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Acute leukemias (AL) are aggressive neoplasms with high mortality rates.
Metabolomics and oxidative status have emerged as important tools to identify
new biomarkers with clinical utility. To identify the metabolic differences between
healthy individuals (HI) and patients with AL, a multiplatform untargeted
metabolomic and lipidomic approach was conducted using liquid and gas
chromatography coupled with quadrupole-time-of-flight mass spectrometry
(LC-QTOF-MS or GC-QTOF-MS). Additionally, the total antioxidant capacity
(TAC) was measured. A total of 20 peripheral blood plasma samples were
obtained from patients with AL and 18 samples from HI. Our analysis revealed
135 differentially altered metabolites in the patients belonging to 12 chemical
classes; likewise, the metabolic pathways of glycerolipids and sphingolipids were
the most affected in the patients. A decrease in the TAC of the patients with
respect to the HI was evident. This study conducted with a cohort of Colombian
patients is consistent with observations from other research studies that suggest
dysregulation of lipid compounds. Furthermore, metabolic differences between
patients and HI appear to be independent of lifestyle, race, or geographic location,
providing valuable information for future advancements in understanding the
disease and developing more global therapies.
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Introduction

AL are a heterogeneous group of hematological malignancies that involve blocked
hematopoietic progenitors and accumulate in the early phases of cell differentiation, leading
tomarrow failure, and can be classified into two large groups: acute myeloid leukemia (AML)
and acute lymphoid leukemia (ALL) (B-ALL or T-ALL) (Arber et al., 2016). In the process of
clonal evolution, leukemic cells accumulate mutations that can lead to aberrant metabolic
programs that are necessary to meet bioenergetic and biosynthetic demands and maintain a
redox balance for tumor survival and proliferation (DeBerardinis and Chandel, 2016;
Romer-Seibert and Meyer, 2021). In the Colombian population, remission rates are low
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compared to those in developed countries, so exploring the
metabolic profiles in these cases is intriguing (Combariza et al.,
2007; Ballesteros-Ramírez et al., 2020; Sossa et al., 2021). Increased
glucose consumption by leukemic progenitor cells is beneficial for
producing metabolic intermediates involved in other metabolic
pathways and for ATP generation. On the other hand, leukemia-
initiating cells (LICs) in AML are characterized by their dependence
on oxidative phosphorylation and branched-chain amino acids, low
glucose consumption, low production of reactive oxygen species
(ROS), and high levels of glutathione (GSH) (Jones et al., 2018).
While in B-ALL, LICs that carry alterations in the PAX5 (Paired Box
5) or IKZF (IKAROS Family Zinc Finger 1) genes are related to
unlimited glucose consumption (Boag et al., 2006).

The evaluation of specialized tumor metabolism can be
measured at the systemic level by evaluating the TAC and using
metabolomic platforms, such as mass spectrometry (MS) and
nuclear magnetic resonance (NMR), to identify unique metabolic
fingerprints, which may allow the identification of biomarkers and
therapeutic targets (Muthu and Nordström, 2019; Schmidt et al.,
2021). Some authors have demonstrated its usefulness in blood
plasma for diagnosis (Morad et al., 2022), response to treatment and
follow-up of patients with AL (Naz et al., 2013; Grønningsæter et al.,
2019; Kim et al., 2021), and to assess cellular response to
antileukemic agents (Dhakshinamoorthy et al., 2015). In this
sense, metabolic differences between HI and adult patients with
AL have been reported using 1H NMR (Musharraf et al., 2016; Yang
et al., 2021). Other authors have managed to define groups of
metabolites (mainly energy) associated with prognosis in patients
with AML using gas chromatography-time-of-flight mass
spectrometry (GC-TOF-MS) or liquid chromatography-mass
spectrometry (LC-MS) (Chen et al., 2014; Dong et al., 2019).
However, there are few publications describing differential
metabolites between ALL and AML by LC-MS or 1H NMR
(Musharraf et al., 2017; Hao et al., 2022). In addition, few studies
have focused on the oxidative stress profile in AL. Particularly, Naz
et al. (2013) showed that patients in complete remission decreased
their total antioxidant status (Naz et al., 2013); however, in pediatric
patients with ALL, the differences in the levels of some antioxidants
are not clear (Olaniyi et al., 2011).

Tumor metabolism is influenced by intrinsic factors, such as
genetic alterations or lineage/tissue of origin, and extrinsic factors,
such as access to nutrients and oxygen, interaction with cells in the
microenvironment, and exposure to radiation or chemotherapy
(Vander Heiden and DeBerardinis, 2017). In other words,
population characteristics such as race, genetics, food culture, or
healthy habits can also influence tumor metabolism and have great
relevance to the risk of development or progression of the disease,
the risk of recurrence, the risk of disease, and mortality for some
types of cancer (Faulds and Dahlman-Wright, 2012; Islami et al.,
2018; Peng et al., 2022).

