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Several platforms exist to perform molecular docking to computationally predict
binders to a specific protein target from a library of ligands. The reverse, that is,
docking a single ligand to various protein targets, can currently be done by very
few web servers, which limits the search to a small set of pre-selected human
proteins. However, the possibility to in silico predict which targets a compound
identified in a high-throughput drug screen bind would help optimize and reduce
the costs of the experimental workflow needed to reveal the molecular
mechanism of action of a ligand. Here, we present ReverseDock, a blind
docking web server based on AutoDock Vina specifically designed to allow
users with no computational expertise to dock a ligand to 100 protein
structures of their choice. ReverseDock increases the number and type of
proteins a ligand can be docked to, making the task of in silico docking of a
ligand to entire families of proteins straightforward. We envision ReverseDock will
support researchers by providing the possibility to apply inverse docking
computations using web browser. ReverseDock is available at: https://
reversedock.biologie.uni-freiburg.de/
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Introduction

Drug design efforts have benefited from the recent expansion of the small-molecule
chemical space (Polishchuk et al., 2013). However, ligands chosen for a specific target protein
may inadvertently inhibit other proteins within a particular pathway (Xie et al., 2011), or a
ligand may bind multiple proteins from distinct pathways (Zhou et al., 2019). Several
computational approaches are being developed to identify the target protein of a given ligand
(Moumbock et al., 2019; Galati et al., 2021). Among these strategies, in cases where both the
ligand and protein are novel, the utility of reverse docking protocols becomes evident, as
machine learning and similarity-based screenings require previously known structures of
protein–ligand pairs. Despite the increasing number of crystal structures, a significant
proportion of potential protein–ligand complex structures remain uncharacterized.
Consequently, reverse docking protocols emerge as a promising tool to bridge this gap.

While a few web servers exist for docking a ligand to multiple proteins, such as Acid
(Wang et al., 2019), TarFisDock (Li et al., 2006) (offline as of 17.11.2022), and idTarget
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(Wang et al., 2012) (offline as of 17.11.2022), all of these servers
restrict the analysis to pre-selected human drug target proteins (809,
698, and 2091, respectively). This limitation poses a challenge for
users wishing to explore a list of proteins based on their interests.
Conversely, Webina (Kochnev et al., 2020) and SeamDock (Murail
et al., 2021) web servers permit users to submit their preferred
ligands and proteins; however, this is limited to a single
ligand–protein pair. As a result, a gap currently exists in the
availability of a docking service capable of docking a given ligand
to multiple user-submitted proteins. AutoDock Vina is one of the
most commonly used open-source molecular docking software
designed for the accurate prediction of protein–ligand
interactions (Trott and Olson, 2010). It employs a hybrid search
algorithm by combining genetic algorithms with a scoring function
based on empirical binding affinity data (Trott and Olson, 2010).
The hybrid search algorithm allows AutoDock Vina to efficiently
explore the conformational space of ligands within a protein’s
binding site, identifying energetically favorable binding modes
and estimating binding affinities (Eberhardt et al., 2021).
AutoDock Vina’s computational efficiency, combined with its
ability to predict binding interactions with high accuracy, has
made it an indispensable tool in virtual screening, lead
optimization, and structure-based drug design. Furthermore,
AutoDock Vina has two orders of magnitude speed and better
docking pose accuracy compared to AutoDock 4, making it an ideal
tool for high-throughput virtual screening applications (Chang et al.,
2010; Nguyen et al., 2020). To bring the full power of docking to the
experimental community, we developed ReverseDock, an AutoDock
Vina-based, easy-to-use blind docking web server allowing users to
freely select multiple protein targets for docking their ligand of
interest. Furthermore, we demonstrate that among randomly
selected proteins, ReverseDock is able to successfully capture the
ranking and docking poses of ligands.

Methods

Preparation of docking files

The user can upload a ligand (.mol2) along with their preferred
Protein Data Bank (PDB) structures (up to 100 structures, with less
than 1,000 amino acids to minimize the risk of job failures due to an
extensive search space). PDB files are first processed to remove
nucleic acids, and then PDBFixer software (https://github.com/
caiyingchun/pdbfixer) is applied to add missing amino acids,
replace non-standard amino acids, remove heterogen atoms like
water, and add missing heavy atoms. Finally, protonation of the
ligand at pH 7 is achieved using Open Babel (O’Boyle et al., 2011),
while proteins are protonated using the PROPKA method (Olsson
et al., 2011) through pdb2pqr (Dolinsky et al., 2007).

Docking of the submitted ligand by
AutoDock Vina

For both input and output purposes, AutoDock Vina (Trott and
Olson, 2010) employs the PDBQT (PDB with charges and atom
types) molecular structure file format, which includes information

about the ligand’s structure, atom types, charges, and torsional
degrees of freedom. PDBQT files also contain ROOT,
ENDROOT, BRANCH, and ENDBRANCH keywords that are
recognized by AutoDock Vina, which establish the torsion tree of
the submitted ligand .mol2 file. As such, various rotamers of the
submitted ligand can be generated during docking simulations. In
ReverseDock, AutoDock Vina required PDBQT files are generated
by using the MGLTools software (Morris et al., 2009). The search
space for docking is defined as a box with an edge 30 Å larger than
that of the target protein in order to avoid steric restrictions on the
ligand’s possible binding positions to the target. As recommended
by previous studies for the converged docking poses with AutoDock
Vina (Agarwal and Smith, 2023), a fixed exhaustiveness score of
64 has been selected for all docking calculations. Exhaustiveness
determines the number of iterations and poses that AutoDock Vina
will explore during the docking process (Agarwal and Smith, 2023).
A higher exhaustiveness value indicates that the software will
explore a larger number of possible binding orientations and
conformations for the ligand within the binding site. Despite its
computational cost, this is beneficial to increase the likelihood of
finding the optimal binding pose and improve the accuracy of the
predicted binding affinity between the ligand and the protein. In
ReverseDock, flexible ligand docking is applied for the docking of
each ligand to the submitted proteins by AutoDock Vina (Trott and
Olson, 2010).

