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The ability of gut microbial metabolites to influence the host is increasingly
recognized. The microbiota extensively metabolizes the three aromatic amino
acids, tryptophan, tyrosine, and phenylalanine. Previously we have found that a
metabolite of tyrosine, 4-OH-phenylpropionic acid, can enhance type I interferon
(IFN) signaling and protect from influenza pathogenesis in a murine model. Herein
we screened 17 related aromatic amino acid metabolites for effects on IFN
signaling in human lung epithelial cells and monocytes alone and in the
presence of IFN-β, influenza, and LPS. While the tryptophan family metabolites
reduced IFN signaling in both cell types, the tyrosine and phenylalanine
metabolites had varied effects, which were cell-type dependent. Pooled
treatment of all these metabolites reduced IFN signaling in both cell types and
suggested a tryptophan metabolite effect dominance. Strikingly, when all the
metabolites were pooled together, we found reduced influenza recovery in both
cell types. RNA sequencing further validated reduced viral loads and decreased IFN
signaling. Single gene silencing of significantly upregulated genes identified by
RNA sequencing (EGR2, ATP6VD02, SPOCK1, and IL31RA) did not completely
abrogate the metabolite induced decrease in IFN signaling. However, these
upregulated targets suggested a mechanistic link to TGF-beta signaling.
Treatment with a TGF-beta inhibitor and combined targeted gene silencing led
to a significant reversal of metabolite induced IFN signaling suppression. Finally,
we demonstrated that intranasal administration of these metabolites prior to
influenza infection led to reduced animal morbidity, viral titers, and
inflammation. Our work implies that microbial metabolites can alter IFN
signaling mechanistically through TGF-beta and promote beneficial outcomes
during influenza infection.
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1 Introduction

The gut microbiota affects the host through a myriad of interactions in which
microbial metabolites play a crucial role, especially in immune system regulation. The
immunomodulatory effects of these metabolites on the gastrointestinal system have been
well documented (Agus et al., 2021; Gasaly et al., 2021; Krautkramer et al., 2021). These
metabolites also enter the systemic circulation and impact distant organs such as the
brain, liver, lungs, and heart (Wikoff et al., 2009; Nicholson et al., 2012; Schroeder and
Backhed, 2016; Liu et al., 2020). Recent findings have identified the microbiota and
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microbial metabolites as critical modulators of the host immune
response, including that to distant viral infections such as
influenza (Steed et al., 2017; Trompette et al., 2018; Kumar
et al., 2021; Laursen et al., 2021). These metabolites can reach
systemic concentrations at or even in excess (0.01–104 µM) of
typical drug doses (Schulz et al., 2012; Dodd et al., 2017; Liu et al.,
2020). However, the mechanisms by which these metabolites
shape the host immune response remain unclear. The aromatic
amino acids phenylalanine, tyrosine, and tryptophan are among
the crucial building blocks for host physiology and their
catabolism by the microbiota yields numerous metabolites that
affect the host immune system and response to pathogens
(Danaceau et al., 2003; Cervenka et al., 2017; Roager and
Licht, 2018). Specifically, aromatic amino acid metabolites
have been demonstrated to be both antiviral and anti-
inflammatory (Steed et al., 2017).

In this study, we sought to determine the effect of the
aromatic amino acids and their metabolized derivatives on
IFN signaling and influenza pathogenesis. Specifically, we
investigated phenylalanine and its family members, herein
referred to collectively as F with its members as follows:
phenylalanine, phenylpyruvic acid, phenylacetic acid,
phenyllactic acid, phenylacrylic acid, and phenylpropionic
acid; tyrosine and its family members, herein referred to
collectively as Y with its members as follows: tyrosine, 4-OH-
phenylpuruvic acid, 4-OH-phenylacetic acid, 4-OH-phenyllactic
acid, 4-OH-phenylacrylic acid, and 4-OH-phenylpropionic acid;
and tryptophan and its family members, herein referred to
collectively as W with its members as follows: tryptophan,
indolepyruvic acid, indoleacetic acid, indolelactic acid,
indoleacrylic acid, and indolepropionic acid. These metabolites
are increasingly recognized as key mediators in host-microbial
interactions, and their microbial producers as well as their known
biological activities and host concentrations when characterized
have been reviewed extensively (Dodd et al., 2017; Liu
et al., 2020).

We hypothesized these single aromatic amino acid
metabolites would have important cell type specific effects
on innate immune signaling and host-pathogen outcomes.
Our previous work identified that one of the tyrosine
metabolites, 4-OH-phenylpropionic acid, protects from
influenza through a type 1 IFN dependent mechanism (Steed
et al., 2017). Given that these aromatic acid acids are
metabolized by similar or same niche microbiota and
concurrently produced, we also hypothesized that their
effects may be synergistic and the impact of a composition
of these metabolites is crucial to understand. Herein, we
screened for metabolite-induced alterations in IFN signaling
in human alveolar epithelial cells and monocytes and found
that IFN signaling was most often suppressed by these
metabolites in both cell types. Pooled treatment with amino
acid metabolite families (F, Y, or W) or a combination of all
these metabolites together (FYW) reduced IFN signaling in
both cell types, albeit more so in epithelial cells than
monocytes, and showed a dominant effect of tryptophan
metabolites. Finally, we demonstrate that these metabolites
alter IFN signaling through a TGF-beta dependent mechanism
and improve host outcomes upon influenza challenge.

2 Materials and Methods

2.1 Virus

All experiments were performed with influenza A strain PR8 (A/
Puerto Rico/8/1934 (H1N1)).

2.2 Mice and in-vivo infections

All mice were originally obtained from Jackson Laboratories
(Bar Harbor, Maine, United States), subsequently maintained at
Washington University School ofMedicine under specific pathogen-
free conditions and bred in-house. Adult (8–16 week-old male and
female) mice were used for all infections. Mice were anesthetized
with isoflurane and intranasally administered 500 plaque forming
units (pfu) of influenza PR8 strain.

2.3 Aromatic amino acid and metabolites

The aromatic amino acids and their derivative metabolites were
sourced from Sigma Chemicals (St. Louis, United States). The
following list enumerates all the metabolites utilized in this study:
L-phenylalanine (catalog number: P8740-100G), phenylpyruvic acid
(286958-5G), phenylacetic acid (P16621-5G), phenyllactic acid
(P7251-10G), phenylacrylic acid (Trans-cinnamic acid; C80857-
5G), phenylpropionic acid (W288918-100G-K), L-tyrosine
(93829-25G), 4-OH-phenylpyruvic acid (114286-5G), 4-OH-
phenylacetic acid (H50004-5G), 4-OH-phenyllactic acid (H3253-
100MG), 4-OH-phenylacrylic acid (8002370010), 4-OH-
phenylpropionic acid (H52406-5G), L-tryptophan (T0254-5G),
indolepyruvic acid (I7017-1G), indoleacetic acid (I2886-5G),
indolelactic acid (I5508-250 MG-A), indoleacrylic acid (I2273-
1G), and indolepropionic acid (220027-1G). The solvent used for
all metabolite preparations was dimethyl sulfoxide (DMSO). Given
the potential toxicity of handling DMSO, all necessary precautions
to protect our team included use of personal protective gear with
nitrile gloves, safety glasses, and laboratory coats. As special
precautions must be taken to avoid inhalation of its vapor and
potential for combustion, DMSO was stored in a dry and well-
ventilated location and away from any heat source.