Based on the aforesaid considerations, the current study
examined the metabolomic profiles of cohorts comprising
Colombian patients diagnosed with AL, using an untargeted
metabolomic and lipidomic approach by LC-QTOF-MS and GC-
QTOF-MS. Furthermore, the study established the total antioxidant
capacities within these cohorts. To our knowledge, this is the first
report to investigate the metabolic and lipid alterations associated
with AL, specifically in the Colombian population. These findings

hold significant potential for the development of future diagnostic
and prognostic biomarkers for this population.

Materials and methods

Study participants

Between 2019 and 2020, twenty patients with AL who attended
the Hospital Universitario San Ignacio (Bogotá D.C., Colombia)
were linked to this study. They were patients older than 18 years,
who were diagnosed for the first time and had not received previous
therapy. The study was approved by the Ethics Committee of the
Hospital Universitario San Ignacio and the Centro Javeriano de
Oncología (Bogotá D.C., Colombia). Following the Declaration of
Helsinki, written informed consent was obtained from all
participants prior to clinical data collection and sample
collection. The diagnosis was made according to the World
Health Organization classification of tumors of hematopoietic
and lymphoid tissues 2017 (Arber et al., 2016).

Sample collection

Peripheral blood samples were obtained from twenty patients
with a de novo diagnosis of acute leukemia before starting
chemotherapy treatment. Samples were collected with a
minimum fast of 8 h in K2EDTA tubes, and peripheral blood was
centrifuged exactly 4 h after collection, at 3,500 rpm at 4°C for
10 min. The plasma obtained was aliquoted and stored at −80°C
until processing. As a control group, 18 plasmas were collected from
HI matched by age and sex under the same conditions. According to
the NCCN Clinical Practice Guidelines in Oncology ® (Chang et al.,
2021; Pollyea et al., 2021) and given the number of samples collected,
the response to treatment at the end of induction was divided into
two groups of patients: Complete remission (CR) [including CR
with negative EMR (minimal residual disease)] and non-responders
(NR) (including CR with a partial hematological response (CRp),
CR with an incomplete hematological response (Cri) and CR with
positive EMR or unknown), patients with premature death and NR).

Untargeted metabolomic and lipidomic
analysis

Metabolomic analysis by LC-QTOF-MS and GC-
QTOF-MS

For metabolomic analysis by reverse phase liquid
chromatography coupled to mass spectrometry with a time-of-
flight analyzer (RP-LC-QTOF-MS), samples were extracted using
40 µL of plasma mixed with 120 µL of cold methanol and ethanol (1:
1, v/v) (−20°C) and samples were vortex-mixed for 5 min. Samples
were incubated for 20 min at −20°C to precipitate proteins. Then, the
samples were centrifuged for 10 min (16,000 g, 4°C). Metabolomic
analysis was performed using the UHPLC system (Agilent
1260 Infinity LC System) coupled with the Q-TOF LC/MS
system (Agilent Technologies, Waldronn, Germany) equipped
with an electrospray ionization (ESI) source 2 µL of the extracted
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sample was injected into the InfinityLab Poroshell 120 EC-C18
(100 mm × 3.0 mm, 2.7 µm) column at 30°C using 0.1% (v/v) formic
acid in water (A) and 0.1% (v/v) formic acid in acetonitrile (B) as a
mobile phase with a flow rate of 0.3 mL/min. Gradient elution
started with 25% B and increased to 95% within 35 min. Then,
the gradient returned to initial conditions at 35.1 min and held there
for 8 min to allow column re-equilibrium. For constant mass
correction, two reference masses were used and continuously
infused into the system: m/z 121.0509 (C5H4N4 + H)+ and m/z
922.0098 (C18H18O6N3P3F24 + H)+ for positive ionization mode
(ESI+) and m/z 112.9856 (C2O2F3 – NH4)

- and m/z 1033.9881
(C18H18O6N3P3F24 + FA-H)- for negative ionization mode (ESI -).
The system was operated in full scan mode from 100 to 1,100m/z;
the capillary voltage was set to 3000, the drying gas flow rate was
12 L/min at 290°C, the gas nebulizer 52 psi, fragmentor voltage was
175 V and the skimmer 65 V and octopole radio frequency voltage
(OCT RF Vpp) 750 V for both, positive and negative ionization
modes. Data were collected in centroid mode at a scan rate of
1.02 spectrum per second.

