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Ralstonia solanacearum, one of the most destructive crop pathogens worldwide,
causes bacterial wilt disease in a wide range of host plants. The major component
of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPS), has
been shown to function as elicitors of plant defense leading to the activation of
signaling and defense pathways in several plant species. LPS from a R.
solanacearum strain virulent on tomato (LPSR. sol.), were purified, chemically
characterized, and structurally elucidated. The lipid A moiety consisted of
tetra- to hexa-acylated bis-phosphorylated disaccharide backbone, also
decorated by aminoarabinose residues in minor species, while the
O-polysaccharide chain consisted of either linear tetrasaccharide or branched
pentasaccharide repeating units containing α-L-rhamnose, N-acetyl-β-D-
glucosamine, and β-L-xylose. These properties might be associated with the
evasion of host surveillance, aiding the establishment of the infection. Using
untargeted metabolomics, the effect of LPSR. sol. elicitation on the metabolome
of Solanum lycopersicum leaves was investigated across three incubation time
intervals with the application of UHPLC-MS for metabolic profiling. The results
revealed the production of oxylipins, e.g., trihydroxy octadecenoic acid and
trihydroxy octadecadienoic acid, as well as several hydroxycinnamic acid
amide derivatives, e.g., coumaroyl tyramine and feruloyl tyramine, as
phytochemicals that exhibit a positive correlation to LPSR. sol. treatment.
Although the chemical properties of these metabolite classes have been
studied, the functional roles of these compounds have not been fully
elucidated. Overall, the results suggest that the features of the LPSR. sol.

chemotype aid in limiting or attenuating the full deployment of small
molecular host defenses and contribute to the understanding of the
perturbation and reprogramming of host metabolism during biotic immune
responses.
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1 Introduction

The sessile nature of plants exposes them to a range of
opportunistic pathogens within the surrounding environment.
The evolution-driven immunity of plants has, however, bestowed
the ability of perceiving selective pathogen-derived molecules, so
called microbe-assisted molecular patterns (MAMPs) through
membrane bound pattern recognition receptors (PRRs) that
result in the activation of various intracellular signaling pathways
leading to the activation of an innate immune response known as
MAMP-triggered immunity (MTI). Ralstonia solanacearum is a
Gram-negative soil-borne pathogen with a high destructive
capacity, causing bacterial wilt disease and severe crop losses in
310 plant species belonging to 42 families (Wang et al., 2023).
However, little is known about the perception of immune elicitors
from R. solanacearum (Shi et al., 2023).A consequence of this is that
agricultural approaches, to maintain the bacterial wilt disease, have
been limited. The main surface component of the outer membrane
of Gram-negative bacteria is a permeable barrier composed of
lipopolysaccharides (LPS). This family of amphipathic molecules
protects cells from harmful substances within the surrounding area,
allowing the growth and development of the pathogen in
unfavorable environmental stress conditions (Alexander and
Rietschel, 2001; Li et al., 2014; Kutschera and Ranf, 2018).

As a tripartite saccharolipid/lipoglycan, LPS is a heat-stable
amphiphilic molecule that consists of the O-polysaccharide
(OPS) chain, a core oligosaccharide (COS), and the lipid A
component. The first domain, the hydrophobic membrane-
anchored lipid A, typically consists of a glucosamine (GlcN)
dimer, N- and O-substituted with hydroxy fatty acids of variable
number chain length (Newman et al., 2001; Di Lorenzo et al.,
2022). The composition of the lipid A molecule has been shown
to remain largely conserved among related Gram-negative
bacterial species. The second domain consists of the COS, and
the third domain consists of the OPS. These saccharide portions
are the most structurally diverse components of an LPS, with the
OPS displaying the greatest structural variability as it is formed
by a variable number of oligosaccharide repeats. Of note, the
cross-linking of the negatively charged residues, often present in
the COS and lipid A, through the action of divalent cations (Ca2+/
Mg2+) facilitates the tight packaging of the LPS (Ranf, 2016). This
phenomenon is essential for the rigidity and low permeability of
the outer bacterial membrane. LPS containing all three of the
components mentioned previously are commonly referred to as
‘smooth’ LPS (S-LPS). The OPS is not a crucial component
required for cell viability, and mutants lacking this component
are often referred to as ‘rough’ (which have a rough LPS, R-LPS)
(Newman et al., 2001; Li et al., 2014; Di Lorenzo et al., 2022), due
to the morphological appearance of the colonies compared to that
of the wild-type counterparts. It has already been shown that
defective bacterial mutants lacking the OPS are vital but lack
pathogenicity, display increased sensitivity to antibiotic and
antimicrobial substances, and decline rapidly upon
introduction in plants (de Castro et al., 2010; Erbs et al., 2010;
Rapicavoli et al., 2018). However, some other studies reported
that the OPS is not the active moiety in triggering plant defense
responses (Newman et al., 2001; Caroff and Karibian, 2003;
Esposito et al., 2008; Di Lorenzo et al., 2022).

During the infection process, LPS molecules form a physical
barrier, protecting the bacterium from the cytotoxic effects of
plant-derived antimicrobial phytochemicals to promote
pathogenesis. As a part of innate immunity, the pathogen can
be sensed by the perception of several pathogen-derived
molecular signatures, e.g., flagellin-peptides and peptidoglycan.
LPS derived from the bacterial coat can similarly act as an MAMP
and trigger a host immune response (Madala et al., 2011; Mareya
et al., 2020). These functional contradictions raise the scientific
question about the pathogen’s method of successfully infecting
the host plant (Aslam et al., 2008) and strategies to evade plant
immunity (Wang et al., 2022). To date, no dedicated pattern
recognition receptor for bacterial LPS has been discovered in
plants. An untargeted metabolomics approach was followed to
obtain greater understanding surrounding the LPS-induced
defense-related metabolic reprogramming that occurs in leaf
tissues of Solanum lycopersicum (tomato). This is believed to
be the first report on the metabolomic dynamics associated with
the perception of LPSR. sol. in S. lycopersicum.

2 Materials and methods

2.1 Plant cultivation conditions

The STAR9008 (8SC) tomato cultivar seeds were obtained from
a tomato breeding program associated with resistance against R.
solanacearum (Stark Ayres, Pty. Ltd., Bredell, South Africa, www.
starkeayres.co.za). The seeds were germinated in a commercially
available germination soil mixture (Culterra, Muldersdrift, South
Africa). The tomato plants were grown under greenhouse
conditions: a light/dark cycle of 12 h/12 h, with the light
intensity set at 80 μmol/m2/s, and the temperature regulated
between 22°C and 24°C. The plants were 30–35 cm in height at
the time of the experiments.

