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Introduction: Preeclampsia (PE), a notable pregnancy-related disorder, leads to
40,000+ maternal deaths yearly. Recent research shows PE divides into early-
onset (EOPE) and late-onset (LOPE) subtypes, each with distinct clinical features
and outcomes. However, the molecular characteristics of various subtypes are
currently subject to debate and are not consistent.

Methods: We integrated transcriptomic expression data from a total of 372
placental samples across 8 publicly available databases via combat algorithm.
Then, a variety of strategies including Random Forest Recursive Feature
Elimination (RF-RFE), differential analysis, oposSOM, and Weighted Correlation
Network Analysis were employed to identify the characteristic genes of the EOPE
and LOPE subtypes. Finally, we conducted in vitro experiments on the key gene
HK2 in HTR8/SVneo cells to explore its function.

Results: Our results revealed a complex classification of PE placental samples,
wherein EOPE manifests as a highly homogeneous sample group characterized by
hypoxia and HIF1A activation. Among the core features is the upregulation of
glycolysis-related genes, particularly HK2, in the placenta-an observation
corroborated by independent validation data and single-cell data. Building on the
pronounced correlation between HK2 and EOPE, we conducted in vitro experiments
to assess the potential functional impact of HK2 on trophoblast cells. Additionally, the
LOPE samples exhibit strong heterogeneity and lack distinct features, suggesting a
complex molecular makeup for this subtype. Unsupervised clustering analysis
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indicates that LOPE likely comprises at least two distinct subtypes, linked to cell-
environment interaction and cytokine and protein modification functionalities.

Discussion: In summary, these findings elucidate potential mechanistic differences
between the two PE subtypes, lend support to the hypothesis of classifying PE
based on gestational weeks, and emphasize the potential significant role of
glycolysis-related genes, especially HK2 in EOPE.

KEYWORDS

preeclampsia, placenta, gestational hypertension, transcriptomics, microarray, single-cell
sequencing

Introduction

Preeclampsia (PE) is a common multi-organ pregnancy
complication characterized by the development of hypertension
and proteinuria after 20 weeks of gestation. In severe cases, it
may progress to neurological symptoms such as seizures, which
are collectively known as eclampsia, hence the term “preeclampsia”

(Magee et al., 2022). PE affects 2%–4% of pregnant women
worldwide and is a leading risk factor for perinatal mortality,
resulting in an estimated 500,000 perinatal deaths each year
(Magee et al., 2022). Consequently, it is an essential focal point
of obstetrical research. Before delivery at 34 weeks, obstetricians
classify pregnant women with pre-eclampsia into two subtypes:
early-onset PE (EOPE) and late-onset PE (LOPE) (Jung et al.,
2022). Patients with EOPE typically exhibit more severe clinical
symptoms and a poorer prognosis, suggesting potential differences
in pathogenic mechanisms between the two subtypes (Jung et al.,
2022). This classification not only facilitates distinct clinical
management approaches but also enables a deeper understanding
of the underlying mechanisms of pre-eclampsia. According to
accumulated research results, a widely accepted theory suggests
that the pathogenesis of EOPE is primarily due to placental
formation disorders that occur during early pregnancy (Gj et al.,
2019). Conversely, LOPE is believed to be caused primarily by an
increase in fetal demand (Gj et al., 2019). Both mechanisms arise
from an absolute and relative mismatch between placental function
and fetal demand, leading to stress in the placental trophoblast and
the release of stress-related factors (Gj et al., 2019). This can cause
dysfunction and inflammation of the vasculature in multiple organ
systems, resulting in the characteristic multi-organ damage
associated with pre-eclampsia. To recap, placental serves as the
cornerstone of pre-eclampsia pathogenesis, and as such, delivery
remains the only effective treatment for this condition.

Given the essential role of placenta in the pathogenesis of pre-
eclampsia (PE), extensive research has been conducted on PE
placenta to understand the underlying molecular mechanisms
(Cruz-Lemini et al., 2022; Louwen et al., 2022; Melchiorre et al.,
2022). Transcriptome data, which are the predominant type of
research data (Szilagyi et al., 2020; Yadama et al., 2020; Ren
et al., 2021), have been shared in databases for further
exploration. However, the differences in data quality, batch, and
sample subtypes have become significant challenges for utilizing this
data (Lazar et al., 2013). Firstly, some independent studies have
insufficiently recognized the potential mechanistic differences
between EOPE and LOPE, and this, coupled with limited sample
sizes and a lack of differentiation in disease subtypes within the
samples, compromises the generalizability of research outcomes. For
example, two similar studies (each with sample sizes below 10)
arrived at different conclusions, identifying angiogenesis-associated
genes and inflammatory response-associated genes as distinct
elements in EOPE and LOPE samples (Junus et al., 2012; Liang
et al., 2016). This alludes to the probability that these conclusions
predominantly echo the attributes of the specific samples under

FIGURE 1
Graphical summary of the study workflow.
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consideration, rather than holding broader applicability.
Furthermore, evident batch effects traverse across various
datasets, intricately interwoven with biological variabilities across
samples. Thoughtfully designed algorithms are imperative to
ameliorate batch effects prior to embarking on integrated
analyses. The intricacies inherent in these research findings and
the methodological challenges at hand currently obstruct a holistic
comprehension of the pathogenesis of PE.