For metabolomic analysis by gas chromatograph coupled to
mass spectrometry with a time-of-flight analyzer (GC-QTOF-
MS), samples were extracted using 140 µL of plasma mixed with
420 µL of cold methanol (−20°C) and vortex-mixed for 5 min.
Samples were incubated for 20 min at −20°C to precipitate
proteins. Then, the samples were centrifuged for 10 min
(16,000 g, 4°C). An aliquot of 100 µL was transferred into glass
inserts and evaporated to dryness in a speed vacuum
concentrator (Thermo Scientific). The dry residue was
dissolved in 10 µL of methoxyamine hydrochloride in pyridine
(15 mg/mL) and vortex-mixed for 5 min. The samples were
incubated for 16 h at room temperature in the dark. The
silylation process was followed by adding 10 µL of
bis(trimethylsilyl)trifluoroacetamide (BSTFA) with 1%
trimethylchlorosilane (TMCS). After vortex-mixing (5 min)
and incubation for 1 h at 70°C, the samples were diluted with
50 µL of internal standard (methyl stearate in heptane C18:0,
10 ppm). GC-QTOF-MS experiments were performed on an
Agilent Technologies 7890B GC system coupled to
7250 QTOF mass spectrometer system (Agilent Technologies).
Derivatized samples were injected (1 µL) with a split ratio of 30:
1 onto an HP-5MS capillary column (30 m × 0.25 mm; 0.25 µm)
(Agilent Technologies) at a constant gas flow (helium) of 0.7 mL/
min. The injector temperature was 250°C. The temperature
gradient was kept at 60°C for 1 min and then programmed to
320°C at 10°C/min. Mass spectra were recorded at 70 eV in full
scan mode with m/z values ranging from 50 to 600. The transfer
line, filament source, and quadrupole temperature were fixed at
280°C, 230°C, and 150°C, respectively.

Lipidomic analysis by LC-QTOF-MS
For lipids extraction, 100 µL of plasma was extracted with

350 µL of cold methanol and 350 µL of MTBE and vortex mixed
for 5 min. Then, the samples were centrifuged at 13,000 g for
10 min at room temperature. Lipidomic analysis was performed
using the same RP-LC–QTOF–MS system employed for
metabolomics analysis. A 1 µL of the extracted sample was
injected into the InfinityLab Poroshell 120 EC-C8 (100 mm ×
2.1 mm, 2.7 µm) column at 60°C using 5 mM ammonium formate

in Mili-Q water) (A) and 5 mM ammonium formate in
isopropanol: methanol (15:85) (B) as a mobile phase with a
0.4 mL/min flow rate. Gradient elution started with 75% B,
then increased to 96% within 23 min, and kept there for
13 min, then increased to 100% and kept constant for 4 min.
Then, the gradient returned to initial conditions at 42 min and
held there for 11 min to allow column re-equilibrium. The same
reference masses were used throughout the analysis as described
in metabolomics analysis by LC-QTOF-MS for positive and
negative ionization modes. The system was operated in full
scan mode from 100 to 1,800 m/z; a capillary voltage was set
to 3,000 V, the drying gas flow rate was 12 L/min at 290°C; and
the gas nebulizer 45 psi, fragmentor voltage 175 V, the skimmer
65 V and octopole radio frequency voltage (OCT RF Vpp) 750 V.
Data were collected in centroid mode at a scan rate of
1.02 spectrum per second.

Quality assurance (QA) and quality control (QC)
procedures

Quality assurance and quality control procedures were
implemented according to published guidelines to reduce
unwanted variation (26) (Kirwan et al., 2022). Pure solvents and
extraction blanks were evaluated at the beginning of each sequence
to ensure the cleanliness of equipment and materials used in sample
preparation. To equilibrate the chromatographic system, pooled
samples (QC) were injected, which were prepared by mixing equal
volumes of each plasma sample using the same procedure for both
metabolomic (LC and GC) and lipidomic analysis. To monitor the
system’s stability, these QC samples were injected every ten samples.
Additionally, biological samples were randomized within the
sequence to reduce the possibility of bias (Sumner et al., 2007).

Data treatment
All raw LC-QTOF-MS datasets were processed using Agilent

MassHunter Profinder B.10.0 Software for deconvolution,
alignment, and integration, using algorithms such as molecular
feature extraction and recursive feature extraction; then, the raw
data were inspected manually to remove background noise and
unrelated ions. For GC-QTOF-MS, samples were normalized by
internal standards prior to the statistical analysis. Finally, for all
platforms, the data was filtered by presence and reproducibility, and
the coefficient of variation (CV) in the QC lower than 20% to LC (or
30% to GC) was used for statistical analysis.

Statistical analysis
For both LC-MS and GC-MS data, the identification of the

molecular characteristics with statistical differences between HI and
AL patients were carried out using univariate and multivariate
statistical analysis. First, the p-value was determined by Mann-
Whitney U test (nonparametric tests) with a Benjamini-
Hochberg False Discovery Rate post hoc correction (FDR) using
MatLab (R2019b, Mathworks, Inc., Natick), while for the
multivariate analysis, an unsupervised principal component
analysis (PCA) and orthogonal partial least squares regression
(OPLS-DA) was applied using SIMCA-P + 16.0 software. The
statistically significant variables were selected based on p-value
with FDR p < 0.05 and variance important in projection (VIP) >
1 with Jack-knife confident interval (JK).
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Metabolites identification
The identification of metabolites was carried out based on a 4-