2.2 Ralstonia solanacearum, cell culture, and
extraction of LPS

The strain of R. solanacearum used in this study was BD 261
(Coutinho collection, University of Pretoria, GenBank Accession
number KY 709230) from South African origin belonging to race
2 biovar 3. Prior to cultivation, the pathogen was plated out on both
the triphenyl tetrazolium chloride (TTC) media and the selective
South Africa-Elphinstone (SMSA-E) media at 28°C for 48 h (Pontes
et al., 2017). The plating step was added to monitor colony purity
and to prevent external contamination. This strain was used in
previous studies regarding the metabo-phenotyping and
metabolomics of the host response (disease tolerance) of the
selected tomato cvs. (Zeiss et al., 2018; 2019) and the inducible
changes of the metabolome to peptide elicitors derived from R.
solanacearum flagellin (Zeiss et al., 2021a) and cold shock protein
(Zeiss et al., 2022). LPS was purified from saturated cell cultures
grown in the nutrient broth medium on an orbital shaker at 28°C,
using the hot phenol protocol as previously described (Gerber et al.,
2004) and incorporating DNase and protease digestion steps
(Madala et al., 2011).
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2.3 Gel electrophoresis of isolated LPS

Sodium dodecyl sulfate-polyacrylamide gel electrophoresis
(SDS-PAGE) was performed to evaluate the type of LPS and size
heterogeneity within the LPS fraction. Purified LPSR. sol. was
dissolved in distilled water (1 mg/mL stock). LPS from
Burkholderia cepacia, (LPSB.cep.) (Gerber et al., 2004; Madala
et al., 2011) was used as a positive control. Equal volumes of the
sample and a 2X sample buffer, consisting of 125 mM Tris-Cl
pH 6.8, 4% SDS, 20% glycerol, 10% β-mercaptoethanol, and
0.02% bromophenol blue were mixed. The combined sample was
placed on a heating block set at 95°C for about 2 min and left to cool.
The gel (100 mm × 80 mm × 0.75 mm) was run at a constant voltage
(90 V) with varying current (≤40 mA) and subsequently stained
using a silver staining protocol (Gerber et al., 2004). Briefly, the gel
was fixed in a solution containing 40% ethanol (v/v) and 10% acetic
acid (v/v) for 30 min. Following the fixing step, the gel was washed
with distilled water for 15 min, which was repeated 2–3 times. The
gel was immersed in a 0.5% periodic acid solution for 2 min with
constant agitation. The gel was again washed with distilled water for
30 min, which was repeated 2–3 times. The gel was then immersed
in a staining solution composed of 0.02% silver nitrate (AgNO3) and
1 mM formaldehyde for 30 min with constant agitation. Excess
staining solution was then rinsed off with distilled water followed
by the addition of the developing solution composed of 14%
Na2CO3.10H2O, 20 mM Na2S2O3.5H2O, and 6 mM
formaldehyde. Upon visualization of the bands on the gel, the
reaction was halted with the addition of 7.5% acetic acid for
15 min, followed by washing the gel with distilled water for
30 min. The gel was then photographed and recorded.

2.4 Chemical (GC-MS) analysis of Ralstonia
solanacearum LPS

For structural elucidation, additional steps of purification by
ultracentrifugation (100,000 × g, 16 h, 4°C) and size-exclusion
chromatography on a Sephacryl S-500 column were performed.
The LPS monosaccharide content was established by the inspection
of the acetylated O-methyl glycoside derivatives (AMG) obtained by
treatment with HCl/MeOH (1.25 M, 85°C, 16 h) followed by
acetylation with acetic anhydride in pyridine (85°C, 20 min). The
absolute configuration was established through the evaluation of the
acetylatedO-octylglycoside (OGA) derivatives and comparison with
authentic standards, as previously described (Leontein, 1978;
Garcia-Vello et al., 2022). To define the sugar linkage pattern, an
aliquot of dried sample was suspended in dimethylsulfoxide
(DMSO) in the presence of a spatula tip of NaOH with
alternating stirring and sonication for 2 h at room temperature,
before treatment with iodomethane. Then, it was hydrolyzed with
trifluoroacetic acid (4 M, 100°C, 4 h), carbonyl reduced with NaBD4

and acetylated with pyridine and acetic anhydride (Ciucanu and
Kerek, 1984; Garcia-Vello et al., 2022). The so-obtained partially
methylated alditol acetates (PMAAs), as well as AMG and OGA,
were then analyzed by gas chromatography with mass spectrometry
detection (GC–MS).

The total fatty acid content was established by treating with HCl
(4 M, 100°C, and 4 h) followed by a treatment with NaOH (5 M,

100°C, and 30 min). The pH was adjusted to reach slight acidity
(pH ⁓3). After extraction in chloroform, fatty acids were
methylated with diazomethane and inspected via GC–MS. The
absolute configuration of hydroxy fatty acids was determined as
previously reported (Rietschel, 1976). Briefly, the hydroxy fatty acids
were released after the treatment with 4 M NaOH (100°C and 4 h),
converted into 3-methoxy acid L-phenylethylamides, and then
analyzed by GC–MS. The comparison of the retention times
(Rts) of authentic L-phenylethylamides of standard fatty acids
with those derived from the examined LPS, allowed the
assignment of the (R) configuration to all of the 3-hydroxy fatty
acids and the (S) configuration to all of the 2-hydroxy fatty acids
composing the lipid A of R. solanacearum LPS. All chemical analyses
were executed through the employment of an Agilent Technologies
Gas Chromatograph 7820A equipped with a mass selective detector
5977B and an HP-5 capillary column (Agilent, Milan, Italy, 30 m ×
0.25 mm i.d., flow rate 1 mL/min, He as carrier gas). The
temperature program used to analyze AMG and OGA was 140°C
for 3 min and then 140 → 240°C at 3°C/min. The temperature
program for PMAA was 90°C for 1 min, 90 →140°C at 25°C/min,
140 → 200°C at 5°C/min, 200 → 280°C at 10°C/min, and finally
280°C for 10 min. To analyze the fatty acid content, the following
temperature program was used 150°C for 5 min, 150°C–280°C at
3°C/min, and 280°C for 5 min.