2.4 Metabolite preparations

The stock solutions of the individual metabolites were prepared in a
laminar flow hood at 1 M concentration in DMSO. These stock
solutions were aliquoted and stored at −20°C for the duration of the
study. Similar to the individual stock solutions, the combination stock
solutions were also prepared at 1 M for each metabolite included, and
aliquots of these pooledmetabolites combinations were stored at −20°C.
To avoid any degradation from freeze-thaw cycles, each small aliquot
was discarded after thawing it to prepare the experimental media.

Fresh intermediate solutions were prepared from the stock
solutions for each experiment by diluting the metabolites or
metabolite combinations by a 10-fold factor into DMSO to yield
a concentration of 100 mM for each metabolite tested. The working
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experimental solution was made by diluting the intermediate
solutions by 1000-fold into the test media, generating a final
100 µM metabolite concentration for the experimental test. The
control for these experiments had an equal amount of DMSO in the
test media. In order to minimize the DMSO in the metabolite
combinations, the intermediate solution was prepared in test
media. The test media for each cell line is described in Section 2.8.

2.5 Lung preparation and staining

Lungs were inflated with formalin at the time of animal sacrifice
and harvested into formalin-containing conical tubes. The tissue was
serially washed with Dulbecco’s Phosphate Buffered Saline (DPBS),
30% ethanol, and 50% ethanol 48 h after harvesting and stored in 70%
ethanol until the tissue was processed for histology. Antigen retrieval
was performed with Trilogy solution (920P-09; CELL MARQUE,
United States) by boiling for 20 min. RNA in-situ hybridization for
influenza NS1 expression (RNAscope probe-521181; ACDBio,
United States) was performed using ACDBio RNAscope 2.5 HD-
Assay RED (322360; ACDBio, United States) per the manufacturer’s
instructions.

2.6 Ex-vivo viral infection

Mice were sacrificed and lungs perfused with 350,000 pfu of
influenza strain PR8 or DPBS as control. The lungs were then
incubated in DMEM (Sigma-Aldrich, United States) with 10% heat
inactivated FBS for 2 h, minced, and treated with the pooled aromatic
amino acid treatment (herein referred to as FYW) at an effective
concentration of 100 µM for each metabolite or DMSO as volume
matched control in 6 well-plates and incubated for 24 h. The
supernatant from the cells was then plated on IFN reporter
A549 cells (adenocarcinoma human alveolar basal epithelial cells-
a549-nfis; InvivoGen, United States) in 96 well-plates (cells seeded at
0.5 × 105 cells per well) for 48 h and read for reporter activity using
Quanti-Luc media (rep-qlc1, rep-qlc2; InvivoGen, United States). The
minced tissue was harvested and stored in −80°C and later processed for
viral load by plaque assay.

2.7 Primary cell harvest and treatment

We maintained sterility during the animal sacrifice procedure and
plating of the cells. All solutions were prepared and procedures
performed in a certified laminar flow hood. Surgical instruments
were autoclave sterilized before the procedure; otherwise, we used
sterile disposable cell culture products. We maintained standard
sterile procedures while working in the hood and wore personal
protective gear including 2 sets of nitrile gloves, safety glasses, and
disposable laboratory gowns. Primary cells were harvested as follows:
murine peritoneal macrophages were collected via lavage of the
peritoneal cavity with 10 mL DPBS (Sigma-Aldrich, United States)
and alveolar macrophages were isolated from the lungs via collection
with DPBS 0.7 mL serial flushes. The isolated cells were pelleted at
3400 g for 5 min and then re-suspended in DMEM media with 10%
heat inactivated fetal bovine serum (FBS, Sigma-Aldrich, United States).

For bone marrow cells, both tibia and femur were dissected from
euthanized mice. The end of the bones were trimmed, and bone
marrow flushed using syringe containing Hanks’ Balanced Salt
Solution and 20 mM Hepes. Cells were centrifuged at room
temperature at 700 g for 5 min. Red blood cell (RBC) lysis was
performed using 0.2% NaCl (6 mL) and mixed gently for 30 s. The
reaction was stopped by adding equal volume 1.6%NaCl. The cells were
filtered through a 70 μm cell strainer and centrifuged at 700 g for 5 min
at room temperature. Supernatant was discarded, and the pellet was re-
suspended in 1 mL Dulbecco’s Phosphate Buffered Saline prior to
counting. Cells were seeded at 0.5 × 105 cells per 96-well and
incubated with pooled aromatic amino acids or equal volume of
DMSO as control for 48 h and infected with influenza at a
multiplicity of infection of 1 (MOI 1) for 24 h.

2.8 qRT-PCR

Total mRNA was isolated from A549 and THP1 cells using
RNeasy® plus Mini Kit (74104; Qiagen, Germany) as per
manufacturer’s instructions. The cDNA was transcribed from 1 ug
of mRNA using iScript cDNA synthesis kit (1708890; BIO-RAD,
United States). The qPCR reactions were performed in triplicates
using qPCR specific primers (Supplementary Table S1) using TB
green qPCR premix (639676; TaKaRa, Japan) on a CFX96 Touch
Real-Time PCR Detection System (BIO-RAD, United States). The fold
change expression (-ΔΔCt) was calculated after normalization with β2-
microglobulin (β2M) expression.

2.9 Cell lines and test media

A549-Dual (adenocarcinoma human alveolar basal epithelial cells-
a549-nfis; InvivoGen, United States) and THP1-Dual (human lung
monocytes; InvivoGen, United States) cells stably express an interferon
regulatory factor-inducible Lucia luciferase reporter construct. A549-
Dual growth media was DMEM supplemented with 10% heat-
inactivated FBS, 1% v/v of penicillin/streptomycin, 100 μg/mL
Normocin/Zeocin (InvivoGen, United States), and 100 μg/mL
Blasticidin (InvivoGen, United States). THP1-Dual cells were
cultured in RPMI 1640 (Sigma-Aldrich, United States) medium
supplemented with 10% heat-inactivated FBS, 2 mM L-glutamine,
25 mM HEPES (Sigma-Aldrich, United States), 1% v/v of penicillin/
streptomycin, 100 μg/mL Normocin/Zeocin, and 100 μg/mL
Blasticidin. The test media for A549 and THP1 cells excluded
Zeocin and Blasticidin from their respective growth media. Of note,
DMEM and RPMI at baseline contain known quantities of
phenylalanine, tryptophan, and tyrosine; these metabolites are
quantified by their respective manufacturers as 400 µM
phenylalanine, 78 µM tryptophan, and 462 µM tyrosine for DMEM
and 91 µM phenylalanine, 25 µM tryptophan, and 111 µM tyrosine for
RPMI. Data is not available for the additional amino acid derivatives
tested herein. Furthermore, the addition of FBS also contains variable
concentrations of these amino acids and their derivatives, which likely
vary by batch. Therefore each experiment is appropriately controlled
with test media (DMEM or RPMI) with same batch FBS without the
tested amino acidmetabolite(s) to equalize their baseline concentrations
in the media and FBS.
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2.10 Reporter cell luciferase measurement

