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Introduction: Staphylococcus aureus is a dangerous pathogen which causes a
vast selection of infections. Antimicrobial peptides have been demonstrated as a
new hope for developing antibiotic agents against multi-drug-resistant bacteria
such as S. aureus. Yet, most studies on developing classification tools for
antimicrobial peptide activities do not focus on any specific species, and
therefore, their applications are limited.

Methods:Here, by using an up-to-date dataset, we have developed a hierarchical
machine learning model for classifying peptides with antimicrobial activity against
S. aureus. The first-level model classifies peptides into AMPs and non-AMPs. The
second-level model classifies AMPs into those active against S. aureus and those
not active against this species.

Results: Results from both classifiers demonstrate the effectiveness of the
hierarchical approach. A comprehensive set of physicochemical and linguistic-
based features has been used, and after feature selection steps, only some
physicochemical properties were selected. The final model showed the F1-
score of 0.80, recall of 0.86, balanced accuracy of 0.80, and specificity of
0.73 on the test set.

Discussion: The susceptibility to a single AMP is highly varied among different
target species. Therefore, it cannot be concluded that AMP candidates suggested
by AMP/non-AMP classifiers are able to show suitable activity against a specific
species. Here, we addressed this issue by creating a hierarchical machine learning
model which can be used in practical applications for extracting potential
antimicrobial peptides against S. aureus from peptide libraries.
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1 Introduction

Staphylococcus aureus is a prominent human pathogen that causes a wide range of
infections, including pleuropulmonary, osteoarticular, skin, and soft tissue infections. In
the United States, nearly 50 percent of deaths caused by antibiotic-resistant bacterial
pathogens are attributed to methicillin-resistant S. aureus (MRSA) infections
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(Stryjewski and Chambers, 2008; Mohamed et al., 2016). It has
been reported that S. aureus was the leading bacterial cause of
death in 135 countries and had the highest mortality rate in
individuals aged above 15 years worldwide (Ikuta et al., 2022).
The evasion of staphylococcal biofilms and toxins can result in
prolonged inflammation, chronic infections, and delayed wound
healing (Wolcott et al., 2010).

Antimicrobial peptides (AMPs) are a group of naturally
occurring or synthetic short peptides with the ability to kill
bacterial cells. AMPs typically interact with bacterial
membranes, making it difficult for bacteria to develop
resistance against them (Zasloff, 2002; Hancock and Sahl,
2006). This has generated increased interest in AMPs as
potential substitutes for conventional antibiotics as antibiotic
resistance has become a global crisis (Hancock and Sahl, 2006;
Chen and Lu, 2020).

Numerous experimental reports have identified AMPs with
antimicrobial activity against S. aureus, which are accessible in
online databases. However, experimental studies on peptides
are often costly and time-consuming (Lee et al., 2017). In
contrast, computational approaches, particularly machine
learning techniques, have enabled the development of high-
throughput models for predicting various aspects of AMP
functionality, including antimicrobial activity (Vishnepolsky
and Pirtskhalava, 2014; Lee et al., 2017) and toxicity
against human cells (Chaudhary et al., 2016; Kleandrova
et al., 2016).

Most studies in the field of AMP classification have
primarily focused on distinguishing AMPs from non-AMPs
(Vishnepolsky and Pirtskhalava, 2014; Kleandrova et al., 2016).
However, due to the significant diversity among target bacteria,
the functionality of AMPs could vary greatly among different
bacterial families. Therefore, simply predicting a peptide as an
AMP does not necessarily imply that it will exhibit activity
against a specific bacterial family. This limitation hinders the
applicability of general studies in real-world challenges.
Vishnepolsky et al. (2018) developed predictive models to
classify AMPs active against Gram-negative bacteria,
specifically Escherichia coli. Speck-Planche et al. introduced
a multi-target model to identify AMPs active against Gram-
positive pathogens, including S. aureus (Speck-Planche et al.,
2016). However, both studies predominantly utilized datasets
composed of strong and weak AMPs. Since AMPs represent a
small fraction of the peptide space, models trained solely on
this limited portion have limited applicability to peptides that
deviate significantly from AMP characteristics.

