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Introduction: The tumor microenvironment (TME) is crucial for the development of
head and neck squamous cell carcinoma (HNSCC). However, the correlation of the
characteristics of the TME and the prognosis of patients with HNSCC remains less
known.

Methods: In this study, we calculated the immune and stromal cell scores using
the “estimate” R package. Kaplan-Meier survival and CIBERSORT algorithm
analyses were applied in this study.

Results: We identified seven new markers: FCGR3B, IGHV3-64, AC023449.2,
IGKV1D-8, FCGR2A, WDFY4, and HBQ1. Subsequently, a risk model was
constructed and all HNSCC samples were grouped into low- and high-risk
groups. The results of both the Kaplan-Meier survival and receiver operating
characteristic curve (ROC) analyses showed that the prognosis indicated by the
model was accurate (0.758, 0.756, and 0.666 for 1-, 3- and 5-year survival rates). In
addition, we applied the CIBERSORT algorithm to reveal the significant differences
in the infiltration levels of immune cells between the two risk groups.

Discussion: Our study elucidated the roles of the TME and identified new
prognostic biomarkers for patients with HNSCC.
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1 Introduction

With approximately 600,000 new cases diagnosed annually, squamous cell carcinoma of
the head and neck (HNSCC) is the sixth most common malignancy worldwide. More than
50% of HNSCC cases develop to an advanced stage with a 5-year overall survival (OS) rate of
approximately 50% (Miyauchi et al., 2019; Yi et al., 2020; Siegel et al., 2021).

Immunotherapy has revolutionized the treatment of cancer, and the clinical application of
immune checkpoint inhibitors (ICIs) has provided benefits to patients with various malignant
tumors. A known characteristic of HNSCC is severe immunosuppression (Romano and Romero,
2015); therefore, therapy with ICIs play an important role in the treatment of HNSCC patients
(Chen et al., 2021). Although many studies have suggested that patients with recurrent and
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metastatic HNSCC may benefit from ICI immunotherapy, most have
shown limited success in the clinical setting, with a 13%–18% overall
response rate (Solomon et al., 2018; vonWitzleben et al., 2020). The role
of immune infiltration in the TME is important for tumorigenesis and
tumor progression, both of which affect the clinical prognosis of patients
with tumors (Ferris, 2015; Gavrielatou et al., 2020). Furthermore, there is
increasing evidence that the tumor mutation burden (TMB) is associated
with immunotherapy response (Liu et al., 2019).

Here, we comprehensively analyzed the relationship between the
TME, prognosis, TMB, and ICIs in patients with HNSCC. We then
established a risk model based on the TME to improve prognostic
risk stratification, facilitating better treatment and decision–making
for patients. Differentially expressed genes (DEGs) identified here
could facilitate a more in-depth understanding of tumor progression
and immunotherapy treatment. In addition, this study may help
elucidate the mechanism of tumor escape and establish a framework
for the development of new prognostic markers.

2 Materials and methods

2.1 Data download and processing

From The Cancer Genome Atlas (TCGA) database (https://portal.
gdc.cancer.gov/), we downloaded the mRNA expression, clinical
information, and somatic mutation data of HNSCC samples. After
obtaining the somatic mutation data, we used Perl scripts based on the
JAVA 8 platform to determine the mutation frequency with number of
variants/the length of exons (38 million). Meanwhile, the tumor
mutation burden (TMB) value for each sample was calculated.

2.2 TME analysis

Using the “estimate” R package, we estimated the infiltration levels of
immune and stromal cells, in the form of two scores, immune score and
stromal score (Yoshihara et al., 2013).Meanwhile, the sumof immune and
stromal score was reflected by the ESTIMATE score. We then explored
the correlation between the expression levels of model genes and these
scores by performing the Spearman’s rank correlation coefficient test.
Additionally, we employed the CIBERSORT algorithm to assess the
22 types of infiltrating immune cells of each sample (Newman et al., 2015).

2.3 Identification of differentially expressed
genes (DEGs) based on the stromal and
immune scores

According to the median stromal and immune scores, we divided
502 HNSCC patients into high- and low-score groups. To identify
DEGs between the two score groups, we applied the “limma”Rpackage,
with a false-discovery rate (FDR)≤ 0.05 and |log2 fold change (FC)| ≥ 1.