Luciferase reporter A549-Dual or THP1-Dual cells were seeded at
0.5 × 106 or 0.5 × 105 cells per well in 6-well or 96-well plates,
respectively, and treated per experimental conditions described (for
example, single metabolite or pooled metabolites diluted into media on
test cells). Twenty-four hours later, 20 μL of the above cell culture
supernatant was transferred to another 96-well plate and mixed with
50 μL of QUANTI-Luc and immediately read on a luminometer plate
reader (Infinite M200 Pro, TECAN Life Sciences, Switzerland) at a 0.1 s
read time to quantify luciferase activity according to manufacturer’s
instructions.

2.11 Plaque assay

To assess lung viral titers, lung tissue was collected in 1 mL of
DPBS and subject to homogenization in Qiagen Tissue LyserLT
(Qiagen, United States) using Lysing Matric C tubes with beads
(116912050-CF; MPBiomedicals, United States). Plaque assays was
performed on MCDK cells with MEM overlay containing 1% oxoid
agar, 0.125% BSA (SRE0036; Sigma, United States) and 2 μg N
acetylated trypsin (T6763; Sigma, United States). Plaques were
visualized by crystal violet. The limit of detection of the influenza
plaque assays was 50 pfu/lung tissue or 50 pfu/mL cell supernatant.

2.12 RNA sequencing

Agilent Bioanalyzer or 4200 Tapestation was utilized for
analyzing total RNA integrity. Total RNA (5–10 μg) with a
Bioanalyzer RIN score of greater than 8.0 was used for library
preparation. Removal of ribosomal RNA was done by poly-A
selection utilizing Oligo-dT beads (mRNA Direct kit, Life
Technologies). Fragmentation of mRNA was done in reverse
transcriptase buffer by heating to 94°C for 8 min cDNA
preparation was done using random hexamers and SuperScript
III RT enzyme (Life Technologies, per manufacturer’s
instructions). DS-cDNA was prepared by a second-strand
reaction. The cDNA thus prepared was blunt ended and had 3′
ends with A base added. The Illumina adapters were then ligated to
the ends. Unique dual index tags were introduced into the ligated
fragments by specific primers (12–15 cycle amplification). The
amplified fragments were then sequenced on an Illumina
NovaSeq-6000 using paired end reads extending 150 bases. The
adapter sequences are as follows:

The primers sequences (X’s indicate index tag) are as follows:

Library kit manufacturer’s protocol were followed for sample
preparation. Illumina’s bcl2fastq software was used for basecalls, and
demultiplexing was done using a custom python demultiplexing
program with no more than one mismatch in the indexing read.
STAR version 2.5.1a was used to align RNA-seq reads to the
Ensembl release 76 primary assembly (Dobin et al., 2013). Gene
counts were derived from the number of uniquely aligned
unambiguous reads by Subread:featureCount version 1.4.6-p5 (Liao
et al., 2014). Known Ensembl transcripts isoform expression was
estimated with Salmon version 0.8.2 (Patro et al., 2017). The
sequencing performance was analyzed for features detected, total
number of aligned reads, and total number of uniquely aligned
reads. The ribosomal fraction, known junction saturation, and read
distribution over known gene models were quantified with RSeQC
version 2.6.2 (Wang et al., 2012).

Gene counts were imported into EdgeR (R/Bioconductor package)
(Robinson et al., 2010). To adjust for samples with differences in library
size, TMM normalization size factor was calculated. For further
analysis, samples greater than one-count-per-million were excluded
as well and ribosomal genes and genes not expressed in the smallest
group minus one. The TMM size factors and the matrix of counts were
then imported into the R/Bioconductor package Limma (Ritchie et al.,
2015). Observed mean-variance of every gene and sample was used to
calculate the Weighted likelihoods with the voomWithQualityWeights
(Liu et al., 2015). Resident standard deviation plots of every gene to their
average log-counts (with a robustly fitted trend line of the residuals) was
used to assess the performance of all genes. Differential gene expression
analysis was performed for differences between conditions, and the
results were filtered for only those genes with a Benjamini–Hochberg
false-discovery rate adjusted p-values less than or equal to 0.05.

For each contrast extracted with Limma, MSigDb global
perturbations in known Gene Ontology (GO) terms and KEGG
pathways were detected using the R/Bioconductor package GAGE
(Luo et al., 2009) to test for changes in expression of the log 2 fold-
changes reported by Limma in each term versus the background log
2 fold-changes of all genes found outside the respective term. The R/
Bioconductor package heatmap3 (Zhao et al., 2014) was used to
generate heatmaps across groups of samples for each GO orMSigDb
term with a Benjamini–Hochberg false-discovery rate adjusted
p-value ≤ 0.05. Perturbed KEGG pathways where the observed
log 2 fold-changes of genes within the term were significantly
perturbed in a single-direction versus background or in any
direction compared to other genes within a given term with
p-values ≤ 0.05 were rendered as annotated KEGG graphs with
the R/Bioconductor package Pathview (Luo and Brouwer, 2013).

To find the most critical genes, the raw counts were variance
stabilized with the R/Bioconductor package DESeq2 (Love et al.,
2014) and was then analyzed via weighted gene correlation network
analysis with the R/Bioconductor package WGCNA (Langfelder and
Horvath, 2008). Briefly, all genes were correlated across each other by
Pearson correlations and clustered by expression similarity into unsigned
modules using a power threshold empirically determined from the data.
An eigengene was then created for each de novo cluster, and its
expression profile was then correlated across all coefficients of the
model matrix. As these clusters of genes were generated by
expression profile rather than their known functional similarity,
clustered modules were assigned with the names of random colors
wherein grey being the only module that has any pre-existing definition

5′ P-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAG

5′ ACACTCTTTCCTACACGACGCTCTTCCGATCT

5′AATGATACGGCGACCACCGAGATCTACACXXX
XXXXXXXACACTCTTTCCCTACACGACGCTCTTCCGATCT

5′CAAGCAGAAGACGGCATACGAGATXXXXXXXXXX
GTGACTGGAGTTCAGACGTGTGCTCTTCCGA
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of containing genes that do not cluster well with others. These de novo
clustered genes were further tested for functional enrichment of known
GO terms with hypergeometric tests available in the R/Bioconductor
package clusterProfiler13. Significant terms with Benjamini–Hochberg
adjusted p-values < 0.05 were then collapsed by similarity into cluster.
Profiler category network plots were used to depict the most significant
terms for each module of hub genes with the aim to interpolate the
function of each significant module. The data for all clustered genes for
every module were then combined with their respective statistical
significance results from Limma to ascertain whether those features
were also found to be significantly differentially expressed or not. The
data was then analyzed using Reactome for pathway analysis.