In order to fully capitalize on the transcriptomic data of EOPE
and LOPE placentas, we integrated eight microarray-based datasets
comprising a total of 372 human placenta samples. We then
employed machine learning techniques, including random forest
and artificial neural networks, to extract valuable insights from these
datasets. To overcome the challenges posed by batch effects on data
integration, we turned to the Combat software for batch correction,
and our analytical outcomes were also confirmed across multiple
datasets. Combat is a wildly-used and dependable statistical model
that rectifies batch-induced differences while preserving authentic
variability across distinct batches (Leek et al., 2012). Traditional
transcriptomic analysis methods rely on manually selecting
threshold-based differential gene analysis approaches, which
possess a degree of subjectivity. In order to sidestep biases
introduced by adjustable threshold parameters in traditional
differential gene analysis, we utilized the oposSOM software, an
unsupervised neural network approach that extracted readable
molecular pathological features from the high-dimensional gene
expression matrix (Löffler-Wirth et al., 2015).

From our analysis of the combined dataset, we observed a strong
homogeneity in the expression of PE-related genes in EOPE placentas,
whereas LOPE placentas displayed greater heterogeneity, highlighting

the complexity of classifying PE placentas. Subsequent analysis
enabled us to identify the molecular expression patterns associated
with EOPE and reveal that genes involved in the glycolysis pathway,
such as HK2, TPI1, SLC2A1, were significantly upregulated in EOPE
placenta, which was further substantiated in a single-cell sequencing
dataset. Among the examined genes, HK2 manifests the most
pronounced differential fold change and displays a notable
correlation with maternal hypertension. To elucidate the plausible
role of HK2 within the placenta, a series of in vitro experiments were
meticulously conducted employing trophoblast cells. In addition,
unsupervised clustering algorithms identified two distinct potential
molecular subtypes within the heterogeneous LOPE placental
samples, indicating the diversity of mechanisms underlying LOPE.

Materials and methods

Data retrieval and grouping

Microarray datasets for integration were obtained from the public
database Gene Expression Omnibus (Gene Expression Omnibus, 2023)
(www.ncbi.nlm.nih.gov/geo/) with the following reference numbers:
GSE14722, GSE22526, GSE25906, GSE35574, GSE44711, GSE66273,
GSE74341, and GSE75010. Based on the clinical gestational age or
sample grouping information of each placenta sample, the samples
were reclassified into four groups: EOPE, LOPE, preterm, and term.
Placental samples from PE patients with a clinical gestational
age <34 weeks were classified as EOPE, those with 34≤ clinical
gestational age <37 weeks were classified as LOPE; non-PE samples
with a clinical gestational age <37 weeks were classified as preterm, and

FIGURE 2
Detection of batch effects before and after data integration. Box plots of sample mean expression levels, hierarchical clustering dendrograms, and
umap dimensionality reduction scatter plots before (A–C) and after (D–F) batch effect correction.
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non-PE samples with a clinical gestational age ≥37 weeks were classified
as term. Furthermore, for the validation of gene expression levels in the
integrated matrix, we utilized the dataset with the accession number
GSE148241. Single-cell placental data from PE patients originated from
the dataset GSE173193.

Microarray raw data processing and quality
control

Microarray raw data was downloaded from the GEO database. Since
the included datasets were from different experimental platforms, we
chose methods suitable for each chip’s experimental design for quality
control. Specifically, for dual-channel chips, the median signal of the
sample channel after background correction in the sample channel was
used as the probe fluorescence reading, and probes with readings<5were
removed. For single-channel chips with background correction, probes
with a fluorescence-to-background comparison p-value ≥0.05 were

removed. For CEL format single-channel raw data, the “affy” package
(Gautier et al., 2004) pipeline was used for processing, and the “genefilter”
package (Robert, 2023) was used to remove probes with low variability.
For probe sets in the raw data that come with sample probe detection
p-values, probes with p-values ≥ 0.05 were filtered out. All fluorescence
readings corrected and quality-controlled were log2 transformed, and
probes were annotated based on the chip’s specifications.

Batch correction

Batch correction was performed using the “Combat” package (Leek
et al., 2012). First, 4,816 genes shared by the eight matrices to be merged
were extracted for merging, and different studies were designated as
different batches. Specifically, the GSE35574 and GSE255906 datasets
themselves have two batches. Therefore, the eight expression matrices
were designated as ten batches. The linear regression model was used to
describe the sample subtype grouping, and the Combat function mod

FIGURE 3
EOPE may represent a homogeneous and independent subtype with typical molecular features of PE placenta. (A) Accuracy of random forest
models with different numbers of variables in distinguishing between PE and non-PE samples. (B) Heatmap depicting the expression levels of PE feature
genes in the placenta samples. (C) Scatter plot of placenta samples after umap dimensionality reduction on PE feature genes expression, with the elliptical
curve representing the 60% confidence interval range. (D) Box plots of sample Shannon entropy levels, with the length of the error bars representing
the variation of within-group sample differences. Student’s t-test was used for statistical comparison between two groups. “ns” represents no statistical
difference, and “*” represents p < 0.05. (E)Heatmap of differentially expressed genes under different comparison group pairs, with color representing fold
change. Here, “PE_all” refers to all preeclampsia samples, including both EOPE and LOPE groups, while “control_all” refers to two types of control
samples, encompassing both term and preterm groups.
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parameter was used for matrix batch effect correction. The batch effect-
corrected matrix was used for further analysis.