2.4 Construction and validation of the
prognostic prediction model in HNSCC

By taking the intersection of the DEGs from the both score
groups, the univariate Cox analysis was conducted to primarily

screen out immune- and stromal-related genes with prognostic
value, using the “survival” R package. A least absolute shrinkage
and selection operator (LASSO) analysis was further applied to
narrow these prognostic genes. Finally, a multivariate Cox
regression model was utilized to select candidate genes related to
survival and to construct the prediction model. The risk score was
then calculated as follows: risk score = (0.2086 × expression level of
FCGR3B) + (−0.0550 × expression level of IGHV3-64) + (−1.8215 ×
expression level of AC023449.2) + (0.0075 × expression level of
IGKV1D-8) + (0.0582 × expression level of FCGR2A) + (−0.5416 ×
expression level of WDFY4) + (0.0914 × expression level of HBQ1).

Based on the median risk score, we classified all HNSCC patients
into low- and high-risk groups. The Kaplan-Meier (KM) survival
analysis and the receiver operating characteristic (ROC) curve
analyses were used to analyze the OS between the two risk
groups and assess the sensitivity and specificity of the signature
using the “survivalROC” and “timeROC” R packages.

2.5 Functional enrichment analysis

We carried out the Gene Ontology (GO) and the Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analysis for the DEGs between the two risk groups,
using the “clusterProfiler,” “enrichplot,” and “org.Hs.eg.db” R
packages. Furthermore, we used the “GSVA” R package to
perform a gene set variation analysis (GSVA) with the purpose
of estimating the variation of pathway between the low- and high-
risk groups, based on the “c2.cp.kegg.v7.4.symbols.gmt” database,
which was downloaded from the Molecular Signatures Database
(v7.4, http://www.gsea-msigdb.org/gsea/msigdb/index.jsp)
(Hanzelmann et al., 2013).

2.6 TMB calculation and visualization

The somatic mutation data were obtained from the TCGA
database. The TMB was defined as the total number of somatic
gene coding errors, base substitutions, insertions, or deletions
detected per megabyte bases of tumor tissue. The value of it for
each patient was defined as the total mutation frequency/the length
of the human exon (38 Mb) (Lv et al., 2020; Jiang et al., 2021). When
calculating TMB, we excluded all synonymous mutations. At the
same time, we further studied the mutation status under different
risk groups.

2.7 Construction of the protein-protein
interaction (PPI) network and the
competitive endogenous RNA (ceRNA)
network

We performed differential analysis for patients between high-
and low-risk groups and used the differential genes to construct the
PPI network by using the Search Tool for the Retrieval of Interacting
Genes (STRING) database.

Construct protein-protein interaction (PPI) network. In
addition, we used model genes in the Starbase database (http://
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FIGURE 1
Determination of TME-related DEGs and functional analysis. Distribution of immune and stromal score by clinical characteristics, including (A)
tumor grades, (B) sex, (C) T classification, (D)Nclassification, and (E) tumor stages. (F)Common upregulated and downregulated genes based on immune
and stromal scores. (G)GO and (H) KEGG analyses of 395 common DEGs. (I)Correlation between the proportions of 22 types of immune cells in the TME
of HNSCC patients. (J) Violin plots were used to display the differential infiltration of 22 types of immune cells between tumor and normal samples.
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starbase.sysu.edu.cn/). The ceRNA regulatory network of model
genes was screened and constructed in the database. When
predicting the miRNA binding to the model gene through this
database, we first ensured that there should be a negative correlation
between the expression of miRNA and mRNA. At the same time,
miRNA was differentially expressed in normal and tumor. In
addition, using the median value of candidate miRNAs, we
divided patients into high and low expression groups, and
screened miRNAs with survival differences between the two
groups through km database. Subsequently, we screened lncRNAs
through the Starbase database. According to the theory of ceRNA,
there was a positive correlation between lncRNA expression and
mRNA. At the same time, the candidate lncRNA should be
differentially expressed in normal and tumor tissues, and have
survival differences in different expression groups based on the
median expression level. According to the theory, the ceRNA
networks related to the important model genes was screened and
constructed.

2.8 Statistical analysis

All statistical analyses were accomplished using the R software
(v4.1.1). We followed the methods of Ai-Min Jiang, Yue Zhao, and
Ke-Wei Bi et al. (Bi et al., 2020; Jiang et al., 2021; Zhao et al., 2021).
To compare the expression level of model genes between the tumor
and normal samples, we conducted the Wilcoxon test. To explore
the correlation between model gene expression levels and the OS of
patients, we used the log-rank test and KM curve analysis.
Meanwhile, we performed the univariate and multivariate Cox
regression analyses to explore the independent prognostic value
of the risk mode. p-value ≤0.05 was regarded as significant.