2.5 Isolation of lipid A and OPS from
Ralstonia solanacearum LPS by
MALDI-TOF MS

The purified LPS (30 mg) were treated with acetate buffer
solution (pH 4.4, 100°C, 2 h). After centrifugation (4,000 × g,
30 min), the supernatant containing the OPS fraction was
collected and lyophilized. The OPS was then purified by size
exclusion chromatography on a Toyopearl TSK HW-40S (Tosoh
Bioscience, 1.5 × 100 cm, eluent 50 mM NH4HCO3) column. The
precipitate, containing lipid A, was collected and washed several
times with freshly prepared Bligh/Dyer mixture (chloroform/
methanol/water, 2:2:1.8, v/v/v) (Bligh and Dyer, 1959). The
organic phases were pooled, dried, and analyzed by matrix-
assisted laser desorption ionization time-of-flight mass
spectrometry (MALDI-TOF MS).

2.6 NMR spectroscopy analysis of the
O-polysaccharide chain

1D and 2D NMR spectra were recorded on a Bruker
600 AVANCE NEO instrument. The solvent was D2O. Spectra
calibration was performed with internal acetone (δH 2.225 ppm,
δC 31.45 ppm). The double-quantum-filtered phase sensitive
correlation spectroscopy (DQF-COSY) experiment was carried
out by using datasets of 4,096 × 256 points (Piantini et al., 1982;
Rance et al., 1983). Total correlation spectroscopy (TOCSY)
experiments were performed with spinlock times of 100 m, using
datasets (t1 × t2) of 4,096 × 256 points. Nuclear Overhauser
Enhancement Spectroscopy (NOESY) experiment was recorded
by using datasets (t1 × t2) of 4,096 × 256 points and by applying
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mixing times between 100 and 400 m. In all homonuclear
experiments, the data matrix was zero-filled in both dimensions
to give a matrix of 4 K × 2 K points and was resolution-enhanced in
both dimensions by a cosine-bell function before Fourier
transformation (Speciale et al., 2022). The determination of
coupling constants was obtained by 2D phase-sensitive DQF-
COSY. Heteronuclear single quantum coherence (1H, 13C HSQC)
and heteronuclear multiple bond correlation (1H, 13C HMBC)
experiments were recorded in the 1H-detection mode by single-
quantum coherence with proton decoupling in the 13C domain using
datasets of 2048 × 256 points. 1H, 13C HSQC was performed using
sensitivity improvement in the phase-sensitive mode using echo/
antiecho gradient selection, with multiplicity editing during the
selection step. The 1H, 13C HMBC experiment was optimized on
long-range coupling constants with low-pass J filter to suppress one-
bond connectivity, using gradient pulses for selection. A delay of
60 m was employed for the evolution of long-range correlations. It
was used at a long-range coupling constant value of 6 Hz. The data
matrix in both heteronuclear experiments was extended to 2048 ×
1024 points using forward linear prediction extrapolation (Stern
et al., 2002).

2.7 MALDI-TOF mass spectrometry analysis

MALDI-TOF MS spectra were recorded on an AB SCIEX TOF/
TOF™ 5800 Applied Biosystems mass spectrometer equipped with
an Nd:YAG laser (λ = 349 nm), with a 3 ns pulse width and a
repetition rate of up to 1,000 Hz. The lipid A fraction was dissolved
in CHCl3/CH3OH (1:1, v/v). The matrix solution was 2,4,6-
trihydroxyacetophenone in CH3OH/0.1% trifluoroacetic acid/
CH3CN (7:2:1, v/v) at a concentration of 75 mg/mL (Di Lorenzo,
2017; Mareya et al., 2020). 0.5 μL of the sample and 0.5 μL of the
matrix solution were deposited on theMALDI plate and left to dry at
room temperature. The lipid A and matrix solutions were spotted in
triplicate on the MALDI plate. For MS experiments, each spectrum
was a result of the accumulation of 2,000 laser shots, whereas
5,000–7,000 shots were summed for the MS/MS spectra.

2.8 Reactive oxygen production:
histochemical staining and luminescence
assay

The leaves of mature tomato plants were treated with the LPSR.
sol. elicitor and were stained with a 3,3′-diaminobenzidine (DAB),
(Sigma-Aldrich, St. Louis, United States) solution to visually detect
elicitor-linked hydrogen peroxide production. The protocol was
performed with minor modifications to that of Bach-Pages and
Preston (2018). Briefly, the left abaxial side of the leaves was
pressure-infiltrated with 100 μg/mL LPSR. sol. with a blunt-ended
syringe, while the right abaxial half was treated with 8 mMMgSO4 as
a negative control. During the pressure infiltration process, care was
taken to limit wounding or mechanical damage to the leaf tissues.
The DAB solution (1 mg/mL in water, pH 3.8) was made up prior to
inoculation and was covered with foil. The inoculated leaves were
excised from the plant, immersed in the DAB solution, and left to
incubate with constant agitation at 23°C for 8 h. Following the

incubation interval, the leaves were removed and immersed in
boiling 70% ethanol for 10 min and then transferred into
absolute ethanol at 37°C and left overnight. The visible presence
of the brown polymerized precipitate in the host tissue indicated a
reaction between DAB and H2O2.

For the luminescence assay, a cork borer was used to punch out
0.4 cm2 leaf disks from fully expanded tomato leaves above the
fourth node. The disks were floated on 200 µL MilliQ water in a
white 96-well microtiter plate (Nunc, Roskilde, Denmark) with the
adaxial side up. The leaf disks were placed under light at 37°C and
left to incubate for 24 h. After the incubation period, water was
completely removed and replaced with a 100 µL of a master mix
solution composed of 34 μg/mL luminol, 20 μg/mL horseradish
peroxidase (Sigma-Aldrich, St. Louis, United States), and 100 μg/
mL LPSR. sol. in water. Special care was taken to limit the damage of
the leaf disks during the floating disk and water removal steps. A
negative control composed of the abovementioned master
mix—excluding the LPS elicitor and supplemented with
water—was added. Luminescence was measured every 2 min for
60 min using a Synergy HT BioTek microplate reader (Biotek
Instruments, Vinooski, VT, United States). The luminescence
data were exported for further analysis. To account for natural
variability, three leaf disks per plant were taken. Overall, the
procedure was repeated as three independent experiments.

2.9 Plant elicitation and experimental design
for metabolomic analysis

The tomato plants (selected based on uniformity in size and
appearance) were watered 5 h prior to the inoculation step, to
open leaf stomata and ease the process of pressure infiltration.
The layout of the treatment process was as follows: three tomato
plants were reserved for each of the LPSR. sol. treatments at the
respective time intervals (16, 24, and 32 h), along with the
addition of corresponding MgSO4 controls. Sampling
consistency was maintained by selecting the leaves from the
fourth node for LPSR. sol. or control treatment.