Random forest recursive feature elimination
(RF-RFE)

The recursive feature elimination (RFE) function of the
“caret” package (Kuhn, 2008) was used with 10-fold cross-
validation as the algorithm’s cross-validation method, and the
accuracy of feature set sizes ranging from 1 to 100 and from
200 to 3,200 in an exponential sequence was calculated to
determine the optimal feature subset.

Differential analysis and gene ontology (GO)
enrichment analysis

The “limma” package (Ritchie et al., 2015) was used for
differential analysis, which involved fitting a linear model to
the expression matrix, calculating contrast coefficients, and
estimating the statistical significance and variance of each

gene’s expression level using Bayesian estimation. Multiple
testing corrections were performed using false discovery rate
(FDR) correction of p-values, and genes with |logFoldchange| >
1 and FDR < 0.05 were selected as differentially expressed genes.
GO enrichment analysis was performed using the
“clusterProfiler” package (Wu et al., 2021) with FDR
correction of p-values, the ontology parameter set to
Biological Process, and the top 5 terms selected for visualization.

oposSOM analysis

The oposSOM analysis was performed using the R package
“oposSOM” (Löffler-Wirth et al., 2015). The gene expression
matrix was passed to the function with the dimension
parameter of the first SOM set to 20. This is a package based
on Self-Organizing Maps (SOM) that offers a method for
extracting inherent functional modules and clusters from data.
In short, oposSOM analysis involves projecting a high-
dimensional gene expression matrix into a lower-dimensional
space of specified dimensions. Within this reduced space,
individual units referred to as “meta-genes” emerge,

FIGURE 4
oposSOM analysis indicates that hypoxia is a typical feature of EOPE. (A) Matrix of meta-genes and functional annotations obtained by oposSOM
clustering. The left four panels represent the expression levels of meta-genes in different groups. Red and blue represent up- and downregulated meta-
genes in that group, respectively. The middle panel represents the high-expression meta-genes that compose the spot in the clustering algorithm. The
right panel represents the top enrichment results of spot’s HALLMARK gene set. (B–C) Bar plots of Gene Set Z-scores of the MENSE_HYPOXIA_UP
and PID_HIF1_TFPATHWAY gene sets and heatmap of their gene expression levels in all samples.
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representing genes with closely related expression patterns. By
plotting meta-gene expression levels for each sample, we generate
meta-gene expression maps. Through the overlap of these sample-
specific maps, we can deduce concurrently overexpressed or
uniquely expressed meta-genes across various groups.
Metagenes overexpressed within specific groups are clustered
together and termed as “spots,” representing distinctive
characteristic metagenes within specific groups. Subsequently,
conducting enrichment analysis on genes within these spots
yields valuable insights into gene functionalities. The oposSOM
analysis results from oposSOM generated file, enrichment of
content including clustering analysis, analysis and specific
analysis and visualization of the results. For the detailed
calculation procedure of the sub-part, please refer to the
literature (Löffler-Wirth et al., 2015).

Weighted correlation network analysis
(WGCNA) and hub gene selection

We performed gene co-expression network analysis using the
WGCNA package (Langfelder and Horvath, 2008). According to
the user manual, we first performed quality control on genes and
samples, selected a soft-thresholding value based on expression

data, and constructed a gene co-expression network model.
Genes with similar expression patterns were clustered into the
same module, and the correlation between modules and clinical
phenotypes was calculated. The genes in the MEyellow and
MEred modules and the calculated gene connectivity data
were extracted and imported into Cytoscape software
(Shannon et al., 2003). The MCODE plugin was used to select
hub genes.

Glycolysis score

The glycolysis gene set score was calculated using the ssGSEA
method of the “GSVA” package (Hänzelmann et al., 2013), which
uses a Gaussian function as the kernel density function to calculate
the expression levels of eight glycolysis genes for each sample,
resulting in a score.

Single-cell sequencing analysis

Raw single-cell data was downloaded from the GEO database
and processed using the Seurat package (Hao et al., 2021). Quality
control was performed based on three indicators: the number of

FIGURE 5
Filtering of EOPE phenotype-associated genes and analysis of highly connected genes. (A) Heatmap of the correlation between gene modules and
sample phenotypes. The first row of numbers in each cell represents the Pearson correlation coefficient R, and the numbers in parentheses in the second
row represent the p-value. The yellow and redmodules, which aremost correlated with EOPE, were selected for the filtration of core genes. (B) Selection
of EOPE-correlated genes and hub genes. The red or green background represents genes that are upregulated or downregulated in the EOPE
group, with the term group serving as the control. The color intensity reflects the magnitude of the difference. The rounded square genes within the blue
box represent hub genes with the highest connectivity among EOPE-correlated genes.
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detected genes, the number of unique molecular identifiers, and
the percentage of mitochondrial genes. Cells with gene
numbers > 200, unique molecular identifiers (UMI)
numbers > 500, and mitochondrial gene percentages < 20%
were retained. The data were standardized, scaled, and
dimensionally reduced according to the reference method in
the software package, and the top 12 principal components
were selected for cell clustering analysis at a resolution of 0.6.
Cell annotations were performed based on reported single-cell

markers of placental cells (Liu et al., 2018; Suryawanshi et al.,
2018; Pique-Regi et al., 2019; Li et al., 2020).

