors and was
enhanced by C59, a small-molecule Wnt inhibitor. Likewise, an
elevated level of Wnt3a, a Wnt ligand that only activates the
canonical Wnt signalling pathway, downregulated the expression
of SOX9 and impaired the stem cell phenotype (Peng et al., 2015).
Our ongoing study also found out that Wnt16b, a ligand of both the
canonical and the non-canonical Wnt signalling pathway, promoted
the proliferation of LEPCs via downregulating the expression of
SOX9 and upregulating SOX11 (unpublished data). Although it was
reported that the nucleocytoplasmic shuttling of SOX9 and β-
catenin might be crucial in the regulation of LEPC proliferation
and differentiation (Menzel-Severing et al., 2018), its mechanism has
not been thoroughly elucidated. This balance might be controlled by
the ligands expressed in the mesenchymal cells, such as Dickkopf-2
(Walker et al., 2020), or the activation of ΔNp63 (Gouveia et al.,
2019).

SOX9 is the marker of hair follicle stem cells. The cross-
regulation between SOX9 and WNT signalling determines the
specification and cell fate commitment of hair follicle stem cells
(Xu et al., 2015). During hair formation, a Pcadhigh placode cell
undergoes asymmetric cell division in a WNThigh environment and
generates two daughter cells: one WNTlowSOX9+ and the other
WNThighSOX9-. WNTlowSOX9+ cells migrate towards the
suprabasal layer and maintain stemness, while WNThighSOX9-

cells remain in the basal layer and undergo terminal
differentiation (Ouspenskaia et al., 2016). The underlying
mechanism of this cell specification lies in a WNT signalling
gradient, in which WNTlowSOX9+ cells respond to paracrine SHH
expressed by WNThighSOX9- cells. Moreover, the knockdown of
SOX9 led to the dampened expression of Wnt signalling pathway
genes, such as LEF1, TCF1, and c-Myc in goat hair follicle stem cells
(He et al., 2018).

4.6 Other stem cells and progenitors

It was reported that in the salivary glands, the population of
SOX9+ progenitor cells increases after radiation damage via the
activation of the Wnt/β-catenin pathway (Xu et al., 2022). During
the development of teeth, SOX9 and Wnt signalling regulate
mesenchymal and epithelial interactions and control the
expansion and differentiation of apical stem/progenitor cells (Lav
et al., 2023). In addition, adipose mesenchymal-stem-cell-derived
exosomes activate the Wnt/β-catenin pathway by upregulating the
expression of SOX9, leading to accelerated proliferation and
migration of human skin fibroblast cells and promoting skin
wound healing (Qian et al., 2021).

In the embryonic neural stem cells (NSCs) of mice, NF-α1
inhibited the Wnt/β-catenin signalling pathway and repressed cell
proliferation, while it activated the MAPK/MEK/Sox9 signalling
pathway and promoted the differentiation of NSCs into astrocytes

(Selvaraj et al., 2017). Notably, the promotive effect of NF-α1 on
SOX9 preceded its inhibition on β-catenin. Nevertheless, whether
NF-α1 indirectly inhibits β-catenin via SOX9 remains unclear.

5 Perspectives

Currently, the studies on the interactions of the SOX9-Wnt axis
are mainly focused on the canonical Wnt signalling pathway. The
mechanism between SOX9 and the noncanonical Wnt signalling
pathway has not been fully elucidated. Moreover, it cannot be
excluded that some interactions between SOX9 and β-catenin or
GSK3β are regulated by non-Wnt signalling pathways because they
might be modulated in a WNT-independent way (McDonald et al.,
2012; Alanis et al., 2014).

Given the complexity of signalling pathways, it still remains to
be answered how a three-dimensional dynamic network of SOX9-
Wnt crosstalk is organized. The currently available data show us that
nucleocytoplasmic shuttling and asymmetric division merit further
study from a spatial perspective, whereas stage-specific regulations
and bimodal effects are revelatory from a temporal perspective. In
addition, the interactions between the SOX9-Wnt axis and other
signalling pathways and molecules, such as Yap/Taz, need
elucidation. Apart from the studies on molecular mechanisms, it
is also important to elucidate the variations of SOX9-Wnt cross-
regulations on different types of cells and tissues and to explore their
correlations with cell functions from a spatiotemporal perspective in
future work.

Lastly, novel treatments targeting the SOX9-Wnt axis have great
potential in translational cell therapy to control cell proliferation,
differentiation, and survival. For example, the manipulation of the
SOX9-Wnt axis has been reported to control the culture conditions
of in-vitro-expanded stem/progenitor cells, such as iPSC-derived
insulin-producing cells (Xu et al., 2019) and LEPCs (Menzel-
Severing et al., 2018), and regulate cell proliferation and
differentiation. Our previous work also supports that SOX9-Wnt
cross-regulation might be a potential tool to optimize in vitro
cultivation of functional LEPC grafts for cell replacement
therapy. Additionally, patients with diseases related to abnormal
cell differentiation, such as diabetes mellitus that is caused by
abnormal β-cells with ectopic expression of SOX9 and
concomitant activation of Wnt signalling (Puri et al., 2013), may
benefit from in vivo medication delivery targeting aberrant SOX9-
Wnt cross-regulation.

In summary, although many studies have demonstrated that the
cross-regulation between SOX9 and Wnt signalling pathway have
potential in the clinical translation of stem cell therapy, its molecular
mechanism needs further investigations to be fully addressed. A
comprehensive recognition of the cross-talk network is
indispensable for selecting a translational target with the highest
safety and efficacy in the network, which are crucial for future
in vitro and in vivo stem cell replacement therapy.

6 Conclusion

In conclusion, the cross-regulation between SOX9 and the
canonical Wnt signalling pathway—through either mutual

Frontiers in Molecular Biosciences frontiersin.org09

Wang et al. 10.3389/fmolb.2023.1250530

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1250530


antagonism or activation—has been found to be involved in the
physiological and pathological processes of stem/progenitor
cells in different types of organs, tissues, anatomical
locations, and stages of development. However, the
underlying mechanisms of their mutual regulation in stem
cells have not been fully elucidated and require further
investigations.
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