3 Results

3.1 Acquisition of DEGs based on immune
and stromal scores

To elucidate the relationship between the immune and stromal
scores and clinical features of HNSCC, we used the Wilcoxon test to
analyze the differences among patients with different statuses. We
found significant differences in immune scores according to tumor
grade (Figure 1A), sex (Figure 1B), and T and N stage (Figures 1C,
D). Furthermore, stromal scores were significantly different between
tumor stage I and III (Figure 1E). These results showed that the
immune- and stromal-related activities were associated with
HNSCC progression.

Based on the median immune score, we identified 1,558 DEGs,
including 1,255 upregulated and 303 downregulated genes
(Supplementary Table S1). There were 1,307 DEGs, including
1,191 upregulated and 116 downregulated genes, based on the
stromal score (Supplementary Table S2). At the intersection of
these two sets of DEGs, 365 upregulated and 30 downregulated
genes were identified (Figure 1F; Supplementary Table S3).

We then performed a gene ontology (GO) enrichment analysis
on the 395 genes that may be the key factors in the TME. We found
that these genes were predominantly associated with the immune

responses, such as phagocytosis, activating cell surface receptor
signaling pathways, and B cell-mediated immunity (Figure 1G).
The Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analysis gave similar results, with responses such as
phagosome, NF-kappa B signaling pathway, and B cell receptor
signaling pathway (Figure 1H). These results indicated that
immune-related activities were important characteristics in the
TME of HNSCC.

Furthermore, to identify the proportion of the 22 kinds of
immune cells in the TME of patients with HNSCC, we
conducted a CIBERSORT analysis, using the “CIBERSORT” R
package. Using the Pearson analysis, we found that
M0 macrophages negatively correlated with CD8+ T cells.
However, CD8+ T cells positively correlated with activated
memory CD4+ T cells (Figure 1I). These results indicated that
there were significant differences between the normal and tumor
groups. The normal samples had a higher proportion of native B,
resting memory CD4+ T, resting mast, and resting dendritic cells
than the tumor samples. Moreover, in the tumor patient group, the
proportion of resting NK cells andM0macrophages was higher than
that in normal group (Figure 1J).

3.2 Establishment of the prognostic
prediction model with TCGA cohort

The univariate Cox analysis of the 395 DEGs identified 50 genes
significantly related to OS (Supplementary Table S4). We then used
the LASSO regression analysis to screen these genes, and 13 genes
were finally identified (Figures 2A, B). All HNSCC samples were
then randomly divided into training and validation cohorts, at a
ratio of 1:1. The 13 genes were further screened using the
multivariate Cox regression analysis. Finally, a set of seven genes,
FCGR3B, IGHV3-64, AC023449.2, IGKV1D-8, FCGR2A, WDFY4,
and HBQ1, was selected to construct the prognostic model and
calculate the risk score (Figure 2C).

Based on the median risk score, 126 and 125 patients were in the
low- and high-risk groups, respectively. The results of the principal
component analysis (PCA) indicated that patients at different risks were
clearly separated into two groups (Figure 2D). Moreover, patients in the
high-risk group had a higher death rate and shorter survival time than
those in the low-risk group (Supplementary Figure S1A). Based on the
KM analysis, we found that patients in the low-risk group had a
significantly better OS than those in the high-risk group (p < 0.001;
Figure 2E). The model had a good predictability for OS, with the area
under the curve (AUC) being 0.758, 0.756, and 0.666 for 1, 3, and 5-year
OS rates through the time-dependent ROC analysis, respectively
(Figure 2F).

To test whether the risk score was independent of other clinical
features, such as age, sex, tumor stage, and tumor grade, we
performed univariate and multivariable Cox regression analyses.
The results showed that it was independent (Figures 2G, H).

Furthermore, we established a nomogram to predict the 1-, 3-,
and 5-year survival rates in patients with HNSCC, according to the
expression levels of the model genes (Figure 2I). Using the
calibration curve, we found that the nomogram had a good
predictive value compared to the ideal model (Figure 2J). In the
training cohort, the concordance index (C-index) was 0.687.
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3.3 Validation of the prognostic model

According to the median risk score, there were 133 and
115 HNSCC patients in the low and high-risk groups, respectively.
The PCA showed a good separation between the risk groups

(Figure 3A). The analysis of survival time and patient status in both
risk groups showed consistent results (Supplementary Figure S1B).
Furthermore, the p-value of the KM analysis was 0.01283 (Figure 3B),
and the AUC values were 0.709, 0.647, and 0.629 for 1-,3-,5- y survival
rates in HNSCC patients, respectively (Figure 3C).