level confidence system for high-resolution mass spectrometry
analysis following the parameters (Schymanski et al., 2014).
Metabolites by LC-MS were annotated using various online
database (http://hmdb.ca), (http://genome.jp/keg), (https://
massbank.eu/MassBank/), (http://lipidmaps.org) and (http://
metlin.scripps.edu) utilized for this purpose CEU Mass Mediator
tool (http://ceumass.eps.uspceu.es/). The metabolite’s identity was
confirmed by iterative MS/MS data with Agilent Lipid Annotator
software, MS-DIAL 4.80 (http://prime.psc.riken.jp/compms/msdial/
main.html), and CFM-ID 4.0 (https://cfmid.wishartlab.com/) for in
silico mass spectral fragmentation. For GC-QTOF-MS
chromatograms were deconvoluted and compared with Fiehn
GC-MS Metabolomics RTL Library (Kind et al., 2009).

Pathway analysis
Metabolic pathway analysis was performed with the

MetaboAnalyst 5.0 tool (http://www.MetaboAnalyst.ca/),
integrating enrichment and topology pathway approaches. A list
of identified significant metabolite compound names was loaded and
processed using the “Homo sapiens” library. The KEGG pathway
information was obtained in October 2019, and the specific pathway
analysis parameters were the visualization method by scatter plot
(testing significant features), enrichment method (hypergeometric
test), topology analysis (relative-betweenness centrality), and
selecting a pathway library by H. sapiens.

Determination of TAC in plasma

The antioxidant capacity was evaluated using the e-BQClab
device (Bioquochem, Asturias, Spain) that measures the redox
potential, which is expressed in micro coulombs (μC). The
results in μC were transformed to Trolox Equivalent Antioxidant
Capacity Units (TEAC). The e-BQClab device using
electrochemistry can distinguish between fast and slow
antioxidants: the Q1 value refers to the antioxidant capacity of
the compounds with the highest free radical scavenging rate
(examples, uric acid, GSH, vitamin E), while the Q2 value refers
to the antioxidant capacity of the compounds with the lowest rate of
free radical uptake (examples, polyphenols, resveratrol). The QT
value is the sum of both. The measurement was performed in
duplicate using 50 μL of all collected plasma samples.

Results

Characteristics of AL patients and HI

The mean age at diagnosis of the patients evaluated was
45.8 years (range 21–76), and 55% were female patients. We
collected 9 patients with B-ALL, 9 patients with AML, 1 patient
with acute promyelocytic leukemia, and 1 patient with mixed-
phenotype acute leukemia (B-lymphoid and myeloid
differentiation). The karyotype was normal in 40% (8) of the
patients, abnormal in 50% (10), and there was no growth in 10%
(2). According to the risk categories, 80% of the patients were

classified as high-risk and the remaining 20% as intermediate-
risk. The mean white blood cell count was 76,786 cells/µL
(interval 800–403,000), hemoglobin was 9.0 g/dL (3.2–12),
platelets were 68,130 cells/µL (interval 8,300–228,000), and the
mean number of tumor cells over the total nucleated cells in
bone marrow was 68.8% (interval 20–93.9). The first phase of
chemotherapy (induction therapy) was based on the PETHEMA
protocols for all patients, 7x3 or 5-Azacytidine for AML patients,
and AIDA-PETHEMA for acute promyelocytic leukemia patients.
Of the total number of patients at the end of induction, 10% (2)
achieved CR, 70% (14) were NR, and 20% (4) could not be evaluated.
In total, 18 samples were collected from HI; the group had a mean
age of 31.9 years (range 19–61), and 55% were women. The clinical
and demographic data of the patients are summarized in Table 1,
along with the HI data. Clinical data related to treatment and
response are detailed in Supplementary Table S1.

Alterations in lipid metabolism at the plasma
level, differentiate HI from AL patients

Multiplatform metabolomic and lipidomic analyses of AL and
HI plasma samples were conducted using different approaches
aimed at detecting the largest possible number of metabolites.
The performance of the different analytical platforms was
evaluated by clustering the quality control (QC) samples using
PCA models. In these models, a clear grouping of the QC
samples belonging to each analytical platform was observed,
indicating reliable, consistent performance and the conservation
of biological variation across the platforms used (Supplementary
Figure S1). Following the supervised OPLS-DA analyses, a
discrimination between the HI group (green dots) and the AL
patients (red dots) was observed for each platform, as depicted in
Figure 1. This suggests distinct metabolomic profiles associated with
the development of leukemia. The results indicated acceptable values
ranging between 0.972 and 0.925 for R2 and 0.670 and 0.852 for Q2 in
the cross-validation test in the metabolomic and lipidomic analyses
on all analytical platforms used (Wheelock and Wheelock, 2013).
On the other hand, volcano plots were generated to show the
metabolites that were significant [p < 0.05, Log2(FC) < 1.3] by
univariate analysis (Supplementary Figure S2).