Sample collection

The placental samples used in this study were obtained from
participants at the First Affiliated Hospital of Chongqing Medical
University. Patients were diagnosed according to The American

FIGURE 6
Integration matrix showing upregulated expression of glycolytic genes in EOPE samples and validation of the results in independent datasets. (A)
Violin plot of the expression levels of glycolysis genes and HIF1A in the integrated dataset samples. One-way ANOVA was used to compare differences
betweenmultiple groups, and a Student’s t-test was used for pairwise comparisons. (B) Violin plot of the expression levels of glycolysis genes and HIF1A in
the validation dataset samples. A Student’s t-test was used to compare differences between groups, with “ns” indicating no statistical difference, “*”
indicating p < 0.05, “**” indicating p < 0.01, “***” indicating p < 0.001.
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College of Obstetrics and Gynecology’s clinical practice
guideline. Patients with known chronic hypertension,
gestational complications other than preeclampsia, severe
gestational pre-existing conditions, or any co-existing systemic
diseases were excluded from the study. Placental tissue was
collected using sterile scissors within 5 min of placental
delivery during caesarean section and washed in cold PBS
solution before fixation with 4% paraformaldehyde and
embedding in paraffin. Detailed information regarding
placental sample collection can be found in the author’s
previous publications (He et al., 2021).

Histological analysis

The human placental sections were embedded in paraffin and cut to
a thickness of 3 μm. Tissue paraffin sections were stained using
hematoxylin and eosin (HE) dyes (G1120-3, Solarbio, China).
Antigen retrieval was carried out using citrate antigen retrieval
buffer (pH 6.0), and endogenous peroxidase was blocked with 3%
H2O2 for 25 min. A primary antibody against HK2 (1:200, 66974-1-Ig,

Proteintech, China) was utilized for immunohistochemical staining
(IHC), and signal detection was performed through diaminobenzidine
(DAB) staining using AFIHC004 kit (AIFang Biological, China). The
prepared sections were observed and photographed under microscope.

Cell culture

The HTR8/SVneo cell line used in this study was purchased from
the American Type Culture Collection (ATCC, United States). The cells
were cultured in recommended Roswell Park Memorial Institute
(RPMI) 1,640 medium supplemented with 10% fetal bovine serum
(Gibco, United States) and 1% penicillin-streptomycin. The cells were
maintained under stable conditions of 37°C, 5% CO2, and 20% O2. For
hypoxic treatment, the O2 concentration was adjusted to 1%, while the
other conditions were the same as for normoxic conditions.

Western blotting

Cell lysates were scraped and dissolved in RIPA buffer
(Beyotime, China) containing PMSF (1:100, Beyotime, China) on
ice, followed by centrifugation at 12,000 g for 15 min to collect the
protein in the supernatant. The protein concentration was
standardized and mixed with Laemmli Sample Buffer (#4006028,
Bio-Rad, United States) and DTT, followed by separation on a 10%
discontinuous SDS-PAGE gel and transferred onto polyvinylidene
difluoride membranes (Merck Millipore, GER). The membranes
were blocked with 5% skim milk in Tris-buffered saline containing
0.05% Tween-20 for 1 h, and then incubated with specific primary
antibodies overnight at 4°C. After that, the membranes were
incubated with horseradish peroxidase-conjugated goat anti-
mouse IgG or goat anti-rabbit IgG for 1 h at room temperature.
Band densitometry was performed using the Quantity One System
image analyzer (Bio-Rad, United States). The antibodies used in this
study included ATG5 (1:1,000, ab108327, Abcam, United States),
BECLIN1 (1:1,000, ab207612, Abcam, United States), LC3 (1:1,000,
14600-1-AP, Proteintech, China), P62 (1:1,000, ab109012, Abcam,
United States), and β-Actin (1:1,000, Cell Signaling Technology,
United States). All original gel images generated from Western
blotting are included in Supplementary Figure S9.

Statistical analysis and visualization

All statistical analyses in this studywere performed using R software
(R version 4.2.3) (R Core Team, 2023). In the initial stages of the study,
the “pwr” package was utilized for sample size estimation (Stephane,
2020). Based on the research design with four groups, it was estimated
that having a sample size greater than 58.67 within each group would
provide the study with over 90% power at a medium effect size to detect
inter-group differences. In this study, the sample sizes for all groups
exceeded this threshold. The entropy value of each sample was
calculated using the “entropy” package, with the unit specified as
“log2” (Strimmer, 2021). The clustering of LOPE samples was
accomplished using the k-means algorithm. Silhouette scores were
calculated for various values of the parameter “k” (number of
clusters), and the optimal value of “k” was selected. In this study, we

FIGURE 7
Correlation analysis between glycolysis genes, HIF1A, and clinical
features. (A) Heatmap showing the correlation between glycolysis
genes, HIF1A, maximum systolic blood pressure (MSBP), maximum
diastolic blood pressure (MDBP), and gestational age (GA). The
numbers within the cells represent the R-values from Pearson
correlation analysis, while the intensity of cell color represents the
relative magnitude of the R-values; (B) Scatter plots and Pearson
correlation analysis between HK2 expression and MSBP/MDBP, with a
red line indicating the fitted regression line and gray area indicating the
95% confidence interval.
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employedOne-way Analysis of Variance (One-way ANOVA) and two-
tailed Student’s t-test for normally distributed and homoscedastic
continuous numerical variables to analyze the average differences
across multiple and two groups. We employed the Kruskal–Wallis
test for multiple groups and theWilcoxon rank-sum test for two groups
to compare average values of non-normally distributed continuous
numerical variables. For the statistical methods used in gene differential
analysis and enrichment analysis, please refer to the “Differential
Analysis and GO Enrichment Analysis” section in the Materials and
methods chapter. For numerical correlation analysis, we conducted
statistical tests using Pearson correlation analysis. The FDRwas used for
multiple hypothesis testing. The threshold for type I error was set at
α = 0.05.