The LPS stock (1 mg/mL) was dissolved in sterile 8 mMMgSO4

to a working concentration of 100 μg/mL. The plants were treated
with 100 μg/mL LPSR. sol. by pressure infiltration into the abaxial side
of the leaves using a blunt-ended syringe. Again, the control group
was inoculated with an 8 mM MgSO4 solution. The plants selected
for each of the conditions were treated in separate locations to
prevent cross-contamination. During the pressure infiltration step,
the entire leaf surface was supplied with the appropriate elicitor/
control solution, which minimized the level of biological variation
and permitted the harvest of the entire leaf tissue. Care was taken to
avoid/limit wounding or mechanical damage. After inoculation, the
cultivar groups were left to incubate for 16, 24, and 32 h,
respectively. Following the incubation times, the inoculated leaves
for each group condition were harvested, and metabolic activity was
quenched in liquid nitrogen and stored at −80°C.

The experimental design included three independent biological
replicates. Sufficient plant material was thus obtained to create a
total of three biological replicates for each of the control and elicitor-
treatment groups across the three incubation intervals. Together
with three analytical replicates of each, this generated n = 9 as
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required for metabolomic analysis based on multivariate statistics
(Sumner et al., 2007; Tugizimana et al., 2013).

2.10 Metabolite extraction and sample
preparation

For the extraction procedure, the leaf tissue stored at −80°C was
submerged in liquid nitrogen and pulverized with a mortar and
pestle. 2 g of leaf powder from each of the group conditions were
extracted with cold 80% methanol in a 1:10 (w/v) ratio. The samples
were sonicated with both a sonicator probe (Bandelin Sonopuls,
Berlin, Germany), set at 100% power for 30 s, and a sonicator bath
for 30 min at 15°C. The samples were centrifuged using a bench-top
swinging-bucket centrifuge set at 5525 × g and 4°C for 30 min to
pellet the cell debris. The supernatants were removed, transferred
into round-bottom flasks, and evaporated under vacuum to 1 mL
using a Büchi rotary evaporator at 55°C. The concentrated 1 mL
solutions were carefully transferred into 2 mL microcentrifuge tubes
and dried overnight in a heating block set to 55°C. Following the
overnight drying step, the evaporated samples were reconstituted in
500 µL of 50% HPLC-grade methanol: milliQ water solvent (1:1, v/
v). The samples were vortexed briefly and filtered through 0.22 µm
nylon syringe filters into vials fitted with 500 µL inserts. The samples
were stored at 4°C until LC–MS analysis.

The cold methanol extraction method described previously has
widely been used in metabolomics experiments but does preselect
for metabolites extractable in methanol and highly polar/nonpolar
compounds may only be partially extracted or be completely lost in
the case of very volatile compounds. However, a previous literature
has shown that the described method is able to recover most of the
secondary metabolites present within the tomato metabolome with
high levels of reproducibility (Gómez-Romero et al., 2010; Roldan
et al., 2014; Zeiss et al., 2018; Zeiss et al., 2019).

2.11 Ultra-high performance liquid
chromatography-high-definition mass
spectrometry

The samples were analyzed on an UHPLC-quadrupole time-of-
flight high-definitionMS (UHPLC-qTOFHD-MS) system equipped
with an electrospray ionization (ESI) source. The analytes were
separated on an Acquity Classic UHPLC system, binary solvent and
fixed loop (BSM-FL) configuration. An Acquity HSS T3 reverse-
phase column (2.1 × 150 mm × 1.7 µm; Waters Corporation,
Milford, MA, United States) was used for chromatographic
separation. A binary solvent system consisting of acetonitrile
(Romil Chemistry, Cambridge, United Kingdom): milliQ water,
with both solvents containing 0.1% formic acid (FA, Sigma-
Aldrich, Munich, Germany) and 2.5% isopropanol (Sigma-
Aldrich, Munich, Germany), was used. A binary gradient elution
method was used over a 30 min run with a flow rate set to 400 μL/
min. Three pooled quality control (QC) samples composed of
aliquots from all the sample groups, as well as 50% HPLC-grade
methanol blanks, were included in the sample list. The QC samples
were added to monitor sample stability and feature legitimacy, assess
intensity drifts that occur during the data acquisition process, and

monitor instrumental efficiency and robustness. Each of the
biological samples (originating from three biological replicates)
was analyzed in triplicate (analytical repeats) on the UHPLC-MS
instrument to improve the precision and accuracy.

2 μL of each sample was injected with the elution starting at 2%
(v/v) acetonitrile from 0 to 1 min, raised to 70% acetonitrile from
1 to 22 min, taken up to 95% from 22 to 23 min, and then kept
constant at 95% acetonitrile from 23 to 26 min. The composition of
the mobile phase was then reverted to 2% acetonitrile from 26 to
27 min, for column cleaning and equilibration from 27 to 30 min.
The metabolites present in the extracted samples were
chromatographically separated and detected with a high-
definition mass spectrometer (Synapt G1, Waters Corporation,
Milford, MA, United States), set to acquire accurate data in both
positive and negative ionization modes.

The MS conditions were as follows: capillary voltage of 2.5 kV,
sample cone voltage of 30 V, microchannel plate detector voltage of
1,600 V, desolvation temperature of 450°C, source temperature of
120°C, cone gas flow of 50 L/h, desolvation gas flow of 550 L/h, m/z
range of 50–1,500, scan time of 0.2 s, interscan delay of 0.02 s, and
the data were acquired in centroid format. The lockmass flow rate
was 100 μL/min, with leucine encephalin as a double-point lock
spray internal reference solution (50 pg/mL, [M + H]+ =
556.2771 and [M—H]− = 554.2615), continuously sampled every
15 s, producing an average intensity of 350 counts/scan in the
centroid mode, with typical mass accuracies between 3 and 5 mDa
and a mass accuracy window of 0.5 Da. High-purity nitrogen was
used as desolvation, cone, and collision gas. The MS analyses were
set up to perform five sequential full scan methods with increasing
collision energies ranging from 10 to 50 eV. The method described
previously enables the simulation of MSE acquisition, while
additionally allowing for the monitoring of individual collision
energy channels. This feature greatly facilitates the downstream
structural elucidation of compounds. By acquiring data at various
collision energies, the method ensures the fragmentation of a diverse
range of compounds with varying physicochemical properties.