FIGURE 2
Construction of a prognostic model in the training cohort. (A,B) LASSO regression algorithm. (C) A prognostic model was constructed by the
multivariate Cox regression analysis. (D) Principal component analysis. (E) Kaplan–Meier (KM) curves of OS for patients in the high- and low-risk groups,
respectively. (F) Time-dependent ROC curve analysis of the prognostic model. (G) Univariate and (H)multivariate cox regression analyses to evaluate the
prognostic signature. (I) Nomogram predicting the survival of HNSCC patients. (J) Calibration plot based on the 1-, 3-, and 5-year OS rates of the
nomogram. *p < 0.05, **p <0.01, ***p <0.001, and ****p <0.0001.
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3.4 Gene set variation analysis and
functional analysis based on the risk model

Using the “limma” R package, we performed a differential
analysis of the two risk groups, using the following criteria:

FDR ≤0.05 and |log2FC | ≥ 1. In the training and validation
cohorts, we identified 750 (Supplementary Table S5), and
755 DEGs (Supplementary Table S7), respectively. Based on
these DEGs, GO enrichment and KEGG pathway analyses
were performed. We found that in both cohorts, the DEGs

FIGURE 3
Assessment of the prognostic model in the validation cohort. (A) Plot of principal component analysis. (B) KM curve of OS for patients in the high-
and low-risk groups. (C) Time-dependent ROC curve analysis of the prognostic model. (D,E)GOand KEGG analyses of DEGs between the high- and low-
risk groups in the training cohort. (F) GSVA analyses to estimate the variation of pathway between the low- and high-risk groups in the training cohort.
(G,H)Distribution of immune and stromal scores between the high- and low-risk groups in the training cohort. (I)Comparison of infiltration levels of
22 immune cells between the high- and low-risk groups in the training cohort.
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FIGURE 4
Assessment of the relationships between the risk score and infiltration levels of 22 immune cell types in the training cohort. (A) Activated dendritic
cells, (B) eosinophils, (C) activated mast cells, (D) neutrophils, (E) resting NK cells, (F) naive CD4+ T cells, (G) M1 macrophages, (H) resting mast cells, (I)
follicular helper T cells, and (J) regulatory T cells. Differential expression of (K) PD-L1, (L) PD1, and (M) CTLA-4 between the tumor and normal samples.
Expression levels of (N) PD1, and (O) CTLA-4 between the high- and low-risk groups in the training cohort. The differential expression of (P) PD-L1,
and (Q) CTLA-4 between the high- and low-risk groups in the validation cohort. The TMB value in both risk groups in the (R) training cohort, and (S)
validation cohort.

Frontiers in Molecular Biosciences frontiersin.org07

Wan et al. 10.3389/fmolb.2023.1232875

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1232875


were mainly associated with immune-related activities, such as
humoral immune response, immune response-activating signal
transduction, and immune response-activating cell surface
receptor signaling pathway (Figures 3D, E; Supplementary
Figures S1C–S1F).

Subsequently, the Gene set variation analysis (GSVA) was used
to explore the different biological activities between the two risk
groups, with FDR ≤0.05 as the criterion. The results showed that
pathways related to metabolism, such as fatty acid metabolism,
glycine, serine and threonine metabolism, and ascorbate and
aldarate metabolism, were significantly enriched (Figure 3F;
Supplementary Figure S2C).

3.5 Analysis of immune cell infiltration
between the two risk groups

We found that in both cohorts, patients in the low-risk group
had a stronger immune response (Figure 3G; Supplementary Figure
S2B) and higher stromal scores (Figure 3H; Supplementary Figure
S2C) than those in the high-risk groups, using the Wilcoxon signed-
rank test. To explore the differences in immune cells, we used the
deconvolution algorithm CIBERSORT. The results indicated that in
the training cohort, native B (p < 0.001), plasma (p = 0.006),
follicular helper T (p < 0.001), regulatory T (p < 0.001), resting
mast (p < 0.001), and resting dendritic cells (p < 0.001) were
significantly more abundant in the low-risk group than those in
the high-risk group, whereas M0 macrophages (p = 0.002),
M2 macrophages (p = 0.019), activated mast cells (p < 0.001),
neutrophils (p < 0.001), and activated dendritic cells (p = 0.012)
were less abundant (Figure 3I). In the validation cohort, similar
results about the immune status were obtained (Supplementary
Figure S2D).