Results

Dataset selection, quality control, and pre-
processing

The main workflow of this study is illustrated in Figure 1, which
includes four steps: raw data processing, batch correction, feature
selection and validation, and in-depth analysis. There are a total of

nine datasets containing sample information, which meet the
criteria for inclusion of similar samples, serving as candidate
data. The original data from each dataset undergo quality control
and annotation according to the chip design scheme
(Supplementary Figure S1). One microarray with significant
difference in gene expression distribution was removed
(Supplementary Figure S2A). Finally, eight expression matrices
were used for integration (Supplementary Figure S2B). There was
no significant difference in fetal sex among the groups
(Supplementary Table S1).

Integration of datasets and batch correction

Due to the fact that these datasets are from independently
conducted studies, there exists a certain degree of batch effects in
the gene expression levels among samples, resulting in a clear batch-
dependent distribution in the clustering and dimensionality
reduction analyses (Figures 2A–C). After applying the Combat
software to address batch effects in the datasets, gene expression
levels were normalized, eliminating batch-related distributions
(Figures 2D–F). This revealed group-specific distributions instead
(Supplementary Figure S3), while retaining the inherent gene

FIGURE 8
Single-cell analysis suggests upregulation of glycolysis genes and HIF1A in EOPE trophoblasts compared to LOPE. (A) Left panel: UMAP dimensional
reduction scatter plot and cell type annotation of placental cells. (2PE placenta samples vs. 2conrtol placenta samples) at the single-cell level. Right panel:
Isolation of trophoblast cells for further analysis. MAC: macrophage; CTB: cytotrophoblast; HBC: hofbauer cell; NEU: neutrophil; EVT: extra-villous
trophoblast; STB: syncytiotrophoblast; NK: natural killer cell; TC: T cell; DC: dendritic cells; RBC: red blood cell; PLA: platelets; FB: fibroblast; (B)
Violin plot of the expression levels of glycolysis genes and HIF1A in trophoblast cells from EOPE and LOPE samples. A Student’s t-test was used to
compare differences between groups, with “ns” indicating no statistical difference, “*” indicating p < 0.05, “**” indicating p < 0.01, “***” indicating p <
0.001, and “****” indicating p < 0.0001.
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expression distribution patterns (Supplementary Figure S4). The
integrated matrix after batch correction provides a basis for further
analysis (Supplementary Table S2).

EOPE may represent a homogeneous and
independent subtype with typical molecular
features of PE placenta

We first employed RF-RFE, a machine learning algorithm for
feature extraction, to screen for PE-related feature genes at different
feature set sizes. Results showed that the model containing 14 feature
genes had the greatest classification accuracy for grouping
(Figure 3A), with 11 upregulated and 3 downregulated in PE
(Figure 3B). In terms of these PE feature genes, the EOPE group
showed significant homogeneity, while the LOPE group lacked it
(Figure 3C). The Shannon entropy of the EOPE samples was also
significantly lower than that of the LOPE samples, and the Shannon
entropy of LOPE did not differ significantly from that of the two

control groups, indicating that the gene expression of the EOPE
samples was more deterministic (Figure 3D). The analysis of
differential gene expression showed that the fold changes in
EOPE were similar to the differences in overall PE samples,
whereas LOPE showed significant differences, possibly due to the
distinct differential expression patterns between EOPE and LOPE
(Figure 3E). To eliminate the influence of the sample size advantage
of EOPE, we balanced the sample size by using within-group
random sampling for the same analysis and obtained the same
conclusion (Supplementary Figure S5). These results suggest that
EOPE may be a particularly homogeneous subpopulation in PE.

Placental transcriptome phenotypes
identification reveals higher hypoxia and
glycolysis in EOPE but not in LOPE

To explore the homogeneity and heterogeneity of different
subtypes, we employed an unsupervised neural network-based

FIGURE 9
Histological analysis of placental samples from EOPE, LOPE, and term pregnant women. (A)Histological staining of tissue sections with HE and IHC
for HK2. For both HE and IHC results, the magnification of the upper cells is ×20, with a scale bar length of 200 μm. The magnification of the lower cells
is ×40, with a scale bar length of 100 μm. The black arrows indicate syncytiotrophoblast, while the red dashed lines delineate the area containing
syncytiotrophoblast in the section. Each groupwas analyzed using one sample. (B) Violin plots of the thickness of the HK2-positive trophoblast layer
determined bymeasuring 15 randomly selected villi region in each IHC staining slide. The statistical significance of the difference between the two groups
was determined using a Student’s t-test. Each group had one slide, with no biological replicates.