2.12 Data analysis: pre-treatment, pre-
processing, and multivariate statistics
methods

The data obtained from the UHPLC-MS system were analyzed
with the MassLynx™ software (Waters Corporation, Manchester,
United Kingdom), with the addition of other statistical programs for
multivariate data analysis (MVDA). Pre-treatment and pre-
processing steps were according to Tugizimana et al. (2016).
Briefly, the raw data were processed with MarkerLynx XS™
4.2 application manager, with the following parameters:
0.60–21 min retention time (Rt) range of the chromatograms and
m/z domain of mass range 50–1,500 Da. The Rts were allowed to
differ by ± 0.20 min and the m/z values by ± 0.05 Da. The mass
tolerance was 0.01 Da, and the intensity threshold was 10 counts.
Only data matrices with noise level less than 50% (MarkerLynx cut-
off) were retained for downstream data analyses. The MarkerLynx
application uses the patented ApexPeakTrack algorithm to perform
accurate peak detection and alignment. Furthermore, MarkerLynx
performs sample normalization based on total ion intensities of each

Frontiers in Molecular Biosciences frontiersin.org05

Zeiss et al. 10.3389/fmolb.2023.1232233

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1232233


defined peak. Prior to calculating intensities, Savitzky–Golay
smoothing and integration was performed (Zhou et al., 2012;
Chen et al., 2013; Tugizimana et al., 2016). The generated data
matrices were imported into soft independent modelling of class
analogy (SIMCA) software, version 14.0 software with the “Omics”
skin (Sartorius Stedim Data Analytics AB, Umeå, Sweden) for
statistical analyses. Prior to chemometric modelling, the
independent variables, i.e., features, within the data matrix were
Pareto-scaled as a method of data normalization, to accommodate
and adjust for measurement errors between minor and major peaks.
A non-linear iterative partial least squares algorithm (NIPLS, in-
built within SIMCA software) was applied to manage the missing
values, with a default threshold of 50% and a correction factor of 3.0.
Two unsupervised multivariate methods, namely, principal
component analysis (PCA) and hierarchical cluster analysis
(HiCA), were applied. PCA is an unsupervised projection-based
modelling tool that permits the exploration of the dataset,
conclusively revealing the systematic variation present within the
variables (Trygg et al., 2007). PCA converts all the correlated
variables, i.e., the metabolite feature with their respective
intensities, into a smaller number of new uncorrelated variables,
described as principal components (PCs) that can be projected onto
a lower dimensional space while retaining most of the information
embedded in the original dataset (Goodacre et al., 2007; Saccenti
et al., 2014; Ren et al., 2015). HiCA is a general algorithmic approach
used in cluster analysis, where the observations from the PCA are
grouped into clusters based on their varying degrees of (dis)
similarity.

In addition, a supervised statistical method, orthogonal
projection to latent structures discriminant analysis (OPLS-
DA), was used for discriminant analysis and identification of
features contributing to differences in the metabolomes. OPLS-
DA is typically applied as a supervised method of diagnosing
selective differences between the two groups. In this experiment,
the OPLS-DA modelling was used to compare the LPSR. sol.-
treated samples to the MgSO4 control samples for each
incubation interval and to subsequently identify which
metabolite features demonstrate the largest impact
(i.e., discriminatory power), on class separation between the
two analyzed groups (Tugizimana et al., 2013). Without
rigorous validation, OPLS-DA modelling might be able to
produce unreliable class separation leading to statistically
insignificant conclusions (Worley and Powers, 2016). Several
methods of validating the OPLS-DA models were consistently
applied, e.g., the receiver operating characteristic (ROC) plot
construction, response permutation testing, and a seven-fold
cross-validation (CV) method (Eriksson et al., 2008). Only
models deemed statistically valid were examined and used in
data mining process and marker discovery. The variable
importance in projection (VIP) plots were generated to assess
the calculated importance of the discriminant features that are
discovered during the negative control vs. LPSR. sol. treatment
supervised methodologies. The VIP plots in the study had two
purposes: first, they acted as a guide to aid in the selection of
statistically significant features with VIP scores above a universal
threshold of ≥2, and second, they served as a validation method
to prevent any potential bias during the feature selection process.
The study found that utilizing these plots helped to identify

relevant features and minimized the risk of introducing bias
during the selection process (Tugizimana et al., 2016).

2.13 Metabolite annotation and
documentation

The chemical and structural identities of the metabolite features
deemed statistically significant/discriminant were elucidated using
several parameters that have been outlined (Sumner et al., 2007;
Alseekh et al., 2021), including MS spectral-based metabolite
identification performance based on sufficient and accurate mass
fragment information, accurate calculation of each feature’s
elemental composition below 5 mDa error, monitoring the
double bond equivalent (DBE) values, and database searches for
possible metabolite annotation. A built-in MarkerLynx XS software
tool, MassFragment, was used to match possible structures to the
observed fragment ions of each feature using novel algorithms. The
putative empirical formula of each statistically discriminant feature
was searched in the following databases for possible compound
matches: ChemSpider <www.chemspider.com>, Dictionary of
Natural Products <www.dnp.chemnetbase.com/>,
PubChem <http://pubchem.ncbi.nlm.nih.gov/>, METLIN <http://
metlin.scripps.edu/>, KEGG Compound database <https://www.
genome.jp/kegg/compound/>, and MetaCyc < https://metacyc.
org/>. All metabolites reported were annotated (tentatively
identified) according to level 2 of the Metabolomics Standard
Initiative (MSI) (Sumner et al., 2007; Spicer et al., 2017). Semi-
quantitative analysis of discriminate metabolites, based on relative
peak intensities, was performed within SIMCA ver. 14 software with
a univariate statistical analysis as indicated in the figure legends.

3 Results

LPS from Gram-negative phytopathogens, including R.
solanacearum, have been reported to be capable of triggering
immune responses in several plant species (Esposito et al., 2008;
Li et al., 2014). The LPSR. sol. was purified (Figure 1A), chemically
characterized, and structurally elucidated. The metabolomics study
was subsequently designed to: (i) discover whether an untargeted
approach was capable of capturing the subtle LPSR. sol.-induced
perturbations within the leaf metabolome of tomato plants and (ii)
determine which phytochemical classes and metabolic pathways
were positively correlated to the overall host immune/defense
response following LPSR. sol. perception.