A Pearson analysis was used to analyze the relationship between
the risk score and infiltration levels of the 22 immune cell types. In
the training cohort, the risk scores had a significantly positive
correlation with activated dendritic cells (Figure 4A), eosinophils
(Figure 4B), activated mast (Figure 4C), neutrophils (Figure 4D),
resting NK (Figure 4E), and naive CD4+ T cells (Figure 4F).
However, the risk score was negatively correlated with
M1 macrophages (Figure 4G), resting mast (Figure 4H), follicular
helper T (Figure 4I), and regulatory T cells (Figure 4J).

In the validation cohort, the risk score was positively correlated
with eosinophils (Supplementary Figure S2E), activated mast cells
(Supplementary Figure S2F), neutrophils (Supplementary Figure
S2G), and resting NK cells (Supplementary Figure S2H), whereas
it was negatively correlated with naïve B (Supplementary Figure
S2I), resting mast (Supplementary Figure S2J), CD8+ T
(Supplementary Figure S2K), and regulatory T cells
(Supplementary Figure S2L).

3.6 Association of immune checkpoint
molecules with the prognosis prediction
model

To explore the relationship between the immune checkpoint
molecules and the prognostic model, we evaluated the differential

expression of checkpoint molecules in the two risk groups.
Compared with the normal tissues, PD-L1 and CTLA-4
expression levels were upregulated in HNSCC tissues (p <
0.001; Figures 4K, M), whereas PD1 expression levels were
downregulated (p < 0.001); (Figure 4L). In both cohorts, the
expression level of CTLA-4 in the low-risk group was
significantly higher than that in the high-risk group (Figures
4O, Q). In the training cohort, the expression levels of PD1 in the
low-risk group were significantly higher than those in the high-
risk group (Figure 4N), whereas PD-L1 was more highly
expressed in the low-risk group than the high-risk group in
the validation cohort (Figure 4P).

These results indicated that the expression levels of immune
checkpoint molecules were higher in the low-risk group than those
in the high-risk group. Therefore, the prognostic model may provide
effective predictive biomarkers, which will enable the optimization
of immune checkpoint therapies.

3.7 Mutation analysis and visualization

In the different risk groups of both cohorts, we found that there
was a difference in TMB. Namely, in both cohorts, the TMB of the
high-risk group was higher than that of the low-risk group
(Figures 4R, S).

We utilized the “maftools” R package to analyze and visualize
the somatic mutation profiles of 478 HNSCC patients. The
detailed mutation information of each sample was illustrated
via a waterfall plot, and different mutation types were
distinguished by various color annotations. We found that
missense mutations, single-nucleotide polymorphism (SNP),
and C > T mutations comprised the vast majority of the
classification categories. Additionally, the median value of
mutations in the samples was 78, and the maximum
mutations was 2,393 (Figure 5A). We then presented the
number of variant classifications in different samples using
box plots. The top 10 mutated genes were TP53 (66%), TTN
(35%), FAT1 (21%), CDKN2A (20%), MUC16 (17%), CSMD3
(16%), NOTCH1 (16%), PIK3CA (16%), SYNE1 (15%), and
LRP1B (14%) (Figure 5B).

We also investigated the somatic mutation status of different risk
groups in the two cohorts. The results showed that the top
10 mutated genes in the four groups differed. In the high-risk
group of the training cohort, the top 10 mutated genes were
TP53 (72%), TTN (36%), FAT1 (25%), CDKN2A (25%), CSMD3
(18%), PIK3CA (16%), MUC16 (15%), KMT2D (15%), NOTCH1
(15%), and PCLO (15%) (Figure 5C). In the low-risk group, they
were TP53 (63%), TTN (34%), FAT1 (21%), CDKN2A (19%),
PIK3CA (18%), CSMD3 (17%), MUC16 (16%), SYNE1 (14%),
DNAH5 (13%), and NOTCH1 (12%) (Figure 5D). In the high-
risk group of the validation cohort, 114 patients possessed somatic
mutations, and the top 10 mutated genes were TP53 (68%), TTN
(36%), FAT1 (24%), CDKN2A (23%), NOTCH1 (22%), MUC16
(19%), SYNE1 (18%), KMT2D (17%), LRP1B (17%), and CSMD3
(16%) (Figure 5E). In the low-risk group, they were TP53 (62%),
TTN (32%), MUC16 (17%), FAT1 (16%), PIK3CA (16%), CSMD3
(16%), LRP1B (16%), SYNE1 (16%), CDKN2A (15%), and
NOTCH1 (14%) (Figure 5F).
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3.8 Acquisition of core genes and
establishment of the competitive
endogenous RNA (ceRNA) network

To elucidate the biological relationships among the 395 DEGs,
we used the Search Tool for the Retrieval of Interacting Genes
(STRING) database (https://www.string-db.org/), based on genes

with co-expression coefficients higher than 0.9 (Figure 6A). We
identified 130 genes with strong mutual correlations, and also
identified the top 30 genes according to the number of degrees
between the two pairs (Figure 6B).