Frontiers in Molecular Biosciences frontiersin.org10

He et al. 10.3389/fmolb.2023.1248771

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1248771


self-organizing map method. Genes with similar expression
patterns were merged into meta-genes (Supplementary Table
S3), and meta-genes within specific group, called group
overexpression spots, were analyzed for functional enrichment
(Supplementary Table S4). Consistent with the known features of
EOPE placenta, EOPE displayed a phenotype characterized by
hypoxia and glycolysis, which was absent in both control groups,
while LOPE only partially exhibited this phenotype (Figure 4A).
LOPE enriched the least in specific gene sets, suggesting its
features were less distinct (Supplementary Table S5). In
addition, gene-level analysis showed that hypoxia-related
genes were significantly upregulated in EOPE (Figures 4B,C).

These results suggest that the main feature of EOPE is the
significant upregulation of hypoxia-related genes, while the
features of LOPE are relatively less apparent. To identify the
core genes regulated by hypoxia and HIF1, we used WGCNA to
find the yellow and red gene modules highly positively and
negatively correlated with hypoxia index, respectively
(Figure 5A). These two modules also showed the strongest
correlation with EOPE phenotype, consistent with our
oposSOM results (Figure 4 and Figure 5A]. By calculating the
connectivity of genes within the two modules, we obtained the
top 8 highly connected genes, including SLC2A1, HK1, HK2,
PFKP, ALDOA, TPI1, GAPDH, and LDH (Figure 5B).

FIGURE 10
HK2 may regulate the expression of autophagy-related markers in trophoblasts. (A) Western blotting and statistical analysis of HK2 protein
expression after siRNA interference of HTR8/SVneo. The upper panel shows the Western blotting result of HK2, and the lower panel shows the statistical
graph of the band density of HK2. The biological replicates were three, and the Student’s t-test was used to test the difference between groups. (B)
Western blotting results of the expression levels of LC3, P62, ATG5, and BECLIN1 in siHK2-interfered HTR8/SVneo cells under normoxic and hypoxic
conditions. (C–H) Statistical graphs of the band density values of the Western blotting results with three biological replicates. The Student’s t-test was
used to compare the differences between the two groups. Statistical significancemarks: “ns” indicating no statistical difference, “*” indicating p < 0.05, “**”
indicating p < 0.01, “***” indicating p < 0.001, and “****” indicating p < 0.0001.
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Validation of glycolysis genes and its
association with clinical features

All of these genes were significantly upregulated in the
EOPE group and were key genes in the glycolytic pathway,
but were less upregulated in LOPE (Figure 6A). Compared with
the term group, the transcription level of HIF1A was lower in
both PE subtypes (Figure 6A). In another independent data set
based on sequencing technology, the upregulation of these eight
genes in EOPE placenta was validated, except for HK1
(Figure 6B), while HIF1A showed no significant difference in
validation (Figure 6B). Besides the gene level, GSEA analysis
also showed that multiple pathways related to glycolysis were
enriched in EOPE and were validated in the validation set
(Supplementary Figure S6). EOPE had a higher glycolysis
score compared to the control group in validation dataset
(Supplementary Figure S7A). When using these eight
glycolysis genes for dimensionality reduction analysis of the
integration matrix, a distribution result similar to the PE feature
gene dimensionality reduction was obtained, which could
clearly distinguish EOPE samples (Supplementary Figure
S7B). In addition, HK2 had the highest correlation with
blood pressure, but was almost uncorrelated with gestational
age (Figure 7). Therefore, we believe that the glycolysis pathway
may represent a distinctive feature of EOPE that is absent
in LOPE.

Single-cell analysis reveals upregulation of
glycolysis in EOPE trophoblast cells

The trophoblast, as a central and crucial type of cells composing
the placenta, was the focus of our investigation on the possible
aberrant upregulation of the glycolytic pathway. To this end, we
analyzed a publicly available single cell dataset comprising samples
of both EOPE and LOPE after rigorous quality control and
annotation procedures (Supplementary Figure S8). Subsequently,
we extracted the trophoblast cells for further investigation
(Figure 8A). Our findings indicated that the glycolytic genes were
also upregulated in EOPE trophoblast cells, except for GAPDH and
LDHA (Figure 8B). Moreover, the transcriptional level of HIF1A
was found to be elevated in the EOPE trophoblast cells (Figure 8B).
These results suggest that the upregulation of glycolysis is indeed a
prominent characteristic of EOPE, which is present in trophoblast
cells.