3.1 LPS-induced oxidative burst

Prior to metabolomics analysis, several assays were performed to
confirm that the tomato cultivar was capable of perceiving the LPSR.
sol. elicitor. The DAB staining method was performed to detect the
production of hydrogen peroxide (H2O2) and other associated free
radical species in the LPSR. sol. -inoculated leaf tissues, suggestive of
initial host perception (Flores-Cruz and Allen, 2009). The left
abaxial side of the leaves was treated with the LPSR. sol. elicitor,
while the right side was treated with a negative control (Figure 1B).
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The localized production of the brown precipitate validated the host
plant’s capacity to perceive the LPSR. sol., triggering the oxidative
burst, leading to free radical production (Figure 1C). A more
sensitive luminescence assay was performed to corroborate the
findings observed during the histochemical stain procedure. The
total LPSR. sol.-induced reactive oxygen species (ROS) production
was measured and compared to a negative control supplemented
with water (Figure 1C). The overall luminescence results (Figures
1B, C) confirmed the host plant’s ability to respond to the LPSR. sol.
elicitor through the production of ROS, albeit at a lower metabolic
level compared to flagellin-derived peptides flg22 and flg28 (Zeiss
et al., 2021a).

3.2 Electrophoretic analysis of LPS from
Ralstonia solanacearum

Electrophoretic analyses (SDS-PAGE gels) were used to: i) analyze
the purity of the extracted LPSR. sol., ii) determine the dominant LPS
type extracted from the bacterial pathogen, and iii) assess whether the
observed LPSR. sol. banding pattern corresponded to what has been
previously described in the literature (Yang et al., 2013). The LPS of B.
cepacia (LPSB.cep.) has beenwell-described in the literature (Gerber et al.,
2004) and was included alongside the LPSR. sol. as a comparative
reference. The LPS components were revealed as gel bands using the
sensitive silver staining method. The banding patterns revealed that
both the LPSR. sol. and LPSB.cep. contain key structural features
(Figure 1A), i.e., both containing the lipid A moiety, the COS, and

the variable OPS chain (Erridge et al., 2002). Overall, the banding
pattern results indicate that R. solanacearum has S-LPS, i.e., it contains
the three structural components of LPS (Li et al., 2014). Since the exact
type of the LPS and the structural features of its constituent
substructures can determine its immungenic properties (Madala
et al., 2012), structural analysis of the purified LPS was undertaken.

3.3 Structural characterization of the lipid A
and OPS fractions of LPS from Ralstonia
solanacearum

Evaluation of the saccharide composition and absolute
configuration was conducted on intact LPSR. sol. Compositional
analysis revealed the occurrence of predominant sugar species
consistent with the presence of an OPS moiety. LPSR. sol. in fact
displayed mainly L-rhamnose (L-Rha), 2-amino-2-deoxy-D-glucose
(D-GlcNAc), and L-xylose (L-Xyl), and in minor amounts 4-amino-
4-deoxy-L-arabinose, D-glucose, L-glycero-D-manno-heptose, and
3-deoxy-D-manno-oct-2-ulopyranosonic acid (Kdo). Linkage
analysis revealed mainly terminal Xyl, 2-substituted, 3-substituted
Rha, 3-substituted GlcNAc, and also in minor amounts, 3,4-
disubstituted Rha. This analysis also showed that all residues
were in the pyranose form.

Fatty acid analysis disclosed the occurrence of (R)-3-
hydroxytetradecanoic acid [C14:0(3-OH)], (S)-2-
hydroxytetradecanoic acid [C14:0(2-OH)], (R)-3-
hydroxyhexadecanoic acid [C16:0(3-OH)], (S)-2-

FIGURE 1
Comparative electrophoretic patterns of LPS from Ralstonia solanacearum compared to that of Burkholderia cepacia reference (A), and generation
of free radical species in the leaf tissue of S. lycopersicum in response to LPSR. sol. (100 µg/mL) treatment (B, C). LPS banding pattern was visualized using
the silver staining method, and the regions indicate the OPS chain, core oligosaccharide, and lipid A. (B) Generation of H2O2 visualized using the
peroxidase-dependent 3,3-diaminobenzidine (DAB) stain after 24 h incubation. The left abaxial half of the leaves was pressure-infiltrated with LPSR.
sol.while the right half served as 8 mMMgSO4/water control. (C) Total ROS productionmeasured over a 60-minute interval after elicitor inoculation using
the horseradish peroxidase-dependent luminescence assay. A pairwise Student’s t-test was performed to determine statistical significance between the
LPS treatment (green) and negative control (purple), where asterisks indicate the degree of statistical significance (** = p ≤ 0.001). Both experiments were
replicated (DAB, n = 3 and luminescence n = 24), as three independent experiments.
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hydroxyhexadecanoic acid [C16:0(2-OH)], dodecanoic (C12:0),
tetradecanoic (14:0), and hexadecanoic (16:0) acids, which was
consistent with the lipid A fatty acid composition previously
described for Ralstonia LPS (Varbanets et al., 2003; Zhang-Sun
et al., 2019).

In order to establish the chemical structure of the OPS and lipid
A, a mild acid hydrolysis was performed to yield the water-soluble
OPS fraction in the liquid phase and the insoluble lipid A portion as
the precipitate. The OPS was then further purified by size exclusion
chromatography and inspected by means of 1D and 2D NMR
spectroscopy. A set of 2D homo- and hetero-nuclear NMR
spectra were recorded to establish all the spin systems and to
characterize the OPS sequence. The assignment of each spin
system was accomplished by tracing the spin connectivity as
observed in DQF-COSY and TOCSY spectra. The recognition of
each carbon atom was achieved by analyzing the one-bond
heteronuclear correlations visible in the HSQC spectrum. The
anomeric configuration of each monosaccharide was established
by evaluating the intra-residue NOE correlations, which were
identified in the NOESY spectrum, and the 3JH-1,H-2 coupling
constants attained from the DQF-COSY spectrum. Vicinal 3JH,H

coupling constants allowed the assignment of the relative
configuration of each sugar unit. Finally, the whole OPS-

repeating unit sequence was obtained by merging data from both
the inter-residue NOE contacts and the heteronuclear long-range
correlations visible in the HMBC spectrum.

In the 1H NMR spectrum of the OPS (Figure 2), the anomeric
region showed five main proton signals that were assigned to five
different spin systems (A–E, Supplementary Table S1, Figures 2A,
B). All sugar residues were present as pyranose rings according to
13C chemical shift values (Figure 2, Supplementary Table S1) and in
agreement with the linkage analysis.

Spin systems A (H-1 at 5.07 ppm), B (H-1 at 4.89 ppm), and C
(H-1 at 4.77 ppm) displayed correlations in the TOCSY spectrum
with methyl signals at δH = 1.25, 1.18, and 1.16 ppm, respectively,
and were assigned to α-rhamnose residues. The manno
configuration was established by analyzing 3JH,H coupling
constant values, while the α-anomeric configuration was assigned
by the 1JCH coupling constant value of 175.8 Hz and further
confirmed by the chemical shifts of δ 69.3–69.1 ppm for C-5 of
A, B, and C (Lipkind et al., 1988).