We identified two common genes, FCGR2A and FCGR3B,
which were located at the intersection of the 130 STRING-
identified and model genes (Figure 6C). Using the Wilcoxon test,

FIGURE 5
Visualization of mutation profiles. (A) Classification of mutation types, including variant classifications, variant types and SNV classes. Waterfall plots
displayed the top 30 mutated genes in (B) all the TCGA cohorts, (C) the high-risk group, and (D) low-risk groups of the training cohort, (E) and the high-
risk group, and (F) low-risk groups of the validation cohort.
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FIGURE 6
Protein-protein interaction network and the landscape of core genes. (A) Interaction network of 395 DEGs. (B) The top 30 core elements calculated
by the number of degrees. (C) Common genes at the intersection of 130 genes and model genes. The differential expression of (D) FCGR2A, and (E)
FCGR3B in tumor and normal samples. Distribution of FCGR2A and FCGR3B in (F, G) tumor grades, (H) T and (I) N classifications. Comparison of
infiltration levels of 22 immune cells in the high- and low-expression groups based on themedian expression levels of (J) FCGR2A, and (K) FCGR3B.
Analysis of immune cell infiltration levels and somatic copy number alterations in (L) FCGR2A, and (M) FCGR3B.
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we found that the expression levels of FCGR2A and FCGR3B were
significantly higher in HNSCC samples than those in normal
samples (Figures 6D, E). Furthermore, using the paired-sample
test analysis, we found that the expression of FCGR2A
significantly differed between normal and tumor tissue
(Supplementary Figure S3A). However, no significant survival
differences were observed between the high- and low-expression
groups based on the median expression levels of FCGR2A
(Supplementary Figure S3B) and FCGR3B (Supplementary
Figure S3C).

We then examined the expression of the two genes under
different clinical conditions. The results showed that FCGR2A
was significantly differentially expressed between tumor grade I
and II (Figure 6F). Moreover, the expression level of FCGR3B was
significantly different between tumor grades (Figure 6G), T
(Figure 6H) and N stages (Figure 6I). In both cohorts, the results
indicated that the expression of FCGR3B in the high-risk group was
significantly higher than that in the low-risk group (Supplementary
Figures S3E, S3F). In the training cohort, the expression of FCGR2A
in the high-risk group was higher than that in the low-risk group
(Supplementary Figure S3D).

We then used two methods to identify the immune cells associated
with FCGR2A and FCGR3B. First, HNSCC samples were divided into
low- and high-expression groups based on the median expression of
FCGR2A. The Wilcoxon test was used to compare the different
infiltration levels of the 22 immune cells in the two groups. The
results indicated that the infiltration levels of the resting memory
CD4+ T cells, activated resting memory CD4+ T, resting NK cells,
andM1 andM2macrophages in the high-expression groupwere higher
than those in the low-expression group, whereas plasma, activated
dendritic, resting dendritic, follicular helper T cells, and
M0 macrophages showed the opposite trend (Figure 6J).
Subsequently, using Spearman’s rank correlation analysis, we found
that the infiltration levels of plasma, naive CD4+ T, activated memory
CD4+ T, follicular helper T cells, resting dendritic, activated dendritic,
activated mast cells, M0 and M1 macrophages, eosinophils, and
neutrophils were closely correlated with the expression of FCGR2A.
Considering the intersection of the immune cells from the two sets of
results, memory B, plasma, resting memory and activated memory
CD4+ T, follicular helper T, resting dendritic, activated dendritic,
activated mast, resting NK, activated NK cells, M0, M1,
M2 macrophages, and neutrophils were correlated with the
expression of FCGR2A (Supplementary Figure S3G). The immune
cells that closely associated with FCGR3B were memory B, resting
memory CD4+ T, follicular helper T, resting NK, activated NK, resting
dendritic, activated mast cells, and neutrophils (Figure 6K;
Supplementary Figure S3H).