A total of 328 metabolites differentially expressed between HI
and ALwere determined using a combination ofMVA (VIP > 1 with
JK), UVA (p < 0.05) applied on adjusted p-values, and fold change
Log2(FC) > 1 and < 1). The detected metabolites during data
processing across the different analytical techniques used are
presented in Supplementary Table S2, and A typical metabolic
fingerprint from each platform is presented in Supplementary
Figures S3–S5. The compounds altered between AL patients and
HI showed 61.28% (201 metabolites) downregulated metabolites
and 38.72% (127 metabolites) upregulated metabolites. In respect of
downregulated metabolites, we found glycerophospholipids
(47.25%) to be the most representative, sphingolipids (23.37%),
and a lower percentage (<7%) of sterol lipids, steroids, amino
acids, bile acids, fatty acyls, organic acids, organooxygen
compounds, and carnitines (Figure 2A). In the upregulated
group, we observed that 47.25% of those metabolites were
glycerophospholipids, 10.26% sphingolipids, 49.57% glycerolipids,
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4.27% fatty acyls, and less than 8% corresponded to sterol lipids,
amino acids, bile acids, organic acids, imidazopyrimidines, and
steroids (Figure 2B).

For greater reliability, the Log2(FC) was adjusted to ≥ 1.5 and ≤ 0.5,
and 135 metabolites. The set of altered metabolites (FC > 1.5 or < 0.5)
between the two groups was analyzed using heatmaps, which enable the
visualization of patterns of metabolite changes among the groups.
Therefore, blue colors indicate decreased metabolite levels, while red
colors indicate increasedmetabolite levels in AL patients (Figure 3). The
clustering analysis in the heatmap reveals a clear grouping of samples
from AL patients (green) and HI patients (red), indicating similarity in
the metabolomic profiles among individuals within each group.

The most significant variations between AL patients and HI are
observed in the glycerophospholipids group, which includes
metabolites such as lysophosphatidylcholines, phosphatidylcholines
(PCs), phosphatidylserine, phosphatidylethanolamine,
lysophosphatidylethanolamines, and some sphingolipids like
sphingomyelin. These metabolites were predominantly found to be
downregulated in AL patients (represented by blue colors in the
heatmap). In contrast, the glycerolipids group, including
triacylglycerols (TG), diacylglycerols (DG), some organic acids like

pyruvic acid and hydroxyglutaric acid, and amino acids such as 4-
acetamido-amino butanoic acid, glutamic acid, amino butanoic acid,
and leucylproline, showed trends towards upregulation in AL patients
(represented by red colors in Figure 3). These results suggest
significant alterations in biochemical metabolites, particularly lipid
compounds, in the plasma of AL patients compared to the control
group.

Metabolic pathways associated with
sphingolipid and glycerophospholipids are
altered in AL patients

For a better understanding of the metabolic dysregulation
between the two groups, differential metabolites were imported
into MetaboAnalyst 5.0 to perform the Metabolomic Pathway
Analysis. The x-axis represents the pathway impact value
computed from pathway topological analysis, and the y-axis is the-
log of the p-value obtained from pathway enrichment analysis. The
pathways that were most significantly changed are characterized by
both a high-log(p) value and a high impact value (top right region).

TABLE 1 Summary description of the clinical characteristic of AL patients and date of healthy individuals.

Characteristic n (%)

Sex (female) 11 (55)

Age (years), median (interval) 45.8 (21–76)

Immunophenotype

B-ALL 9 (45)

AML 9 (45)

B/M AL 1 (5)

AML M3 1 (5)

Karyotype

Normal 8 (40)

Abnormal 10 (50)

No growth 2 (10)

Risk

Intermedium 4 (20)

High 16 (80)

Hematological parameters

WBC count (µL), median (interval) 76,786 (800–403,000)

Hb (g/dL), median (interval) 9.0 (3.2–12)

Platelet count (µL), median (interval) 68,130 (8,300–228,000)

Tumor cells in bone marrow (%), median (interval) 68,8 (20–93,9)

Healthy Individuals

Sex (female) 10 (55)

Age (years), median (interval) 31.9 (19–61)

B-ALL, B-acute lymphoid leukemia; AML, Acute myeloid leukemia; B/M AL, mixed-phenotype acute leukemia patient (B-lymphoid and myeloid differentiation); AML M3,

Promyelocytic—acute myeloid leukemia; Hb, Hemoglobin; WBC, White blood cells.
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The node color of each pathway is determined by the p-value (red =
lowest p-value and highest statistical significance), and the node radius
(size) is based on the pathway impact factor, with the biggest
indicating the highest impact (Mashabela et al., 2022). The

metabolic pathways that were significantly altered in patients with
AL compared with HI were sphingolipids, glycerophospholipids,
alanine, aspartate, and glutamate metabolism (Figure 4). The
metabolites identified within these altered pathways are a