Spin system D (H-1 at 4.66 ppm) was attributed to a β-GlcNAc
as proven by the H-2 proton that showed a correlation with a
nitrogen-bearing carbon atom at 55.8 ppm (Supplementary Table
S1, Figure 2B). The chemical shifts of ring protons that agreed with
the gluco-configuration of pyranose rings as well as the NOE

FIGURE 2
Structural characterization of the O-polysaccharide (OPS) moiety from LPSR. sol. (A)Overlap of the full 1H and 1H,13C HSQC spectra of the OPS from
LPSR. sol. after mild acid treatment. (B) Zoom of the overlapped 1H and 1H,13C HSQC spectra where the main one-bond heteronuclear correlations are
indicated. Numbering of sugar residues is as reported in Supplementary Table S1. (C) Zoom of the overlapped 1H, COSY (blue and pink) and NOESY (black)
spectra. The key inter-residue NOE correlations involving sugar moieties are indicated; letters are as in Supplementary Table S1. (D) Structure of the
elucidated OPS pentasaccharidic repeating unit of the LPSR. sol. The main tetrasaccharide OPS repeating unit is devoid of the xylose residue.
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correlations between H-1, H-3, and H-5, and the large 3JH-1,H-2

coupling constant value. Residue E (H-1 at 4.34 ppm) was assigned
to a β-Xyl as judged by the 3JH-1,H-2 coupling constant value of
8.1 Hz, the chemical shifts of ring protons typical of gluco-
configured pyranose rings, as well as by the observation of H-5
and C-5 resonating at 3.90/3.19 and 65.0 ppm, respectively.

The down-field shifts of carbon signals identified glycosylated
positions at O-2 of A and at O-3 of B, C, andD, while residue E was
identified as a terminal unit. The NOESY spectrum of the OPS
showed strong inter-residue correlations between the following
protons: H-1 of Rha A with H-3 of Rha C at δ 5.07/3.72, H-1 of
Rha C with H-3 of GlcNAc D at δ 4.77/3.53, H-1 of GlcNAc D with
H-3 of Rha B at δ 4.66/3.77, and H-1 of Rha B with H-2 of Rha A at
4.89/3.99 (Figure 2C). Therefore, this analysis led to the
identification of the linear tetrasaccharidic OPS repeating unit:

[→3)-α-L-Rha-(1→3)-β-D-GlcNAc-(1→3)-α-L-Rha-(1→2)-α-
L-Rha-(1→].

As for the terminal Xyl E, a strong inter-residue NOE correlation
between its anomeric proton at 4.34 ppm and a ring proton resonating
at 3.63 ppm (δC at 79.4 ppm, Supplementary Table S1, Figure 2C),
which was assigned to H-4 of an additional α-Rha labelled B’ (H-1 at
4.90 ppm), allowed the determination of a minor xylosylated branched
substructure where residue B was not stoichiometrically substituted at
its position 4 by β-Xyl E (Figure 2D).

Finally, two spin systems labelled asX and Y were also identified
and assigned as constituents of the COS, i.e., 2,3-α-heptose (X) and a
terminal α-Rha (Y) that is linked at its position O-2, as previously
described (Zdorovenko et al., 2008).

As for the lipid A moiety, this was investigated by negative-ion
MALDI-TOF MS and MS/MS. The reflectron MALDI-TOF MS

spectrum is reported in Figure 3, and it showed the occurrence of a
predominant cluster of peaks that was assigned to [M-H]– bis-
phosphorylated penta-acylated lipid A species with the main peak at
m/z 1,585.7 matching with a lipid A carrying two phosphate groups,
four 14:0(OH) and one 12:0. Of note, minor species at m/z 1,716.7,
m/z 1,767.7, andm/z 1,813.8 were detected and attributed to lipid A
additionally carrying Ara4N, 12:0 or 14:0(OH), respectively. Tetra-
acylated lipid A species were also identified at about m/z 1,359.5. In
order to locate the acyl chains with the respect to the glucosamine
disaccharide backbone, a negative ionMALDI-TOFMS/MS analysis
was conducted on several peaks and revealed a 3 + 2 symmetry of the
fatty acids for all penta-acylated species. As an example, the analysis
of the MS/MS spectrum of the precursor ion at m/z 1505.6
(Supplementary Figure S1), representative of mono-phoshorylated
penta-acylated lipid A species, highlighted that the non-reducing
glucosamine carries the phosphate, two primary 14:0(3-OH) and
one secondary 12:0, while the reducing glucosamine bears one
primary N-linked 14:0(3-OH) in turn acylated by a secondary 14:
0(2-OH). These results were consistent with previous data about
Ralstonia lipid A (Varbanets, et al., 2003; Zhang-Sun et al., 2019),
although in this case, a major hypo-acylation degree was noticed.

3.4 Reverse-phase chromatography
separation of leaf extracts with mass
spectrometric detection

In the untargeted UHPLC-MS workflow, the LC dimension was
used for the adequate separation and resolution of the various
phytochemicals within the crude sample extracts, while the MS

FIGURE 3
Structural determination of the lipid A fraction. Reflectron MALDI-TOFmass spectrum, recorded in negative polarity of lipid A from R. solanacearum
obtained after acetate buffer treatment of LPSR. sol. The lipid A species are labelled as tetra-, penta-, and hexa lipid A indicating the degree of acylation. The
proposed structure for the main lipid A species detected at m/z 1,585.7 is reported in the inset.
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component was used for the detection and downstream structural
elucidation of these small molecules. As a dedicated tool in
metabolomics, UHPLC-MS workflow is especially suitable to
capture the phytochemical diversity found in plants, which
includes the semi-polar species of secondary metabolites that
have defensive or protective functions. The metabolite profiles of
the LPSR. sol. treatment and control tomato leaf samples are visually
presented as an y-axis linked overlay of two base peak intensity (BPI)
chromatograms (Figure 4). The chromatographic data generated in
negative electrospray ionization (ESI) mode are presented due to the
various metabolite classes exhibiting an enhanced level of ionization
in this mode. The chromatograms demonstrate the level of
resolution required for phytochemical analyses and highlight the
underlying changes in the metabolism influenced by the LPSR. sol.-
treatment (Figure 4). Qualitative variance is reflected by peak
intensity, where the y-axis indicates the relative peak intensity
each metabolite at their respective Rts (min). The presence/
absence of peaks, as well as quantitative differences, again
highlights the effect of the LPSR. sol-treatment on the leaf
metabolome of S. lycopersicum. Comparative figures of treatment
vs. control at the 24 and 32 h timepoints are provided as
Supplementary Figures S2, S3, while Supplementary Figure S4
provides a time dependent comparison of the extracts at 16, 24,
and 32 h post treatment.