Possible association between HK2 elevation
in EOPE placental trophoblast and
regulation of autophagy

Based on our analysis, HK2 was found to be the gene with the
highest upregulation among these glycolysis-related genes, and
showed the strongest correlation with both systolic and diastolic

FIGURE 11
LOPE samples can be divided into two subgroups with different functional characteristics using unsupervised clustering. (A) The average silhouette
width of LOPE samples under different k values in Kmeans unsupervised clustering. (B) The scatter plot of LOPE samples after umap dimensionality
reduction when k = 2, with the ellipse circle representing the range of 90% confidence interval. (C)Metagene matrix and group overexpression spots of
oposSOM analysis for the two LOPE sample groups. (D–F) GO enrichment analysis results for the top spot A-C.
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blood pressure (Figures 6–8). Thus, we performed HE staining
and IHC staining of HK2 in tissue, which showed that HK2 is
localized in the syncytiotrophoblast layer of the placenta, and that
EOPE samples had a thicker syncytiotrophoblast layer compared
to control samples (Figure 9). Given the previously reported tight
connection between HK2 and autophagy, as well as the known
relationship between autophagy and PE, we sought to investigate
whether HK2 might regulate autophagy in trophoblast cells. We
therefore inhibited HK2 expression in HTR8 cells (Figures 10A,B)
under normoxic and hypoxic conditions, and assessed the
expression of autophagy markers. Hypoxia increased the ratio
of LC3-II/LC3-I and decreased the level of LC3-I in HTR8 cells,
indicating an induction of autophagy in trophoblast cells under
hypoxia (Figures 10C,D). Under normoxic conditions, the
decrease in HK2 expression caused a significant increase in
LC3-I and P62 levels, suggesting that HK2 may have an
inhibitory effect on autophagy (Figures 10C,F). In fact, the
level of LC3-II also increased, but to a lesser extent than LC3-I
(Figures 10D,E). However, under hypoxia conditions, HK2 had no
effect on the expression levels of LC3 and P62 (Figures 10C–F).
Additionally, both hypoxia and HK2 levels did not appear to have
a significant effect on the levels of ATG5 and BECLIN1 (Figures
10G,H). These results suggest that HK2 may inhibit autophagy in
trophoblast cells under normoxic conditions, but not under
hypoxic conditions.

Clustering of LOPE placental samples
reveals two groups with distinct functional
features

At last, due to significant heterogeneity in the LOPE placental
transcriptome, we performed clustering analysis on LOPE samples
to determine whether any potential subtypes exist. K-means
algorithm was employed for sample clustering, and when
clustering into two classes, the clusters exhibited the greatest
differentiation between them (Figures 11A,B). The oposSOM
algorithm was then used to extract characteristic genes of the two
clusters (Supplementary Table S6), where cluster 1 was characterized by
spot A, while cluster 2 was characterized by spots B and C (Figure 11C).
Enrichment analysis was conducted on the genes of the three spots
to obtain functional annotations of the spot features. Spot A genes
were found to primarily regulate epithelial formation and matrix
composition (Figure 11D), Spot B genes regulate cytokines and
vascular generation (Figure 11E), while Spot C genes regulate
protein production, transposition, and degradation (Figure 11F).

Discussion

Normal development and proper functioning of the placenta are
essential prerequisites for a healthy pregnancy (Ortega et al., 2022).
Abnormalities in the placenta can lead to damage in multiple
systems, including the heart, brain, and vasculature (Ortega et al.,
2023a; 2023b). Among these, vascular damage is a primary
mechanism underlying the onset of PE. Accumulating evidence
suggests that EOPE and LOPE are the two most meaningful
subtypes (Jung et al., 2022; Magee et al., 2022), however, the

characteristics of these two subtypes are largely unknown. In this
study, we found that EOPE had stronger sample homogeneity and
significant differences from preterm and term samples, while LOPE
samples had no apparent features. This result is consistent with the
results of two other studies that showed that the number of
differentially expressed genes in EOPE compared to the control
group is much greater than in LOPE (Liang et al., 2016; Guo et al.,
2021). The results suggest significant pathological changes in EOPE
placenta and minor changes in LOPE placenta. In addition, another
study including 1,691 placental samples grouped the samples based
on clinical symptoms and histopathology, reporting a unique
subtype of MVM with poor maternal vascularization, which has
more severe symptoms and smaller fetuses (Horii et al., 2023).
Encouragingly, this subgroup has the smallest gestational weeks
among all PE samples (Horii et al., 2023). The results imply that
more severe symptoms and smaller fetuses may be associated with
earlier gestational weeks. Additionally, the significant changes in
placental gene expression indicate that EOPE is a highly specific
subtype of PE. Based on this finding, it may be advisable to consider
recognizing and managing EOPE as a distinct clinical entity.

Although these studies have recognized the unique status of EOPE
in PE, there have been some discrepancies among different studies
regarding the specific molecular pathological features of EOPE. These
studies have identified different differentially expressed genes and
summarized different features of EOPE, including changes in G
protein-coupled receptors, angiogenesis, and innate immunity
(Junus et al., 2012; Liang et al., 2016; Broekhuizen et al., 2021).
While these results may coexist, they are also confusing. Limited
sample size and varied control groupsmay contribute to discrepancies
in the detection of different aspects of EOPE features across studies.
We resolved this issue by integrating extensive placental data and
incorporating two commonly used control samples, thereby
mitigating any potential bias resulting from varying control
groups. Our findings indicate that the activation of hypoxia and
HIF1 signaling is the primary characteristic of EOPE placenta,
accompanied by significant alterations in metabolic pathways.
While hypoxia can bring about multifaceted changes in cells, our
study suggests that the dysregulated activation of glycolysis may be the
core response to hypoxia.