2.13 siRNA experiments and TGF-B1
inhibition

siRNA experiments utilized the following RNAs: Spock1-s224676;
EGR2-s4542; IL31RA-s43773; ATP6VD02-s48333, control-4390843
(Invitrogen, United States). Transfection was performed with
Lipofectamine RNAiMAX (13778-150; Invitrogen, United States).
For TGF-β1 inhibition, TGF-β inhibitor (SB431542; Selleck chem,
United States) was used according to the manufacturer’s
instructions (10 µM).

2.14 Statistics

GraphPad Prism (San Diego, CA, United States) version
10.1.0 software was used to perform all statistical analyses as described.

2.15 Study approval

All mice experiments were performed according to the approved
protocol (#20190768) by the Washington University in St. Louis
School of Medicine.

3 Results

3.1 Aromatic amino acid metabolites
influence IFN signaling in lung epithelial cells
and monocytes

Given that microbial metabolites can influence host systemic
immunity, we sought to understand if these metabolites had cell
specific effects. Our prior work has demonstrated that one aromatic
amino acid metabolite, 4-OH-phenylpropionic acid, enhanced IFN
signaling (Steed et al., 2017) and therefore we chose this signaling
pathway for further investigation with a range of sequential
metabolites of phenylalanine, tyrosine, and tryptophan (Figure 1).
We hypothesized that the impact of the aromatic amino acid
metabolites on IFN signaling would be cell type specific. Given
that the physiologic concentrations of these metabolites are largely
unknown or incomplete, we chose to increase the metabolite dose by
100 μM for eachmetabolite given that the pooledmetabolites each at
100 μM concentration increase exhibited no cell cytotoxicity
(Supplementary Figure S1) as well as prior studies demonstrating
immunomodulatory effects at these doses. Dodd et al. demonstrated
that C. sporogenes can generate aromatic amino acid concentrations
up to 600 μM in bacterial cell culture supernatants and in vivo

FIGURE 1
Aromatic amino acids and their metabolites as produced by biochemical breakdown by gut microbiota. Commensal bacteria generates metabolites
by metabolically breaking the parent aromatic amino acids, namely, phenylalanine (F), tyrosine (Y), and tryptophan (W). Biorender was used to make this
figure (https://www.biorender.com/).
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monoclonization with C. sporogenes led to serum concentrations of
these indoles of 80 μM (Elsden et al., 1976; Smith and Macfarlane,
1996; Danaceau et al., 2003; Russell et al., 2013; Dodd et al., 2017;
Steed et al., 2017; Liu et al., 2020).

We screened 17 aromatic amino acid metabolite derivatives for
their effect on IFN signaling in 2 human reporter cells lines,
A549 lung epithelial cells and THP1 monocytes, given our
interest in IFN modulation during influenza pathogenesis. We
tested the individual metabolites’ effect on IFN signaling alone
and in the combined presence of various stimuli, namely, IFN-β,
influenza, and LPS. For our experiments, it is important to note that
the cell culture media contains defined baseline known quantities of
phenylalanine, tryptophan, and tyrosine while that in FBS is likely
variable by batch. Thus our addition of metabolites increases the
final concentration of aromatic amino metabolites by 100 μM and is
not definitive of the final concentration. Therefore each experiment

was controlled with test media and same batch FBS to equalize their
baseline concentrations across control and experimental conditions.
While our final concentration may exceed physiologic
concentrations for some metabolites, we aimed to investigate if
these metabolites could be useful therapeutically in excess.

Consistent with our prior work in fibroblasts (Steed et al., 2017),
4-OH-phenylpropionic acid, enhanced IFN signaling in the setting
of influenza in both cell types (Figure 2). However, IFN signaling
most often decreased in A549 cells and had mixed effects in
THP1 cells (Figure 2; Supplementary Figures S2–S5). Specifically,
the tryptophan metabolites generally reduced IFN signaling in both
cell types but more potently in A549 cells. Our results demonstrate
that indeed microbial metabolites influence IFN signaling in a cell
type specific manner. Importantly, we demonstrated that addition of
these metabolites did not interfere with our luciferase reporter assay
readout (Supplementary Figure S6).

FIGURE 2
Aromatic amino acid metabolites modulate IFN signaling in human lung epithelial cells and monocytes. Heatmaps depicting fold change in IFN
reporter activity in A549 (A) and THP1 cells (B) treated with airomatic amino acid metabolites (numbered 2–18) individually and in family combinations (F,
Y, W) alone and with IFN-β (10 U/mL), influenza (MOI-1) or LPS (5 ng/mL) for 24 h. DMSO served as the control for the metabolites. (n = 5 experiments:
23 biological and 23 technical replicates for A549 individual metabolites alone and n = 3 experiments: 11 biological and 11 technical replicates for
THP1 individual metabolites alone; n = 3 experiments: 11 biological and 11 technical replicates for A549 and THP1 with IFN-β and individual metabolites;
n = 3 experiments: 11–15 biological and technical replicates for A549 with IFN-β and n = 3 experiments: 11–15 biological and technical replicates for
THP1 with influenza and individual metabolites; n = 3 experiments: 11 biological and 11 technical replicates for A549 and THP1 with LPS and individual
metabolites; n = 3 experiments: 6–24 biological and technical replicates for A549 alone with metabolite family combinations; n = 3 experiments:
12–20 biological and technical replicates for THP1 alone with metabolite family combinations; n = 3 experiments: 15 biological and technical replicates
for A549 with IFN-, 14 biological and technical replicates for A549 with influenza, 12 biological and technical replicates for A549 with LPS andmetabolite
family combinations; n = 3 experiments: 9 biological and technical replicates for THP1 with IFN-β, influenza or LPS along with all metabolite family
combinations). Mann–Whitney was used for statistical analysis. If a color is used, the comparison met statistical significance at p < 0.05; please see
Supplementary Figures S2–S5 for significance magnitude.
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Based on these findings, we investigated the concomitant effects of
these metabolites as they likely exist in combination in vivo. We made
combinations of these metabolites with their respective amino acid
families, namely, phenylalanine family (F), tyrosine family (Y), and
tryptophan family (W) as well as a combination of all the metabolites
(FYW). While each family of amino acids decreased IFN signaling in
the presence of additional stimuli with the exception of Y onmonocytes
infected with influenza, treatment of both cell types with FYW
demonstrated the most pronounced decrease in IFN signaling
(Figure 3 and S7). FYW treatment significantly reduced IFN
signaling by 2-fold in the absence of other stimuli, 3.4-fold with
IFN-β, 3.6-fold with influenza, and 2-fold with LPS in lung
epithelial cells (Figure 3A). The FYW treatment also led to similar
results in monocytes with IFN reductions of 2.4-fold in the absence of
other stimuli, 4.7-fold with IFN-β, 7.4-fold with influenza, and 8.5-fold
with LPS (Figure 3B). This effect was dose-dependent over a range of
concentrations and sustained over time (Supplementary Figure S8).
Importantly, no cytotoxicity was observed in any cells with FYW
treatment at the dose and time point chosen for further initial
investigation (added 100 μM, 24 h of treatment) (Supplementary
Figures S1, S8).