A hierarchical machine learning model refers to a
classification approach that involves a multi-level process of
classification, where the output of one classifier serves as the
input for another (Wehrmann et al., 2018). Hierarchical
classifiers have been previously used for several function
prediction models such as gene function prediction
(Valentini, 2010) and protein function prediction (Eisner
et al., 2005). Here, we use machine learning approaches to
construct a hierarchical model that discriminates AMPs with
specific antimicrobial activity against S. aureus by
incorporating physicochemical and linguistic-based
properties of peptides.

2 Materials and methods

2.1 Preparing data

Two datasets were needed for this study. Dataset-1 includes
AMP (positive) and non-AMP (negative) sets. The positive set was
created using AMP records from the Database of Antimicrobial
Activity and Structure of Peptides (DBAASP) (Gogoladze et al.,
2014). Records with D-amino acids, unnatural residues,
C-terminal modifications (except the amid group), and
N-terminal modifications (except for acetyl) were removed from
the dataset. Moreover, peptide sequences shorter than six residues
and longer than 50 residues were also removed since there was no
sufficient data in those ranges. All concentrations reported with the
μg/mL unit were converted to μM using peptide molecular weight.
Only records with a reported minimum inhibitory concentration
(MIC) =< 15 μM were used in the final dataset. As for the negative
set, the dataset created by Gabere and Noble (2017) was used with
the same restrictions. Highly similar sequences (maximum 90%)
were removed using CD-HIT software (Huang et al., 2010). The
final dataset included 2,144 AMPs and 2,144 non-AMPs. The
dataset was split into three sets of train (64%), validation
(16%), and test (20%) with no overlapping records and enabled
stratify argument on the class label.

Dataset 2 included AMP records with reported activity against S.
aureus fromDBAASP. Peptides with anMIC of 10 µM or lower were
labeled as positive, and peptides with an MIC of 15 µM or higher
were labeled as negative. Most AMPs have more than one reported
activity in the database. After labeling every record, peptides for
which all their records had the same label were kept in the dataset. In
other words, if a peptide had mixed positive and negative labels in its
activity records, it would be excluded from the dataset. The final
dataset 2 included 2,488 positive and 1,595 negative AMPs. Train,
validation, and test sets were constructed as mentioned previously.

2.2 Feature extraction

For dataset 1, a total of seven physicochemical properties,
namely, hydrophobicity, net charge, molecular weight, charge
density, isoelectric point, hydrophobic moment, and aggregation
propensity in vivo, were extracted. For dataset 2, a more complex set
of features was extracted. A total of 1,527 physicochemical and
linguistic-based properties, including autocorrelation,
physiochemical composition, transition, and distribution, were
extracted from AMP sequences using Propy Python library (Cao
et al., 2013) (Supplementary Table S1). All peptide records from
DBAASP have four properties of net charge, normalized
hydrophobic moment, normalized hydrophobicity, and isoelectric
point. Charge densities were calculated similar to the previous work
(Vishnepolsky and Pirtskhalava, 2014) using net charge and
molecular weight.

2.3 Feature selection strategy

Feature selection was carried out in dataset 2 due to its high
number of features. First, using Mathematica software
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(Wolfram Research, 2020), the Pearson correlation coefficient
between all pairs of features was calculated, and then, features
with a correlation over 95% were grouped together. From each set
of the correlated group, only one feature was kept. To select
relevant features, the SelectFromModel meta-transformer of
scikit-learn library (Pedregosa et al., 2011) was used. The
training set was split into five parts with no overlapping
records. Then, random forest classifiers were trained on
each part independently, and important features were
extracted from each classifier. Features shared among
all five parts were considered important and kept for further
usage.