To analyze the effects of somatic cell copy number alternations
(CNAs) of these two genes on infiltration of immune cells, such as B,
CD4+ T, CD8+ T, dendritic cells, neutrophils, and macrophages, we
applied the Tumor Immune Estimation Resource (TIMER, https://
cistrome.shinyapps.io/timer/). The results showed that the six immune
cells were significantly affected by the arm-level deletion and gain of the
two genes in HNSCC (Figures 6L, M). It has been widely acknowledged
that miRNAs are short noncoding RNAs that can induce mRNA
silencing and instability by binding to specific target sites. We
predicted that the upstream miRNAs might bind to FCGR2A. These
upstream miRNAs, including hsa-miR-124-3p, hsa-miR-145-5p, hsa-

miR-299-3p, hsa-miR-513a-5p, hsa-miR-506-3p, and hsa-miR-671-5p,
were found through the ENCORI (https://starbase.sysu.edu.cn/)
database, which predicted target genes using PITA, RNA22,
miRmap, DIANA-microT, miRanda, PicTar, and TargetScan
programs. We performed the following analysis only for the
predicted miRNAs that appeared in more than two programs. Based
on the ceRNA hypothesis, hsa-miR-506-3p was finally chosen (Figures
7A–C). Next, we predicted the upstream lncRNAs. The results showed
that there were 33 possible lncRNAs upstream of hsa-miR-506-3p.
LncRNAs can competitively bind to sharedmiRNAs to increasemRNA
expression. Therefore, there should be a negative correlation between
lncRNAs and miRNAs or a positive correlation between lncRNAs and
mRNAs. Based on expression, survival and correlation analysis, we
found that AC110048.2 may potentially be the upstream lncRNA of the
miR-506-3p/FCGR2A axis in HNSCC (Figures 7D–F).

Finally, we established a transcription factor regulatory network
for the model genes, using the Cistrome website (http://cistrome.
org/). From this database, 314 transcription factors were identified.
There were 59 differentially expressed transcription factors between
normal and tumor samples under the criteria FDR <0.05 and |
log2FC | ≥ 1 (Supplementary Table S7). According to the criteria of |
correlation coefficient| > 0.3 and p-value <0.001 using Pearson’s
correlation analyses, we identified 10 transcription factors associated
with the model genes, and constructed the transcription factor
regulatory network (Figure 7G; Supplementary Table S8).

4 Discussion

Cancer immunotherapy, which differently regulates the immune
system, has been widely used in the field of oncology (Baxevanis et al.,
2009; Yang, 2015). The TME is closely connected with immunotherapy
and plays an important role in tumor genesis and development (Quail
and Joyce, 2013). Therefore, it is necessary to explore potential
therapeutic targets for early diagnosis and therapy. Thus, immune-
based prognostic characteristics have become the focus of cancer risk
prediction (Belli et al., 2018; Roma-Rodrigues et al., 2019; Shi et al., 2021).

In this study, based on the transcriptome data of HNSCC, we
calculated the scores of immune and stromal cells in the TME, and
found that they were significantly different in each phase of tumor
development, suggesting that TME played a significant role in tumor
growth. Based on the median scores, we obtained 395 DEGs related
to the TME. The GO and KEGG enrichment analysis showed that
these genes were significantly enriched in immune- and
metabolism-related pathways, which preliminarily suggested that
immune-related genes and pathways had significant association
with the occurrence and development of HNSCC.

Based on these DEGs, a prognostic model consisting of FCGR3B,
IGHV3-64, AC023449.2, IGKV1D-8, FCGR2A, WDFY4, and
HBQ1 was constructed. Moreover, based on the model genes, a
clinical prediction nomogram was constructed and verified to have
good predictability. Based on the literature, FCGR3B is a gene that
encodes FcγRIIIb and plays an important role in the immune system.
Therefore, the biological function of FCGR3B in head and neck
squamous cell carcinoma (HNSCC) may be related to the immune
system. Another study found that copy number variations of FCGR3B
were associated with susceptibility to autoimmune diseases, suggesting
that FCGR3B may be involved in regulating immune responses
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(Leemans et al., 2011; Molokhia et al., 2011; Alberici et al., 2020). The
IGH family is involved in the development of B-cell malignancies.
Somatic hypermutation of IGHV genes is characteristic of many B-cell
lymphomas (Sahota et al., 1997; Ghia et al., 2007; Varettoni et al., 2013).
One member of the IGH family, IGHV3-64, was found to be involved
in the regulation of immune cells, particularly the positive regulation of
B cell activation. Currently, some studies have explored the biological
functions of IGHV3-64 in other cancers. For example, in chronic
lymphocytic leukemia (CLL), the expression level of IGHV3-64 is
closely related to clinical prognosis (Crombie and Davids, 2017). In
addition, there are studies suggesting that IGHV3-64 may be associated
with the development and prognosis of gastrointestinal (Guan et al.,
2020). However, the results of these studies are inconsistent, and more
research is needed to determine the biological functions of IGHV3-64 in
different cancers. Previous studies have shown thatWDFY4 is involved