With respect to the individual family combinations, we found
that A549 cells had reduced IFN signaling upon treatment with each

metabolite family combination (Figure 4i; Supplementary Figures
S7i, iii, v). The tryptophan family metabolites exerted the most
potent impact on reducing IFN signaling, consistent with our
previous observation of its individual metabolites’ effects.
THP1 cells responded distinctly from A549 cells and had
differential effects on IFN signaling across various conditions
(Figure 4Bi; Supplementary Figures S7ii, iv, vi). The
phenylalanine family combination (F) lead to elevated IFN
signaling when the cells were treated without additional stimuli
or with influenza but demonstrated reduced IFN signaling in the
presence of IFN-β and LPS. The tyrosine family combination (Y) led
to enhanced IFN signaling in the absence of other stimuli but
decreased IFN signaling in the presence of LPS and IFN-β.
However, the tryptophan family combination (W) consistently
led to a reduction in IFN signaling in the presence and absence
of other stimuli in both cell types.

3.2 Tryptophan family metabolites drive a
reduction in IFN signaling

To determine the contribution of the aromatic amino acid
metabolite families, we treated the A549 and THP1 cells with

FIGURE 3
Pooled metabolites of phenylalanine, tyrosine, and tryptophan reduce IFN signaling. Fold change in IFN reporter activities in A549 (A) and THP1 (B)
cells with pooled aromatic amino acidmetabolites (FYW) alone (i), and with IFN-β (10 U/mL) (ii), influenza (MOI-1) (iii) and LPS (5 ng/mL) (iv) for 24 h. FYW
treatment includes all metabolites previously numbered 2–18. DMSO served as the control for the metabolites. (n = 4 experiments: 15–21 biological and
technical replicates for A549with FYW alone; 12–26 biological and technical replicates for A549with IFN-β and FYW; 12–33 biological and technical
replicates for A549 with influenza and FYW; l2 biological and technical replicates for A549 witlh LPS and FYW; n = 4 experiments: 15–18 biological and
technical replicates for THP1 with FYW alone; 6–27 biological and technical replicates for THP1 with IFN-β and FYW; 6–27 biological and technical
replicates for IFN-β with influenza and FYW; 6–20 biological and technical replicates for THP1 with LPS and FYW). Graphs depict average SEM. ****p <
0.0001. Mann–Whitney was used for statistical analysis.
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different combinations of FYW such that each combination lacked a
specific family of metabolites, i.e., YW, FW, and FY. The tryptophan
family metabolites significantly attenuate IFN signaling in
comparison to the other two families (Figures 4Aii, Bii).
Treatment of cells with FY (omitting the tryptophan family
metabolites, W) reversed the previously demonstrated decrement
in IFN signaling completely in monocytes and partially in lung
epithelial cells. This finding is consistent with the potent effect
demonstrated by the individual tryptophan metabolites. However,
the combined FYW treatment decreased IFN signaling more
significantly than the W family alone, indicating that the three-
metabolite families act synergistically to reduce IFN signaling.

3.3 FYW treatment primes cells to reduce
IFN signaling

FYW led to significantly reduced IFN signaling in both the lung
epithelial (A549) cells and monocytes (THP1) when challenged with
various stimuli. We next asked whether pretreatment of these cells with
FYW prior to additional stimulation (“prime”) would further reduce
IFN signaling. Therefore, we treated both cell types with FYW for 48 h
before exposure to influenza. We found a dramatic decrease in IFN

signaling with a 17-fold and 7-fold reduction in A549 and THP1 cells
(Figure 5), respectively. However, when the cells were first exposed to
influenza for 24 h and then FYW added for another 24 h (“rescue”), the
reduction was effectively lowered although not abolished with an
approximate 2-fold decrease in IFN signaling in both A549 and
THP1 cells (Figure 5). Murine primary cells also demonstrated
similar findings with 2.3-fold, 1.8-fold, and 1.3-fold reduction in IFN
signaling, respectively, in isolated alveolar macrophages, bone marrow
cells, and peritoneal macrophages (Supplementary Figure S9). These
results demonstrate that priming the cells with aromatic amino acid
metabolites leads to a potent decrease in IFN signaling in multiple
cell types.

3.4 FYW treatment leads to decreased viral
recovery in vitro and ex vivo

Given that IFN signaling ismechanistically linked to an antiviral cell
state, we next investigated the effect of FYW treatment on viral
pathogenesis. We primed A549 and THP1 cells with FWY for 48 h
and then exposed the cells to influenza (at an MOI of 1). Surprisingly,
FYW pretreatment decreased viral recovery after 24 h by 6.8-fold and
2.6-fold in A549 and THP1 cells, respectively (Figure 6A). Next, we

FIGURE 4
Tryptophan family metabolites drive the reduction in IFN signaling. Fold change in IFN reporter activity in A549 (A) and THP1 (B) cells treated with
pooled aromatic amino acid family metabolite combinations F, Y, andW (i) and FY, FW, and YW (ii). DMSO (volumematched) served as the control for the
metabolites. (n = 3 experiments: 6–24 biological and technical replicates for A549 alone with metabolite family combinations; n = 3 experiments:
12–20 biological and technical replicates for THP1 with metabolite family combinations; n = 2: 6 biological and technical replicates for A549 witlh
two family metabolite combinations; n = 2: 12 biological and technical replicates for THP1 with two family metabolite combinations). Graphs depict
average SEM. *p < or = 0.05, **p < 0.01, ****p < 0.0001, and ns denotes not statistically significant. Mann–Whitney was used for statistical analysis.
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FIGURE 5
Pretreatment with pooled aromatic amino acid metabolites reduces IFN signaling further than treatment after stimulation. Fold change in IFN
reporter activity in A549 (A) and THP1 (C) cells primed with pooled aromatic amino acid metabolites (FYW) for 48 h and then infected with influenza for
24 h. Fold change in IFN reporter activity in A549 (B) and THP1 (D) cells infected with influenza for 24 h and then treated with FYW for 24 h. DMSO
(volume-matched) served as the control for the metabolites, and media refers to the volume-matched negative control without the DMSO or
metabolites. (n = 2 experiments; 12 biological and technical replicates for A549 and THP1). Graphs depict average SEM ****p < 0.0001. Mann–Whitney
was used for statistical analysis.