2.4 Training classification models

Classification models were trained in datasets 1 and
2 independently. The test step was also carried out separately.
Several learning algorithms, including random forest, support
vector classification (SVC), linear SVC, K-nearest neighbors, and
naïve Bayes, were trained using 10-fold cross validation and grid
search to optimize hyper-parameters for each algorithm. All
algorithms were optimized to obtain the highest F1-scores and
the best performance on the validation set. Multiple
combinations of hybrid-voting classifiers were also constructed
using the best obtained models in dataset 2. The performance of
the final models was evaluated on the test set. The comparison of
performances was carried out using performance measures
including precision, recall, F1-score, accuracy, AUC, and
hamming distance.

To evaluate the performance of the final package, a new
dataset including AMPs and non-AMPs was used as an
independent test. New AMP activity data against S. aureus
were obtained from DBAASP and processed as mentioned in
Methods (such as natural residues, specific sequence length, and
no terminal modifications). All AMPs were introduced in
2022–2023 and were new for the model. Finally, a total of
118 new peptides including 59 non-AMPs and 59 AMPs with
reported activity against S. aureus were tested. For final
performance measurements, non-AMPs and AMPs not active
against S. aureus were considered “negative,” and AMPs active
against S. aureus were considered “positive.”

3 Results

3.1 Susceptibility comparison

The susceptibility of S. aureus, P. aeruginosa, and E. coli to
1,398 AMPs was investigated using the MIC values reported in the
DBAASP dataset. Results are shown in Table 1. It can be seen that more
than 28%ofAMPs havemore than 20 µMdifference in theMIC against
S. aureus and P. aeruginosa. Even E. coli and P. aeruginosa, which are
both Gram-negative, show very different results. If we use these MIC
values to label these AMPs with high antimicrobial activity and low
antimicrobial activity labels, the results are going to be highly varied for
different species. More than 32% of AMPs obtained opposite labels for
P. aeruginosa and S. aureus.

3.2 Performance of the AMP/non-AMP
classification

The first classification model in the pipeline was trained using
random forest, SVC, linear SVC, K-nearest neighbors, and naïve
Bayes algorithm. Performance on the train set can be evaluated by
ROC curves (Figure 1). The dotted line shows the performance of a
completely random classifier. The larger area under curve in the
ROC curve corresponds to a better performance. Models with
random forest, SVC, and KNN show very good performances
compared to naïve Bayes. The performance of models on test
sets was evaluated (Table 2). The results show that SVC, random
forest, and KNN with accuracy and the F1-score above 0.9 show
great performances for classifying AMPs and non-AMPs.

3.3 Feature selection

Here, we used the Propy Python library to extract linguistic and
physicochemical-based properties and allowed cross-validation-based
feature selection to select most important properties. The performance
of models on the test set before feature selection is shown in
Supplementary Table S2. SVC (RBF) was the best classifier at this
stage. Independent random forest models were trained on five
independent sets from dataset 2’s train set, and features present in
all final sets were selected (Figure 2). The 1500+ properties were reduced

TABLE 1 Comparison of susceptibility of S. aureus, P. aeruginosa, and E. coli to similar AMPs.

Comparison Fraction of AMPs with
more than 10 µM
difference in MIC

Fraction of AMPs with
more than 20 µM
difference in MIC

Fraction of AMPs with
more than 50 µM
difference in MIC

Hamming
distance

Percentage of AMPs
with opposite activity

label (%)

S. aureus vs 0.4134 0.2847 0.118 452 32.33

P. aeruginosa

S. aureus vs 0.3376 0.2310 0.0937 384 27.47

E. coli

P. aeruginosa vs 0.3541 0.2389 0.0973 380 27.18

E. coli
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to 51 features. The distribution of selected features among feature
categories is shown in Table 3. Interestingly, all of these features were
based on physicochemical properties of AMPs including net charge,
molecular weight, charge density, aggregation propensity in vivo,
distribution of charge and polarity along the peptide sequence,
composition of non-polar residues, and buried residues. The relative

importance of features from the random forest model is shown in
Supplementary Figure S1. As can be seen in the figure, features have
relatively similar importance. No linguistic-based property was found
among selected features. A full list of selected features with their
corresponding categories and relative importance is shown in
Supplementary Table S3.