Glycolysis and induction of hypoxia genes are manifestations of
tissue hypoxia (Bacigalupa and Rathmell, 2020; Kierans and Taylor,
2021). For trophoblasts, appropriate hypoxia in early pregnancy
promotes remodeling of the uterine spiral arteries and increases
blood flow, preventing placental and fetal ischemia in the mid-to-
late stages of pregnancy, which is a necessary process for successful
pregnancy (Turco and Moffett, 2019; García-Montero et al., 2022).
Obviously, this hypoxia process erroneously persists in EOPE placenta
until themid-to-late stage (Cheng et al., 2022). A recent study utilizing
mass spectrometry technology demonstrated elevated lactate levels
and decreased Fructose 6-phosphate and Glucose 6-phosphate levels
in EOPE placenta, which strongly supports our findings (Kawasaki
et al., 2019). Over-activation of glycolysis may cause accumulation of
the final product lactate and a decrease in intermediate products,
which can be lethal to cells (Hsiao et al., 2009; Li et al., 2022).
However, as hypoxia itself can strongly induce the physiological
process of glycolysis (Kierans and Taylor, 2021), we speculate that
the glycolytic phenotype in EOPE placenta may simply be an adaptive
compensation to poor spiral artery remodeling and hypoxia.
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Although the main function of these glycolytic genes is to
regulate cells’ anaerobic glucose metabolism, they are also often
reported to regulate multiple cellular functions (Yun et al., 2015; Gao
et al., 2021; Yao et al., 2023). The classical function of the
HK2 protein is to act as the first rate-limiting enzyme in the
glycolytic pathway, converting glucose entering the cell to
glucose-6-phosphate and possessing a strong affinity for glucose
(Tan and Miyamoto, 2015; Yuan et al., 2022; Zhao et al., 2022).
However, HK2 is also a key gene in integrating glycolysis and
autophagy in cells, and its binding to mTORC1 controls the
balance between glycolysis and autophagy (Tan and Miyamoto,
2015; Jiao et al., 2018). Our results suggest that HK2 regulates basal
autophagic flux under normoxic conditions by inhibiting cell
autophagy, as evidenced by the increase in LC3-II and LC3-I
levels and the accumulation of P62 upon reduction of HK2.
However, HK2 lost its regulatory effect on these markers under
hypoxic conditions. Recent studies have indicated autophagy plays a
crucial role in physiological hypoxia-induced vascular remodeling
and the invasion of extra-villous trophoblasts (EVTs), a critical
subtype responsible for spiral artery remodeling (Nakashima et al.,
2017). From these findings, it appears that HK2 is a strong
contender as the core gene that underlies the relationship
between early pregnancy vascular remodeling, EVT autophagy,
glycolysis and changes in oxygen tension.

Besides EOPE, LOPE is another significant subgroup of
preeclampsia, accounting for about two-thirds of PE incidence,
however, it is less well-understood in medical research (Magee
et al., 2022). Our study suggests that accurately characterizing the
features of LOPE is challenging due to the potential presence of
multiple subgroups with distinct characteristics. Unsupervised
clustering analysis indicates that LOPE may have at least two sub-
groups. Cluster 1 is characterized by features related to cell-
environment interaction, while cluster 2 is associated with cytokine
and protein modification. Both clusters seem to emphasize changes in
the microenvironment of trophoblasts rather than changes in the
larger population of trophoblasts, including cell-matrix interaction
and cell-cell interaction. This may be one possible reason why
anomalies in LOPE placenta are less apparent than those in EOPE.
For example, cluster 1, which is enriched in extracellular matrix and
endothelial cell-related functions, may reflect changes in the placental
matrix and endothelial cells that primarily exist in cluster 1. Cluster 2,
characterized by cytokines, angiogenesis, and protein modification,
may also be an expression of the placenta’s response to the
microenvironment. Recent reviews suggest that the occurrence of
LOPE is associated with systemic inflammation and abnormalities in
maternal endothelial regulation secondary to increased fetal placental
demand, which appears to be consistent with the characteristics of the
two LOPE clusters we identified (Magee et al., 2022). Additionally,
studies have reported a correlation between protein modification and
the onset of PE (Buhimschi et al., 2014). These findings highlight the
distinctions between the two subtypes of PE and imply the existence of
at least two clusters within LOPE.

Although we have included an ample number of samples and
conducted extensive analyses, certain limitations remain. As a result
of integrating gene expression matrices from eight independent
studies, certain gene probes have been excluded, leading to coverage
of a majority rather than the entire gene information. Additionally,
due to the independent origins of the datasets, the absence of

consistent and comprehensive clinical feature records makes it
challenging to thoroughly assess potential influences of factors
such as maternal age and ethnicity on placental molecular
expression. Nonetheless, these limitations represent compromises
with the current state of available datasets. With the growing
prevalence of high-throughput technologies, future datasets are
likely to address these issues more comprehensively.

In conclusion, preeclampsia is a multifaceted disease that may have
various underlying causes leading to comparable symptoms. Our study
suggests that the preeclampsia population may consist of several
subtypes with distinct features, highlighting significant discrepancies
between EOPE and LOPE and strongly advocating for the independent
investigation of these two subtypes. Moreover, HK2 may play a pivotal
role in connecting the glycolysis and autophagy of the EOPE placenta.
However, our study has limitations since transcriptome analysis
commonly faces the challenge of explicating causal relationships
between observed phenomena. Therefore, further experiments are
necessary to determine whether the upregulation of HK2 is the
primary cause of EOPE. Overall, our study may enhance
comprehension of the intricate pathogenesis of preeclampsia and
provide valuable insights for future research.
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