FIGURE 1
OPLS-DA score plot with Pareto scaling for a metabolic analysis of HI and AL patients. (A) GM-LC/MS (+) R2: 0.958, Q2: 0.852, pCV-ANOVA: 1.948e

−11.
(B)GM-LC/MS (−) R2: 0.925, Q2: 0.838, pCV-ANOVA: 7.3713e

−11. (C)GL-LC/MS (+) R2: 0.945, Q2: 0.670, pCV-ANOVA: 1.986e
−4. (D)GL-LC/MS (−) R2: 0.972, Q2:

0.789, pCV-ANOVA: 6.991e
−8. (E) GC/MS R2: 0.937, Q2: 0.743, pCV-ANOVA: 9.262e

−7. Red dots correspond to AL patients, and green dots are HI.
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significant increase in pyruvate and AA and a significant decrease in
linoleic acid, phosphatidylcholine, phosphatidylethanolamine, and
lysophosphatidylcholine were found in the patients. A summary
graph of the main altered 328 metabolites and their participation
in the different metabolic pathways associated with leukemia is shown
in Figure 5.

The HI have higher TAC than the AL patients

This work shows a higher concentration of slow antioxidants (Q2)
than fast antioxidants (Q1), both in HI and in patients. Also, significant
differences in rapid antioxidants (Q1) between HI and patients with AL

were observed. Regarding theQT value, the patients presented less TAC
than the HI (Figure 6; Supplementary Table S3). It is possible that there
is a relationship between the decrease in TAC and the lipid alterations
present in the patients. The decrease in antioxidant systemswould favor
an increase in ROS, which could stimulate survival signals or oxidize
macromolecules such as lipids, inducing cell death (Barrera, 2012).

Discussion

Thanks to the technical progress of metabolomics and the
complexity of biological samples, the simultaneous use of several
analytical platforms allows expanding the coverage of identification

FIGURE 2
The chemical classes altered between AL patients and HI. The chemical classes and percentages are shown in a pie chart. (A) Downregulated
metabolites (B) Upregulated metabolites.

FIGURE 3
Heatmap of the metabolites and lipids with statistically significant variation. Fold Change ≥ 1.5 and ≤ 0.5, p < 0.05 between AL patients and HI.
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and characterization of metabolites, making it possible to find new
non-invasive biomarkers for the diagnosis and prognosis of AL, as
well as delving into the characteristics and biological differences of
the lineage of origin of the disease, lymphoid or myeloid (Bruno
et al., 2018). In this study, metabolic differences were analyzed at the
plasma level between 18 HI and 20 AL patients, using metabolomics
by LC-QTOF-MS and GC-QTOF-MS and lipidomics by LC-
QTOF-MS.

Among the results obtained, it was shown that the primary
metabolic alterations in patients with AL are related to lipid
metabolism, in agreement with previous reports in the literature
(Musharraf et al., 2016). Lipids are essential components of
malignant tumors, as they are necessary for the growth and
spread of the tumor. Fatty acids, cholesterol, and phospholipids
are the most important sources of energy production, function as
signaling molecules, and participate in the biogenesis of cell
membranes. They can be provided by the tumor
microenvironment or by cancer cells themselves through the
activation of de novo synthesis pathways. Importantly, especially
cells of the immune system, cancer-associated fibroblasts, and
cancer-associated adipocytes, can also undergo changes in lipid
content, hindering or promoting tumor aggressiveness (Fu et al.,
2020; Vasseur and Guillaumond, 2022). In AML, lipids have been
used to identify genetic signatures related to prognosis, the
immunological panorama, and characteristics of the tumor

microenvironment (Ding et al., 2022) and, in turn, as markers to
predict the risk of acute graft-and-host disease (aGvHD) from
allogeneic hematopoietic stem cell transplantation (alloHSCT)
(Liu et al., 2019).

Fatty acids are the main building blocks of several lipid species,
they can be channeled into various metabolic pathways to synthesize
complex lipid species, including glycerolipids such as DG and TG,
glycerophospholipids such as phosphatidic acid,
phosphatidylethanolamine, PS, phosphatidylglycerol and
phosphatidylcholine, sphingolipids and cholesterol (CL) including
cholesterol ester (Koundouros and Poulogiannis, 2020). We
observed a decrease in glycerophospholipids and an increase in
glycerolipids in AL patients. Since glycerophospholipids are the
main constituents of cell membranes, it is possible that they are
being rapidly consumed by proliferating cells at the expense of
Increased glycerolipids that serve as central intermediates in
glycerophospholipid synthesis or as lipid storage molecules (Pan
et al., 2021).