FIGURE 6
Pooled aromatic amino add metabolites decrease the infectious viral recovery. (A) Influenza plaque-forming units recovered from A549 (i) and
THP1 (ii) cells pretreated with FYW for 48 h and then infected with influenza for 24 h. (n = 3 experiments; 6 biological and 12 technical replicates for
A549 and THP1) (B) Fold change in IFN reporter activity in A549 cells at 48 h after treatment with supernatant from ex-vivo influenza-infected mouse
lungs. (n = 2 experiments; 9 biological and 18 technical replicates for A549 and THP1). (C) Influenza plaque-forming units recovered from ex-vivo
infected mouse lungs after treatment with FYW for 24 h. DMSO (volume matched) served as the control for the metabolites. (n = 2 experiments;
4 biological and technical replicates). (D) RNA expression from real-time PCR for influenza matrix protein in primary bonemarrow cells (i) and peritoneal
macrophages (ii) treated with the pooled metabolite combination FYW for 24 h and infected with influenza for 24 h (n = 2 experiments: 5 biological and
6 technical replicates for bone marrow cells; 6 biological and technical replicates for peritoneal macrophages). Graphs depict average SEM. *p < or =
0.05, **p < 0.01, ****p < 0.0001. Mann–whitney was used for statistical analysis.
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elected to use primary cells to more closely mimic natural infection.We
lavaged influenza into murine lungs at time of animal sacrifice. After
2 h, weminced the lung tissue and treatedwith orwithout FYW. Similar
to our cell line results, we found that supernatants from the minced
tissue treated with FYW induced less IFN signaling than control
(Figure 6B). Again, FYW treatment yielded a marked reduction (6-
fold) in viral recovery from the minced lung tissue (Figure 6C). Finally,
we isolated murine primary cells, pretreated with FYW treatment for
48 h, and then exposed to influenza for 24 h. Subsequent qRT-PCR
analysis for the influenza matrix transcript demonstrated that FYW
treatment decreased this viral transcript in both bone marrow cells and
peritoneal macrophages (Figure 6D). To test if FYW had a direct
negative structural impact on the virus, we performed hemagglutination
inhibition assays in the setting of different concentrations of FYW
(increased by 50mM to 390 µM). There was no agglutination inhibition
with any concentration of FYW tested (Supplementary Figure S10)
suggesting that the virus remains structurally intact when
exposed to FYW.

3.5 FYW treatment leads to a unique
transcriptional profile

Treatment with FYW decreased IFN signaling and viral recovery
across a number of cell types. To investigate this seemingly dichotomy
further, we determined the transcriptional response to FYW
treatment. A549 cells were first primed with FYW or control for
48 h and then exposed or not exposed to influenza (at anMOI of 1) for
24 h. RNA was isolated and analyzed by bulk RNA sequencing. We
found reduced viral transcripts across the mapped influenza

transcriptome, further verifying that FYW impacts viral replication
(Figure 7). In regard to host transcripts, treatment with FYW with or
without infection had the greatest number of differentially expressed
genes (DEGs) in comparison to control. FYW treatment led to
1053 upregulated DEGs of which 541 were sustained upon
infection and 810 unique to FYW pretreatment and infection
(Figure 8A). Reactome analysis identified pathways pertaining to
cellular responses to stimuli, particularly the endoplasmic
reticulum stress and unfolded protein stress responses (Table 1).
FYW treatment also revealed 2123 downregulated DEGs. Reactome
analysis demonstrated that 25 pathways were downregulated (p <
0.01 and FDR <0.05) (Table 2) with IFN signaling and IFN α/β
signaling as the most significant (p ≤ 1.1e-16 and FDR ≤ 3.43e-14).

To probe the mechanism by which FYW reduces IFN signaling,
we selected four target genes, Spock1, EGR2, IL31RA, and
ATP6VD02, based on those most highly upregulated in our RNA
sequencing analysis. qRT-PCR analysis also corroborated the
upregulation of these genes upon FYW treatment (Supplementary
Figures S1A–iv). Respective siRNAs effectively decreased each
transcripts’ expression (Supplementary Figures S11Bv–viii),
although we found that the overall the gene expression even after
siRNA treatment was still increased by FYW compared to the control.
After individual siRNA treatment and then FYW exposure, we found
that IFN signaling was still reduced upon influenza exposure, only
abrogated by 1.2, 1.3, and 1.4-fold in the case of EGR2, IL31RA, and
ATP6VD02, respectively (Supplementary Figure S12). We next
suppressed gene transcription of all 4 gene targets. After the
sequential combined 4 siRNA treatment, FYW priming, and
influenza exposure, we found that gene knock-down counteracted
the reduction of IFN signaling by 2.8-fold (Figure 8B).

FIGURE 7
Pooled aromatic amino acid metabolites decrease influenza RNA. (A) Viral RNA transcript counts in samples of A549 cells pretreated with FYW for
48 h and then infected with influenza for 24 h. DMSO served as the control for the metabolites. Graphs depict average SEM (n = 3 biological replicates).
****p < 0.0001. Mann–Whitney was used for statistical analysis. The bottom table depicts the fold decrease in viral RNA counts graphed above.
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We hypothesized that a central mediator linked to these
upregulated DEGs is Transforming Growth Factor-β (TGF-β). This
idea was especially intriguing as prior studies have linked reduced IFN-
α/β levels with TGF-β signaling (Bedke et al., 2012; Furuya et al., 2015;
Denney et al., 2018). Importantly we found an increase in TGF-β in our
RNA sequencing results (Figure 8C). To test this hypothesis, we utilized
a TGF-β inhibitor that acts by binding to the TGF-β1 receptor.
A549 cells were treated with this inhibitor for 24 h and then
transfected with all 4 siRNAs for 48 h prior to FYW exposure. After
an additional 48 h, the cells were exposed to influenza for 24 h. The
transcriptional knock-down in combination with the TGF-β inhibitor
led to an alleviation of IFN signaling reduction by another 2.9-fold
(Figure 8D). These findings demonstrate that the downregulation of
IFN signaling by microbial metabolites is TGF-β dependent.

3.6 Microbial metabolites improve
outcomes in the setting of influenza
pathogenesis

To determine whether the FYW treatment reduces influenza
pathogenesis and inflammation in-vivo, mice were intranasally

exposed to FYW or control for 2 weeks daily and then intranasally
infected with influenza. We found that mice treated with FYW had
improved weight recovery at day 4 post-infection (Figure 9Ai). The
mice were sacrificed at this time, and lungs were analyzed by histology
and qRT-PCR. Mice treated with FYW had reduced inflammation by
histological grading (Anand et al., 2021) (Figures 9Aii, iii). Furthermore,
FYW treated mice had decreased levels of viral transcript (28-fold) by
qRT-PCR as well as decreased viral spread to the lung periphery as
demonstrated by RNA in-situ analysis (Figure 9B; Supplementary
Figure S13), suggesting that microbial metabolites significantly
improve outcomes during influenza pathogenesis.