3.4 Performance of Staphylococcus aureus-
specific activity classifier

After obtaining the final feature set, classification algorithms
including random forest, SVC, linear SVC, KNN, and hybrid models
were trained. Performances on the training set were compared using
the ROC curves (Figure 3). As shown in Figure 3, the random forest
model shows a better performance compared to linear SVC and
KNN models.

FIGURE 1
ROC curves obtained for each algorithm classifying AMPs from non-AMPs.

TABLE 2 Performance of AMP/non-AMP classifiers with different algorithms on
the test set.

Algorithm Precision Recall F1-score Accuracy

Random forest 0.919 0.917 0.918 0.918

SVC 0.945 0.903 0.923 0.925

KNN 0.925 0.901 0.913 0.914

Naïve Bayes 0.845 0.886 0.865 0.862

FIGURE 2
Feature selection by the cross-validation process.
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Table 4 shows the performance of models on the test sets. The
Hamming distance between model performances shows that even
models with very similar performances might get different results
for the same AMP (Supplementary Figure S2). Therefore, the hybrid
modelmade by these classifiers shows potential to perform better on the
test set. Several combinations of classifiers were also used to create
hybrid classifiers, and performance on test results was obtained
(Supplementary Table S4). It can be seen that eclf5 (a combination
of random forest, SVC polynomial, and linear SVCmodels) with an F1-
score of 0.80 and a recall of 0.88 is the best performing classifier.

3.5 Performance of the final shared model
on the new independent set

The performance of the final constructed package of the
hierarchical model was evaluated using a new dataset including
AMPs and non-AMPs. Results in Table 5 show that despite low
precision, the model demonstrates high sensitivity and balanced
accuracy in real-world scenarios.

4 Discussion

Growing AMP databases through gathering reported
experimental and activity studies on AMPs has provided
sufficient data for training many machine learning models for the
prediction of AMP activity. Most prediction models concerning the
antimicrobial activity of AMPs have been dedicated to distinguish
AMPs from non-AMPs and were able to achieve high performances.
However, as shown in the results of Table 1, the susceptibility to a
single AMP is highly varied among different target species.
Therefore, there is no guarantee that AMP candidates suggested
by such predictive models will be able to show suitable activity
against a specific species.

In the context of our study on detecting antimicrobial peptides
active against S. aureus, we used hierarchical models to effectively
tackle the complex nature of peptide space. We trained two separate
classifiers. The first level of classification involved distinguishing
between two broad categories: antimicrobial peptides (AMPs) and
non-antimicrobial peptides (non-AMPs). Subsequently, we utilized
the second level of classification to further analyze the subset of
AMPs and distinguish between those that are active against S. aureus
(SA-AMPs) and those that are not active against S. aureus (non-SA-
AMPs) (Figure 4).

Features extracted from peptides are based on either the
amino acid letter sequence or physicochemical properties, and
the performance of the final model on unseen peptides depends

TABLE 3 Distribution of selected features in their categories.

Feature category Feature sub-category No.

Physicochemical

Net charge 1

Molecular weight 1

Charge density 1

Aggregation propensity in vivo 1

Physicochemical composition 4

Physicochemical distribution 4

Physicochemical transition 1

Autocorrelation

Geary autocorrelation 5

Moran autocorrelation 10

Normalized Moreau–Broto
autocorrelation

6

Pseudo-amino acid
composition

Pseudo-amino acid composition 4

Sequence order Quasi-sequence order 5

Sequence-order coupling number 8

Total 51

FIGURE 3
ROC curves obtained for different algorithms classifying AMPs active and non-active against S. aureus.
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on the similarity of their properties with training data. However,
only a very tiny portion of the sequence space is similar to the
training set. Therefore, we expect classification models based on
physicochemical properties of AMPs to generalize better.
Notably, investigating all 51 features selected from 1,500+
features had a physicochemical nature, which is in agreement
with our expectations.