Within the increase in glycerolipids, TG was the most relevant.
Altered glycerophospholipid metabolism has previously been
associated with disease progression in pediatric ALL patients
(Yunnuo et al., 2014) and an increase in TG in conjunction with
a decrease in CL has been reported in both AML and ALL (Nahid
et al., 2013), which has been related to a poor response to treatment
(Guzmán and Sandoval, 2004). Particularly, Pabst et al. (2017)

FIGURE 4
Summary of Metabolomic Pathway Analysis (MetPA) as generated by MetaboAnalyst 5.0 software package in AL patients. Using the KEGG database
(All the matched pathways are displayed as circles). The color of each circle is based on p-values (darker colors indicate more significant changes of
metabolites in the corresponding pathway). In contrast, the circle size corresponds to the pathway impact score. The most impacted pathways having
high statistical significance scores are annotated (p-value < 0.05; pathway impact values ≥ 0.2.
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analyzed 20 samples from individuals with AML and 20 HI by GC-
MS and ultraperformance liquid chromatography-electrospray
ionization-quadrupole time-of-flight mass spectrometry (UPLC-
ESI-QTOFMS), obtaining similar results, a decrease in PCs,
cholesterol ester, and CL in the patients, however, they found a
reduction in TG in the patients, probably associated with
consumption by proliferating AML cells. From the point of view
of the evolution of the disease, it has been described in other works,
that patients with myelodysplastic syndromes who progressed to AL
had higher TG levels than those who did not evolve (Qiao et al.,
2022) and that in patients with ALL, after a 5-year disease-free
period, they developed dyslipidemia with increased plasma TG,
increased LDL CL, and decreased HDL CL, which was associated
with an increased risk of atherosclerotic disease (Morel et al., 2017).
These findings indicate that metabolic alterations at the lipid level
with increased TG play an essential role in leukemogenesis,
maintenance, and tumor progression but are also associated with
clinical complications in these patients, such as atherosclerosis.

It should be noted that LICs or their equivalents in other cancer
stem cells tumor models as initiating cells of the leukemogenesis
process have a profile of genetic alterations associated with high risk
and a specific metabolic profile, which are relevant as mechanisms
implicated in treatment resistance and disease relapse (Marchand
and Pinho, 2021). In particular, the increase in the synthesis of lipids
in the LICs favors their self-renewal capacity by increasing the

production of NADPH, which is an essential cofactor in reducing
oxidized GSH to reduced GSH and in the maintenance of low ROS
levels (Liu et al., 2022). Interestingly, Ito et al. (2012) showed that the
PML gene controls asymmetric and symmetric HSC division
through PPARδ activity, a regulator of fatty acid synthesis. In
prostate cancer, a high lipid diet may accelerate tumor cell
proliferation by increasing levels of insulin-like growth factor 1,
IL-1α, IL-1β, IL -6, or TNF-α (Xu et al., 2014) or through activation
of signaling pathways such as MCP-1/CCR2 (monocyte
chemoattractant protein-1/C-C Motif Chemokine Receptor 2)
(Huang et al., 2012). In addition, a high lipid diet accelerates the
development of AML in a murine knock-in model for MLL-AF9
through the activation of the FLT3 receptor (Fms Related Receptor
Tyrosine Kinase 3) on the membrane of c-KIT + primitive
hematopoietic stem cells, with subsequent activation of the JAK3-
STAT3 (Janus kinase/signal transducer and activator of
transcription) signaling pathway (Hermetet et al., 2020).

Of the lipids, the ones best characterized in oncogenic signaling
are phosphoinositols (PI) and ceramides/sphingolipids (SF), which
we found decreased in patients compared to HI. However, this is one
of the few studies that reflect this alteration at plasma levels in
patients with AL (Calderon-Rodríguez et al., 2019). PIs are
precursors of phosphoinositide, such as PI(3,4,5)P3, which can
promote tumorigenesis by activating the AKT/mTORC1/
2 pathway, which is frequently altered in AL (Nepstad et al.,

FIGURE 5
Significantly altered metabolomic pathways in AL. The main metabolic pathways altered in patients with AL vs. HI, identified by different
metabolomic and lipidomic analytical platforms in peripheral blood plasma, are represented. In red upregulated and in blue downregulated metabolites.
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2020), while SF participates in regular signals of cell survival or
apoptosis (Ogretmen, 2018). Relevantly, the activation of cell
signaling pathways due to mutations in oncogenes such as Ras
and FLT3 plays a vital role in the metabolic reprogramming of
leukemic blasts (Wojcicki et al., 2020). In fact, recent in vitro studies
have shown that distinct genetic changes in AML are associated with
improved dynamics andmetabolism of different types of lipids, such
as ceramides. Additionally, it has been found that patients with
abnormal karyotypes, particularly those who have recurrent AML
genetic changes like the t(8; 21)(q22; q22.1);RUNX1-RUNX1T1
translocation or inv(16)(p13.1q22) inversion, have higher levels
of ceramide/sphingolipid production (Stefanko et al., 2017).