Presentation of results

The results are displayed in a table, which are sorted by the
calculated binding energy in kcal/mol. Each individual top docking
ligand pose can be downloaded in PDBQT format. Additionally,
each protein–ligand complex can be viewed in a 3D mode for quick
analysis with the option to take a snapshot image of the
docking pose.

Web server development

ReverseDock employs a microservice architecture that enables
flexible scaling. For instance, docking simulations can be distributed
across multiple interconnected computers. Services are tasked with
docking using AutoDock Vina (Eberhardt et al., 2021), and preparing
receptors and ligands for docking using MGLTools (Olsson et al.,
2011). The entire process concludes with e-mail dispatch. All services
are scripted in Python. Communication between services occurs via
the AMQP protocol. Submissions are queued in a manner that
optimizes resource usage; a submission can initiate computation
without waiting for a prior submission to complete, provided
resources are available. The outward-facing API is coded in .NET
6.0, adhering to the Controller–Service–Repository pattern. For
persistent data storage, MongoDB is employed, and Redis
functions as temporary caching. The front end is crafted using
TypeScript, React, and Blueprint, with NGLViewer (Morris et al.,
2009) deployed for 3D molecular representation.

Upon submitting a .mol2 file, followed by up to 100 .pdb files or
UniProt IDs for retrieving AlphaFold structures, should the user
choose to proceed, tasks are disseminated through AMQP for
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relevant services to consume. Computation commences once
resources are at hand, with interim results exhibited on the
webpage. Upon processing all targets, an email notification is
sent if the user has supplied one during submission.

Demonstration cases

To evaluate the ranking and docking pose accuracy of
ReverseDock, we created a list of random protein structures
consisting of the following PDB IDs: 1udt, 2oyu, 3g6z, 3pbl,
2nnq, 3kba, 1uyg, 2uz3, 2hzi, 4ldo, 2i0e, 1sqt, 3m2w, 2oj9, 3erd,
3f9m, 1w7x, 2bgs, 2azr, and 2ica. Next, we extracted ligand
.mol2 files from these PDB files and applied cross-docking
calculations on ReverseDock. The results indicate that
ReverseDock is able to identify the correct binding site in 75%
(16/20) of the cases and can rank the corresponding protein–ligand
complex in the top three positions in 50% (10/20) of the cases
(Table 1), demonstrating that our tool can be used for target
enrichment purposes of a given ligand. In addition to successful
ranking, the best docking positions are also found to have an RMSD
smaller than 3Å compared to the crystal structure in 55% (11/20) of
the cases. A detailed inspection of incorrect binding site predictions

indicates that buried, relatively large, or small ligands are not
correctly identified.

Discussion

As demonstrated by the cross-docking results presented
previously, through the utilization of AutoDock Vina with a pre-
defined box size 30 Å larger than the target protein’s box size and an
exhaustiveness score of 64 (Agarwal and Smith, 2023), ReverseDock
can rank docking energies and reproduce the docking pose of the
previously identified protein–ligand complex structures.

To ensure the quality and reliability of ReverseDock
outputs, it is essential to address potential caveats and
pitfalls that could impact the accuracy of the results. The
scoring function utilized by Autodock Vina to estimate
binding energies comes with limitations. Users should
exercise caution when interpreting binding energies, as they
may not always precisely reflect experimental results.
Furthermore, the accuracy of docking simulations is
dependent on the precision of the generated conformations
and the extent of conformational space sampling.

Various strategies can be applied to evaluate the ReverseDock
results. Visual inspection via molecular visualization software
would be helpful in assessing the alignment of predicted binding
poses with previously identified protein–ligand complexes.
Comparing predicted binding sites with references from
experimental structures or literature could aid in assessing the
consistency and accuracy of predictions. Employing consensus
scoring by using alternative docking tools can enhance
confidence, particularly when multiple tools validate a specific
binding mode. While binding energies may not be directly
comparable to experimental data, comparing relative energies
within a ligand set offers insights into relative affinities.
Validation against existing data on analogous protein–ligand
systems would also be helpful in assessing the quality of the
predictions.

Ultimately, the integration of computational predictions with
experimental validations, such as binding assays and advanced
structure determination techniques such as X-ray crystallography
or NMR spectroscopy, is recommended to establish the reliability
and relevance of docking results.

We believe that our tool would be valuable for experimental
researchers aiming to conduct reverse docking protocols to identify
the target of a given ligand.

Data availability statement

The complete source code of ReverseDock as well as the input
data used for demonstration cases can be accessed at: https://github.
com/orgs/ReverseDock/repositories.
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TABLE 1 Cross-docking results are obtained by docking each ligand from the
indicated PDB structure to all other PDB structures using ReverseDock. The
ranking of the target PDB and the ligand RMSD of the first docking pose
compared to the crystal structure is provided.

PDB
structure

Docking
ranking

Ligand RMSD of the first
docking pose (Å)

1udt 1 8.4

2oyu 8 NA—wrong site

3g6z 2 0.6

3pbl 6 7.1

2nnq 1 0

3kba 1 0.4

1uyg 1 2.9

2uz3 1 1.5

2hzi 14 11.5

4ldo 5 NA—wrong site

2i0e 5 6.1

1sqt 5 1.4

3m2w 1 0.3

2oj9 3 0.8

3erd 2 0.4

3f9m 8 NA—wrong site

1w7x 6 1.8

2bgs 17 NA—wrong site

2azr 2 2.1

2ica 17 7.2
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