in the function of various immune cells, and it can modulate B cells
through noncanonical autophagy, and participates in the regulation of
systemic lupus erythematosus (Zhao et al., 2012; Yuan et al., 2018).
Furthermore, the deficiency of WDFY4 results in a decrease in CD8+

T cells (Li et al., 2021). Hemoglobin subunit theta 1 (HBQ1) is often
used as an indicator related to tumor metabolism. When patients with
breast cancer were treated with the combination of bevacizumab and
doxorubicin, HBQ1 was often differentially expressed (Borgan et al.,
2013; Bae et al., 2022) and IGKV1D-8 was primarily involved in
immune response (Gaudet et al., 2011). However, there have been a
few reports on AC023449.2 and IGKV1D-8 (Alberici et al., 2018;
Treffers et al., 2018; Dai et al., 2021). FCGR2A is closely associated
with immunity and is considered a cell-surface receptor on phagocytic
cells. Although FCGR2A has rarely been reported inHNSCC, our study
showed that immune cells, such as memory B, plasma, resting memory

FIGURE 7
Establishment of the competitive endogenous RNA network constructed using the starBase database. Correlation of expression of (A) hsa-miR-
506-3p with FCGR2A, and (D) AC110048.2 with FCGR2A. The expression levels of (B) hsa-miR-506-3p, and (E) AC110048.2 in HNSCC and normal
samples. KM curves of the prognostic value of (C) hsa-miR-506 in the KM plot database, and (F) AC110048.2 in the StarBase database. (G) The
transcription factor regulatory networks associated with the model genes. Red ellipse indicates upregulated model genes; blue ellipse indicates
downregulated model genes; green triangle indicates transcription factors.
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CD4+ T, activated memory CD4+ T, follicular helper T, resting and
activated dendritic, activated mast, resting and activated NK cells, M0,
M1, and M2 macrophages, and neutrophils, were closely associated
with FCGR2A expression in HNSCC. As a product of immune cells,
FCGR3B plays an important role in the connection and clearance of
neutrophils and other immune complexes (Coxon et al., 2001; Fanciulli
et al., 2007). We found that immune cells including memory B, resting
memory CD4+ T, follicular helper T, resting and activated NK, resting
dendritic, activated mast cells, and neutrophils, were closely associated
with FCGR3B.

Following GO and KEGG analyses, we found that the DEGs
were strongly associated with immunity in the two risk groups. The
GSVA results indicated that metabolism-related pathways, such as
fatty acid, butanoate, glycine, serine, and threonine metabolism,
were significantly different between the two risk groups. Changes in
cell metabolism affected tumor progression. Fatty acid metabolism
plays a crucial role in tumorigenesis and Epithelial–mesenchymal
transition (EMT) regulation.

Furthermore, the infiltration of CD8+ T cells was higher in the
low-risk group than that in the high-risk group. We also found that
in both cohorts, the low-risk group had a higher expression of PD1,
PD-L1, and CTLA-4. We therefore speculated that the low-risk
group may benefit the most from antibody therapies targeting the
PD1, PD-L1, and CTLA-4 immune checkpoints. However, in both
cohorts, the TMB was higher in the high-risk group than that in the
low-risk group.

5 Conclusion

In conclusion, our study highlights the importance of the tumor
microenvironment (TME) in the development and prognosis of
head and neck squamous cell carcinoma (HNSCC). By analyzing
gene expression data from the TCGA database, we identified seven
new markers that were found to be associated with HNSCC
prognosis. We also constructed a risk model based on the TME
that accurately predicted patient outcomes. Our study further
revealed significant differences in the infiltration levels of
immune cells between low- and high-risk groups. These findings
provide a better understanding of the mechanisms of tumor
progression and immune infiltration in HNSCC and offer
potential biomarkers for prognosis and treatment. Our study may
also facilitate the development of new therapeutic strategies for
HNSCC patients.
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