4 Discussion

The gut microbiota exerts myriad beneficial and detrimental
effects on host physiology and response to the environment.
Microbial metabolites are key mediators in this process and can
impact systemic signaling pathways with far reaching effects.
Accordingly, gut dysbiosis is involved in the pathogenesis of
several diseases and the host response to pathogens (Vivarelli
et al., 2019; Sencio et al., 2021; Wei et al., 2021). Therefore a

FIGURE 8
Pooled aromatic amino acid metabolites treatment alters gene expression. (A) Venn diagram depicting numbers of differentially expressed genes
(DEGs) identified in A549s with pretreatment treatment with FYW for 48 h and then infected with influenza for 24 h. DEGs downregulated and
upregulated per the condition depicted compared to DMSO as the control. (B) TGF-β1 transcript counts in samples of A549 cells pretreated with FYW for
48 h and then infected with influenza for 24 h. DMSO served as the control for the metabolites. (n = 3 biological replicates). (C) Fold change in IFN
reporter activity in A549 cells transfected with siRNA directed at spock1, egr2, il3lra, and atp6vd02 or control siRNA for 24 h, and the cells were left to
recover for 24 h. The cells were pretreated with FYW for 48 h and infected with influenza for 24 h (n = 4 experiments: 18 biological and 38 technical
replicates). (D) Fold change in IFN reporter activity in A549 cells treatedwith TGF-β inhibitor for 24 h, then transfectedwith siRNA directed at spock1, egr2,
il3lra and atp6vd02 or control siRNA for 24 h, and the cells were left to recover for 24 h. The cells were pretreated with FYW for 48 h and infected with
influenza for 24 h (n = 2 experiments: 9 biological and 18 technical replicates). Graphs depict average SEM. ****p < 0.0001. Mann–Whitney was used for
statistical analysis.
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thorough understanding of how microbial metabolites influence the
host, and specifically the host immune system, is necessary.

Our previous work demonstrated that a metabolite of tyrosine,
4-OH-phenylpropionic acid, alters IFN signaling and protects from
influenza (Steed et al., 2017). The gut microbiota extensively
metabolizes the three aromatic amino acids, tryptophan, tyrosine,
and phenylalanine (Liu et al., 2020). 4-OH-phenylpropionic acid is
produced in such fashion by human gut Clostridium microbes,
which similarly metabolize tryptophan and phenylalanine (Dodd
et al., 2017). These metabolites’ concentrations can reach or
exceed typical drug concentrations (Dodd et al., 2017).
Therefore we sought to understand the cell specific effects of
these metabolites individually and in combination on IFN
signaling and infection.

In this study, we screened 17 aromatic amino acid metabolites
produced in the human gut by the commensal gut
microenvironment. Due to limited and incomplete data

evaluating baseline serum concentrations of these metabolites, we
studied the metabolites’ effects at an increase of 100 μM in cell
culture and at a 1:1 ratio. Baseline concentrations of these
metabolites are likely influenced by an individual’s microbiota
and host metabolism and therefore difficult to extrapolate for
initial experimental investigation (Roager and Licht, 2018). While
these final concentrations and ratios may not be physiologic or
immediately generalizable, we chose these initial conditions given
the potential for therapeutic benefit of metabolite treatment or
microbiota alteration.

We found that tryptophan metabolites dramatically reduced
IFN signaling. Prior studies have corroborated this finding and
demonstrated reduced inflammation and proinflammatory cytokine
production in response to tryptophan and its metabolites in bone
marrow derived macrophages (Wlodarska et al., 2017; Krishnan
et al., 2018; Duanmu et al., 2021). Importantly, we found that the
individual metabolites had varied impacts on IFN signaling

TABLE 1 Upregulated pathways in response to aromatic amino acid metabolites in A549 alveolar epithelial cells (FDR-False Discovery Rate).

Pathway name Entities Reactions

Found Ratio p-value FDR* Found Ratio

Response of EIF2AK1 (HRI) to heme deficiency 19/29 0.002 3.44e-08 6.11e-05 16/20 0.001

ATF4 activates genes in response to endoplasmic reticulum stress 17/34 0.002 6.42e-06 0.005 7/7 5.07e-04

PERK regulates gene expression 19/42 0.003 7.68e-06 0.005 9/11 7.97e-04

Unfolded Protein Response (UPR) 41/155 0.01 5.87e-05 0.026 76/94 0.007

Insulin-like Growth Factor-2 mRNA Binding Proteins (IGF2BPs/IMPs/VICKZs) bind RNA 8/13 8.61e-04 4.68e-04 0.166 3/3 2.17e-04

Type I hemidesmosome assembly 7/11 7.28e-04 8.61e-04 0.193 6/6 4.35e-04

Inhibition of Signaling by Overexpressed EGFR 6/8 5.30e-04 8.71e-04 0.193 2/2 1.45e-04

Signaling by Overexpressed Wild-Type EGFR in Cancer 6/8 5.30e-04 8.71e-04 0.193 2/2 1.45e-04

ATF6 (ATF6-alpha) activates chaperone genes 8/15 9.93e-04 0.001 0.23 5/5 3.62e-04

TABLE 2 Downregulated pathways in response to aromatic amino acid metabolites in A549 alveolar epithelial cells (FDR-False Discovery Rate).

Pathway name Entities Reactions

Found Ratio p-value FDR* Found Ratio

Interferon Signaling 109/394 0.028 1.11e-16 3.43e-14 66/69 0.005

Interferon alpha/beta signaling 65/186 0.013 1.11e-16 3.43e-14 21/22 0.002

Cell Cycle, Mitotic 154/596 0.042 1.11e-16 3.43e-14 304/350 0.026

Cell Cycle 174/734 0.051 1.11e-16 3.43e-14 368/449 0.033

Cell Cycle Checkpoints 82/280 0.02 1.11e-16 3.43e-14 33/56 0.004

Mitotic Prometaphase 60/211 0.015 4.52e-14 1.16e-11 20/20 0.001

Mitotic G1 Phase and G1/S transition 53/173 0.012 8.37e-14 1.62e-11 86/99 0.007

Amplification of signal from unattached kinetochores via a MAD2 inhibitory signal 38/94 0.007 9.46e-14 1.62e-11 4/4 2.95e-04

Amplification of signal from the kinetochores 38/94 0.007 9.46e-14 1.62e-11 4/4 2.95e-04

M Phase 88/416 0.029 1.02e-12 1.58e-10 71/91 0.007
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depending on cell type. Our prior work identified 4-OH-
phenylpropionic acid, as an enhancer of IFN signaling in a
fibroblast screen (Steed et al., 2017). Here we demonstrate that
these metabolites have a differential impact on IFN signaling in
epithelial cells and monocytes as well as in combination with
different stimuli. While 4-OH-phenylpropionic acid individually
increased IFN signaling in the presence of influenza in both
monocytes and epithelial cells, the majority of microbial
metabolites decreased IFN signaling under various conditions.
Furthermore, specific metabolites individually elevated IFN
signaling in monocytes but led to reduction in IFN signaling in
epithelial cells. This finding hints to different molecules or receptors
in diverse cell types interacting with the same metabolite and points
to the need for further mechanistic studies (Colosimo et al., 2019).

