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Introduction

Chronic livers diseases, including non-alcoholic steatohepatitis (NASH), alcohol-related
liver disease (ALD) and viral hepatitis, may lead to cirrhosis, which is a leading cause of death
(Xu et al., 2022; Devarbhavi et al., 2023). Efficient therapies don’t exist, defining a space of
unmet needs. Metabolic pathways play an important role in the establishment of chronic
liver diseases, where hepatic stellate cells, immune cells and other cell types play crucial roles
(Chen et al. Kostallari and Shah, 2016; Drinane et al., 2017; Maiers et al., 2017; Du et al., 2018;
Kostallari et al., 2018; Haak et al., 2019; Hilscher et al., 2019; Arab et al., 2020; Azad et al.,
2020; Gao et al., 2020; Mejias et al., 2020; Yaqoob et al., 2020; Kostallari et al., 2021; Greuter
et al., 2022; Kostallari et al., 2022; McConnell et al., 2023; Xiao et al., 2023). However, their
study is just starting to flourish. This second volume of “Chronic Liver Disease: New Targets
and New Mechanisms” Research Topic continues to present recent advances in the field of
chronic liver disease which might point towards the next potential therapeutic advances.

Metabolism

The development of metabolomics technologies has enabled the study of metabolic
changes in cells and tissues pointing towards pathways that might be involved in the
development of liver diseases. Transjugular intrahepatic portal shunt (TIPS) is performed to
decrease portal hypertension during liver disease (Kamath and McKusick, 1997). However,
TIPS might be associated with increased weight gain and fat mass in patients with cirrhosis
(Trotter et al., 1998). To understand how TIPS affects metabolism pathways that could lead
to increased fat accumulation, Chen et al. performed metabolomics studies in peripheral and
portal serum, before and early after TIPS. They found that in addition to some lipid
metabolites that correlated with liver function, metabolism pathways of several amino acids
were the main affected ones. In addition, some portal metabolites might be potential
predictive biomarkers for liver function decline, even though the results were not statistically
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significant. In another study, metabolomics studies were performed
to study the effect of the Chinese patented medicine, Xuezhiping
capsule, on hyperlipidemia and fatty liver in a high-fat diet hamster
model. Indeed, Wang et al. demonstrated that Xuezhiping capsule
decreased the levels of total cholesterol, triglycerides, low-density
lipoprotein cholesterol, increased the levels of high-density
lipoprotein cholesterol and alleviated lipid droplet accumulation
in the liver of high-fat fed hamsters. However, Xuezhiping capsule
increased the biochemical indexes of oxidative stress, which is
usually associated with fatty liver disease (Fromenty and Roden,
2023). Thus, further studies are important to deeply assess the
beneficial role of the Xuezhiping capsule in fatty liver disease.
Another metabolic pathway involved in fatty liver disease is the
bile acid (BA) metabolism, which is commented by Bing and Li.
Since conversion into BAs is the main way to eliminate cholesterol
from the body, dysregulation of this pathway is associated with
obesity, non-alcoholic fatty liver disease (NAFLD) and other
metabolic diseases. Moreover, total BA levels are elevated, and
their composition is changed in the hepatic-intestinal circulation
in patients with NASH. All the above studies demonstrate that
metabolism can drive liver dysfunction and additional studies are
needed to fully understand the role of metabolic pathways and their
crosstalk during liver diseases.

Non-alcoholic fatty liver disease

NAFLD is a public health concern affecting 30% of the world
population (Younossi et al., 2023). Progression of the injury can
cause non-alcoholic steatohepatitis (NASH), and eventually
cirrhosis and hepatocellular carcinoma (Devarbhavi et al., 2023).
Early stages of NAFLD are difficult to diagnose by MRI or
ultrasound due to the low sensitivity of these techniques.
Therefore, finding correlations between early stages of NAFLD
and co-morbidities can improve the diagnosis and outcome of
the disease. Utilizing a publically available database including a
cohort of eleven thousand patients, a positive correlation between
diabetic retinopathy and liver fibrosis has been reported Zhang et al.
Their findings suggest the use of diabetic retinopathy as a disease
progression predictor of NAFLD. Regarding the later stages of the
disease, Bing and Li summarize the effect of BA on NASH-liver
cancer progression. In this respect, in vivo and in vitro studies have
shown that taurine deoxycholate (TDCA) and glucose deoxycholate
(GDCA) activate hepatic stellate cells and promote liver cancer (Xie
et al., 2021). NAFLD progression and liver cancer are also affected by
macrophage presence Kohlhepp et al. comment on the diversity of
macrophage subpopulations and functions and the complicated
roles that these cells have on disease progression.

Therapeutic strategies

Fat deposition in hepatocytes promotes inflammation and
oxidative stress within the liver. BA are key players in lipid
metabolism and fat accumulation in the liver. Bing and Li
comment on the role of BA homeostasis disruption in chronic
liver diseases. They summarize the use of several drugs tested in
clinical trials that reduce BA levels, either by blocking their

synthesis or promoting their excretion. BA receptor agonist
obeticholic acid decreases bile acid production, lipid absorption,
as well as hepatic steatosis (Younossi et al., 2019). Natural
compounds and dietary supplements, such as curcumin and
taurine, pose as another alternative treatment for liver disease.
Indeed, these components neutralized the oxidative stress in the
liver in an acute model of hepatotoxicity in rats Al-Zahrani et al. In
addition, curcumin reduced liver fibrosis and improved other
clinical parameters. An additional example consists in analyzing
the use of a popular supplement in China, prepared with botanical
compounds, for the effective treatment of hyperlipidemia,
resulting in reduced levels of lipids in the serum and in the
liver Wang et al. Another interesting approach to decrease
chronic inflammation in the liver is the targeting of the
dysregulated immune checkpoints or specific immune cell
metabolism (Tacke et al., 2023). Macrophages, including
infiltrating monocyte-derived ones and resident Kupffer cells,
are the most abundant immune cells in the liver which are
significantly increased with injury (Gao et al., 2021). Kohlhepp
et al. review the roles that macrophages play during NAFLD and
liver cancer. They highlight therapeutic strategies that decrease
inflammation by blocking macrophage infiltration or preventing
their activation and the release of inflammatory cytokines. All these
emerging potential therapeutic possibilities might improve the
management and outcomes of liver disease, improving patients’
life quality and, hopefully, reducing the high prevalence rates.

Conclusion

This second volume of the Research Topic “Chronic Liver
Disease: New Targets and New Mechanisms” gathers some recent
original research studies and reviews on the role of metabolic
pathways during fatty liver disease and potential therapeutic
approaches. Although novel findings are paving the path to a
better future, the understanding of the mechanisms is still
uncomplete and requires further studies.
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