The other altered metabolites were amino acids. Leucylproline,
4-acetamido-amino butanoic acid, glutamate, amino butanoic acid,
and methylmethylproline were found to be increased in the patients.
Leucylproline is a dipeptide formed by leucine and proline residues.
On the one hand, leucine is part of the branched-chain amino acids
(BCAA), which have been shown to be essential for the proliferation
of leukemic cells (independent of their lineage). Since it supports the
synthesis of non-essential amino acids and the TCA cycle (Tabe
et al., 2019). Most patients with AML and ALL have a high level of
BCAA transporters (BCAT1), while serum BCAA levels are reduced,
suggesting active absorption of BCAA (Kikushige et al., 2023) and
the formation of secondary metabolites (dipeptides). We found a
reduction in glutamine and an increase in glutamate, suggesting an
active metabolism of glutamine. Particularly, glutamate has been
described as an exquisite source for leukemic cells since it promotes
a tumor phenotype by participating in signaling reactions; it is a
source of nitrogen for DNA synthesis and other amino acids; it
participates in redox reactions through GSH; and it is a source of
biomass and energy as it is incorporated into the TCA cycle (Kreitz

et al., 2019). Carnitines are a fundamental part of the synthesis of
fatty acids and are vital mediators for tumor metabolic plasticity
(Melone et al., 2018). Like us, Morad et al. (2022) demonstrated a
reduction in plasma O-acetyl carnitine in patients with ALL and
AML. However, the metabolism of carnitines must be studied in
depth because some chemotherapeutic drugs interfere with the
absorption, synthesis, and excretion of carnitine in non-tumor
tissues, leading to secondary carnitine deficiency and therefore
multi-organ toxicity, which can be reversed with carnitine
treatment without affects effectiveness. Anticancer by affects
effectiveness anticancer (Sayed-Ahmed, 2010).

Tumor cells develop a mechanism where they adjust to the high
ROS by expressing elevated levels of antioxidant proteins to detoxify
them while maintaining pro-tumorigenic signaling and resistance to
apoptosis. At the systemic level, a reduction in the expression of
antioxidant enzymes and antioxidant capacity has been reported in
AL samples (Rasool et al., 2015; Chaudhary et al., 2023). The
reduction in TAC could reflect the consumption of endogenous
antioxidants due to the generation of free radicals by the leukemic
process (mutations or enzyme alterations) and maintain the redox
balance The lower concentration of fast antioxidants (Q1) is
expected given their oxidative potential. The increase in free
radicals can cause lipid peroxidation, where polyunsaturated fatty
acids are more susceptible, such as arachidonic acid. Iron-dependent
lipid peroxidation is an important driver of ferroptosis, and
ferroptosis is critically involved in the pathogenesis of AL.
Interestingly, circulating antioxidants related to dietary intake
(vitamin C, carotenoids, vitamin A, and vitamin E) may impact
tumor progression in some types of cancer and vary depending on
the dietary culture (Abenavoli et al., 2019; Yin et al., 2022).

We recognize that our study consolidates a low number of
patients, however, there are not a huge number of primary acute
leukemia samples in our region, which is reflected by the number of
patients included in recent papers in Colombia (Calderon-
Rodríguez et al., 2019) and in Latin America (Aguirre-Guillén
et al., 2017). Therefore, our study is pioneering in a different
social and cultural context and our findings may inspire more
research on the metabolism of malignant hemopathies. We will
verify the data in a larger cohort of patients in the medium term.
Likewise, this metabolic profile will help us to follow the evolution of
acute leukemia patients recruited in a clinical trial in which a new
medicant directed to metabolism regulation is tested. We also
consider integrating other omics techniques, particularly
transcriptomics with metabolomics, to strengthen longitudinal
studies, offering the opportunity to design and apply personalized
treatments and advance in the search for biomarkers predictive of
clinical response.

Conclusion

This study reinforces previous observations of lipid
abnormalities in patients with acute leukemia (AL), highlighting
the significance of these metabolic dysregulations in the disease. Our
findings indicate that glycerophospholipid metabolism, sphingolipid
metabolism, and the metabolism of alanine, aspartate, glutamate,
and glutamine are the primary deregulated pathways in AL patients.
Additionally, we observed a lower total antioxidant capacity (TAC)

FIGURE 6
Plasma metabolic differences between AL patients and HI. TAC
levels in the peripheral blood plasma of patients, and HI are expressed
in Trolox Equivalent Antioxidant Capacity (TEAC). In all cases, data are
represented as the mean ± SEM.
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in AL patients, reflecting the consumption of antioxidants during
the leukemogenic process. These metabolic findings contribute to a
deeper understanding of the physiological characteristics of
leukemia and provide valuable insights for targeted therapeutic
interventions and personalized treatment strategies. Furthermore,
to our knowledge, this research represents the first metabolomics
investigation conducted on the Colombian population,
underscoring the novelty of our results. Future validation studies
are necessary to confirm these findings with a larger cohort and
elucidate their clinical implications.
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