Notably, IFN signaling was potently reduced from baseline and
after exposure to different stimuli when cells were treated with all
investigated aromatic amino acids pooled together. This finding was
consistent in both cell types investigated, albeit more strikingly in
epithelial cells. We found that the main driver was the tryptophan

family of metabolites, although phenylalanine and tyrosine
metabolites acted synergistically to reduce IFN signaling further.
These findings further highlights the impact of these aromatic amino
acid metabolites in pooled composition. Although no other study
has utilized our pooled aromatic amino acid composition, a previous
study have shown that dietary supplementation of aromatic amino
acids exert anti-inflammatory effects in a LPS inflammation-
induced pig model (Duanmu et al., 2021). Similarly, other studies
have also shown reduced inflammatory cytokines such as NF-κB, IL-
8, and TNFα in response to aromatic amino acid metabolites (Bansal
et al., 2010; Krishnan et al., 2018). While our study did not
investigate the capacity of specific bacteria capable of producing
these metabolites or in vitro bacterially derived metabolites, prior
work has demonstrated their immunomodulatory effect in vivo
(Elsden et al., 1976; Smith and Macfarlane, 1996; Danaceau et al.,
2003; Russell et al., 2013; Dodd et al., 2017; Steed et al., 2017; Liu
et al., 2020). Further work will undoubtedly focus on understanding
how microbial communities and their summed metabolites alter the
host-pathogen response.

FIGURE 9
Pooled aromatic amino acid metabolite treatment leads to reduced influenza pathogenesis. (A)Weight loss percentage (i) in infected adult B6 mice
after infection with influenza following 2 weeks of intranasal priming with pooled aromatic amino acid metabolites. Representative images (A,B) of lung
cross-sections from mice sacrificed 3 days post-infection in the above conditions. H + E stained sections are shown. Boxed areas on the left are
magnified adjacently. For scoring, please refer to Supplementary Figure S5 of Anand et al. (2021) (ii) Quantification of the degree of lobes with
inflammatory infiltrates in lungs, harvested in the above conditions. (Bi) Representative images of RNA in situ hybridization for the viral transcript NS1. (ii)
RNA expression determined by real-time PCR for influenzamatrix protein in lungs harvested frommice from the same. (iii)Quantification of the degree of
lobes with influenza viral spread determined from lung cross-sections stained for influenza NS1 by RNA in situ from the same mice. For scoring, please
refer to Supplementary Figure S13. Graphs depict average SEM *p < or = 3.05 and ***p < 0.001. Mann–Whitney was used for statistical analysis.
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Our transcriptomic data confirmed our cell reporter assays
by demonstrating a reduction in IFN-α/β signature pathways.
The most notable elevations in gene transcription were observed
in genes belonging to seemingly different pathways (SPOCK1,
EGR2, IL31RA and ATP6Vd02). Upon further review, we
hypothesized that TGF-beta was the nodal mediator linking
these transcripts. TGF-beta leads to elevation of EGR2 (Fang
et al., 2011), Spock 1 (Fan et al., 2016) and IL31RA (Jawa et al.,
2008; Ferretti et al., 2017). The gene ATP6vd02 is induced in
response to IL-6 (Chowdhury et al., 2020), and TGF-beta is
known to upregulate IL-6 (Woods et al., 2015; Yang et al., 2017),
which aids in tissue repair and reduced influenza induced
immunopathology (Furuya et al., 2015). Importantly, we
found elevated levels of TGF-beta in our RNA sequencing
data. Furthermore, TGF-beta also contributes to protection
against influenza in allergic airway diseased mice (Carlson
et al., 2010; Li et al., 2015; Rich et al., 2020) and has been
shown to reduce IFN signaling (Bedke et al., 2012; Furuya et al.,
2015; Denney et al., 2018). Interestingly, TGF-beta is also
known to be induced upon influenza infection and is
dependent on JNK1 and leads to ER stress (Roberson et al.,
2012). We hypothesize that these aromatic amino acid
microbial metabolites are inducing elevated TGF-beta
signaling with a reduction in IFN signaling and concomitant
decrease in immunopathology upon viral challenge (modeled
in Figure 10).

Type I IFNs are commonly recognized as key antiviral
cytokines. However, some reports demonstrate the cytotoxic
impacts of excessive IFN signaling in response to influenza
(Herold et al., 2008; Davidson et al., 2014; Hogner et al.,

2016). The heightened IFN response can also inhibit
inflammasome activation, which plays in important role in
the immune response to influenza (Guarda et al., 2011; Pang
and Iwasaki, 2011). Interestingly, IFNs also increase
susceptibility to secondary bacterial infections (Antonelli
et al., 2010; O’Connell et al., 2004). In vivo studies of the role
of type I IFN during influenza infection are conflicting (Garcia-
Sastre et al., 1998; Durbin et al., 2000; Price et al., 2000; Koerner
et al., 2007; Mordstein et al., 2008; Szretter et al., 2009; Davidson
et al., 2014; Steed et al., 2017). The relative timing of IFN
signaling upregulation and response during influenza
infection may also predict its effects on viral pathogenesis
and outcome for the host. Accordingly, many other biological
factors, such as viral strain virulence and immune status of the
host undoubtedly contribute. Our finding that specific microbial
metabolites decrease IFN signaling adds further evidence that
the microbiota is a key influencer of host-pathogen interactions
and warrants further work to ascertain fully its impact on
disease pathogenesis. Finally, this work demonstrates the
broader potential application of these metabolites during
viral infections. In particular, understanding the cell specific
effects of these metabolites and their pooled composite effects
on the host during infections will be necessary to harness their
full therapeutic potential.
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FIGURE 10
TGF-βmediates the ability of the pooled aromatic amino acid metabolites to decrease IFN signaling and influenza pathogenesis. Microbial aromatic
amino acid metabolites are depicted in circles (Green-Phenylalanine, Red-tyrosine, Yellow-Tryptophan). These metabolites affect the cells and
potentially enter the cells leading to unique transcriptome with elevated TGFβ. Elevated TGFβ leads to an anti-viral primed state that has reduced IFN
signaling, potentially lesser inflammation, and decreased viral recovery. This figure was made in Biorender (http://www.biorender.com/).
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