The machine learning results demonstrate that the hierarchical
model achieved promising performance in peptide classification.
The first-level classifier showed an excellent F1-score (0.923) in
differentiating between AMPs and non-AMPs, indicating its ability
to capture key features that discriminate between these two
categories. The second-level classifier, which focused specifically
on classifying AMPs into SA-AMPs and non-SA-AMPs, also
showed good performance with the F1-score (0.80) in
distinguishing between these two categories.

The hierarchical approach provided several advantages over a
single-classifier approach. By using a two-level classifier, we were
able to first filter out non-AMPs and then further classify the
remaining AMPs into two subcategories based on their activity
against S. aureus. This hierarchical approach allows for using a more
diverse library of peptides as the input compared to other studies,
which have only used AMPs for training, and this is of particular
interest in our research. Moreover, the hierarchical model is
interpretable as it allows us to examine the performance and
contributions of each level separately, making it easier to identify
potential areas for improvement and fine-tuning.

Not many predictive tools are available to compare our results
with theirs. Speck-Planche et al. (2016) and Vishnepolsky et al.
(2022) made strain-specific predictive models to distinguish AMPs
active against specific strains of bacteria, including S. aureus, and
based on their raw performances, they are better classifiers.

FIGURE 4
Schematic presentation of the hierarchical machine learning model pipeline to predict peptide antimicrobial activity.

TABLE 4 Performance of different algorithms in classifying AMPs active against Staphylococcus aureus.

Algorithm Precision Recall F1-score Specificity Accuracy Balanced accuracy

Random forest 0.744 0.859 0.798 0.711 0.734 0.785

SVC polynomial 0.739 0.839 0.786 0.681 0.721 0.760

KNN 0.733 0.821 0.775 0.656 0.709 0.739

SVC RBF 0.741 0.777 0.759 0.624 0.699 0.700

LSVC 0.695 0.857 0.768 0.650 0.684 0.754

Hybrid 0.7415 0.8755 0.8029 0.729 0.738 0.802

TABLE 5 Performance of the final hierarchical packaged model on an independent set.

Precision Recall F1-score Specificity Accuracy Balanced accuracy

0.4792 1.0000 0.6479 0.7340 0.7863 0.867
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However, there are important considerations in practical
applications and differences in the methodologies implemented.
Both works only used AMPs as the training set. Therefore, their
models are not familiar with non-AMP peptides. Considering this, if
non-AMP peptides were to be used as input sequences, since they
are not similar either to the positive or the negative set, it could result
in undesirable performances. In the case of Vishnepolsky, B. et al.
work, labeling AMPs was based on the MIC with the concentration
unit of µg/mL, which is not biologically reasonable since the
transformation to µM is necessary to allow the direct and
accurate comparison of the inhibitory activities among the AMPs
(Speck-Planche et al., 2016). In our work and many other recent
works, µg/mL concentrations are first converted to µM (Kleandrova
et al., 2016). These can limit the applicability of these models in
practical applications.

It is worth noting that the performance of each level’s classifier
was evaluated using independent test sets, which were distinct from
the training and validation sets utilized during model development.
This approach ensured that the model’s performance was
generalizable and reflective of real-world scenarios. On the other
hand, the final packaged hierarchical model also demonstrated
strong performance on a mixed dataset of AMPs and non-AMPs,
providing a significant advantage over other studies that were
exclusively trained with AMPs. The results of our study suggest
that the developed hierarchical model effectively classifies peptides
into distinct categories, including distinguishing between SA-AMPs
and non-SA-AMPs. This capability holds potential for various
applications such as drug discovery, antimicrobial peptide design,
and functional peptide annotation. The final package constructed
here is publicly available on GitHub at: https://github.com/
h-khabaz/s.aureus-AMP-activity-calculator.

5 Conclusion

In conclusion, we developed a hierarchical machine learning
model for peptide classification, specifically targeting the
classification of antimicrobial peptides against S. aureus. The
results demonstrate the effectiveness of the hierarchical approach
in accurately classifying peptides into different categories and
distinguishing between AMPs active and not-active against S.
aureus. The developed model has potential applications in

various fields, including drug discovery, peptide design, and
functional annotation of peptides.
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