3.5 Multivariate statistical analysis and
modelling

Following UHPLC-MS analysis and data pre-processing, the
data matrices were subjected to multivariate data analytic
procedures to sort through the data, revealing the underlying
trends and patterns that may have been hidden during the LC
step. The aforementioned trends equate to fluctuations in the leaf

metabolic profiles across the time intervals in response to LPSR. sol.
treatment. The multidimensional dataset obtained was subjected to
PCA, an unsupervised projection-based modelling tool that permits
the exploration of the dataset, conclusively revealing the systematic
variation present within the variables (Trygg et al., 2007). PCA
converts all the correlated variables into a smaller number of
principal components that are projected onto a lower
dimensional space while retaining most of the information
embedded in the original datasets (Goodacre et al., 2007; Saccenti
et al., 2014; Ren et al., 2015). A desirable outcome for PCA is a scores
plot where the groups examined produce statistically distinct
clusters (Worley and Powers, 2013). Unless predetermined by the
experimental design, which is not applicable in this instance, the
absence of group separation would indicate a failed result.
Examining the PCA scores plot (Figure 5A), it can be seen that
the first two principal components (PC1 vs. PC2) only explained a
quarter of the total variation within the dataset. The decreased level
of explained variation can be attributed to the host treatment with a
single elicitor, i.e., LPSR. sol., rather than a cocktail of MAMPs, which
is frequently observed in pathogen infection studies (Zeiss et al.,
2019). The scores plot revealed the clear group clustering of the
conditions moving in a convergent manner as the incubation time
points continue.

A partial overlap between some of the scores plot clusters was
observed (Figure 5A), suggestive of metabolic similarities in the
groups whose presence or cellular concentration have remained
unaltered in response to the LPSR. sol. treatment. This pattern implies
that not all metabolic pathways present in the metabolome were
influenced by LPSR. sol. treatment. Again, this observation is
consistent with a single elicitor treatment rather than a cocktail
of MAMPs (Zeiss et al., 2019; Zeiss et al., 2021a). When
superimposed with the Hotellings T2 95% confidence interval
ellipse, no outliers were observed on the PCA scores plot. In
addition to PCA, the dataset was subjected to HiCA (Figure 5B),

FIGURE 4
Overlaid UHPLC-MS BPI chromatograms (ESI−) of methanolic leaf extracts from the LPSR. sol. elicitor-treated tomato plants. A comparison of the
metabolite profiles at the 16 h after infiltration time interval (A)MgSO4 negative control and (B) LPS treatment revealed concentration-linked variation in
relative peak intensities. The y-axes of the two chromatograms are linked and represent the relative abundance (%) of the metabolite features at their
respective retention times (min). The changes in peak intensities (green) and/or the presence/absence of peaks (purple) could be observed,
reflecting the LPSR. sol.-induced perturbation of leaf metabolism.
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as a complimentary unsupervised method of data exploration that
constructs a hierarchy of the score clusters using a dendrogram to
reveal trends that may be hidden during PCA. The HiCA revealed
that the greatest variation in metabolite profiles was observed
between the control and treated groups during the initial 16 h
incubation point. A possible overlap between the metabolite
profiles of the control and treated groups was also observed
during the 24 and 32 h incubation points, respectively. This
observation is suggestive of the host’s metabolism recovering
from the initial perturbation and subsequent defense response to
rapidly re-establish a new homeostatic level.

As a supervised method of binary class separation, OPLS-
discriminant analysis was applied to find a linear relationship
between the multivariate predictor matrix (e.g., the spectrometric
data of the biological samples) and the response matrix (e.g., the
MgSO4 control and LPSR. sol.-treated samples) (Triba et al., 2014). A
representative OPLS-DA scores plot, the S-plot for feature selection,
and the associated model validations are presented in Figures 6A–D.
The OPLS-DA scores plot (Figure 6A) displayed clear class
separation between the control and the LPSR. sol. sample groups
incubated at the 24 h time interval. The information relating to the
other computed supervised models are presented in Supplementary
Table S2. The corresponding OPLS-DA loadings S-plot (Figure 6B)
highlights the features (m/z ions) deemed statistically important that
are positively/negatively correlated to the LPSR. sol. treatment at the
selected incubation time points. Features situated at the extremes of
the S-plot have a combination of high influence and reliability to
OPLS-DA and are relevant in the search for positively/negatively
correlated metabolite markers. Positively correlated metabolite
features with |p(corr)| values of ≥0.5 and covariance values of
|(p1)| ≥ 0.05 were selected for further downstream analysis

(Trygg et al., 2007). The abovementioned parameters were
selected as part of a feedback loop based on the application of
descriptive statistics (analysis of variance, ANOVA) on all of the
features present in the OPLS-DA S-plot. In the parameter
determination process, a statistical cut-off of p value ≤0.05 was
used for the ANOVA. The lowest p(corr)| and |(p1)| values of
features that adhered to the aforementioned cut-off values were used
to create the initially described parameters. These parameters are
largely data-dependent and thus a data-driven method was
implemented to guide the selection of statistically relevant
features, while simultaneously excluding the selection of false
positives. The quality of each OPLS-DA model was assessed
based on the number of components computed for each model,
the calculated R2X(cum), R2Y(cum), and Q2(cum) values, as well as
the PCV-ANOVA value (Supplementary Table S2). The overall
reliability and significance of the OPLS-DA models were
evaluated using the seven-fold ANOVA testing of cross-
validation (CV-ANOVA) diagnostic tool, where supervised
models producing PCV-ANOVA values of <0.05 were deemed
statistically viable (Eriksson et al., 2008). The PCV-ANOVA values
for each computed OPLS-DAmodel are provided in Supplementary
Table S2.

The performance of the OPLS-DA model, in terms of selectivity
as the discrimination threshold is varied, was evaluated by
constructing a receiver operating characteristic (ROC) curve
(Figure 6C) (Westerhuis et al., 2008). As a binary classifier, the
OPLS-DA model displayed perfect discrimination of the LPSR. sol.
group (Figure 6C). The calculated area under the curve for each
model was tabulated in Supplementary Table S2. The predictive
capacity of the OPLS-DA models was validated using a response
permutation test (n = 200—Figure 6D). The permutation test

FIGURE 5
Investigation of the underlying trends in the S. lycopersicum leaf metabolome datamatrices after treatment with LPSR. sol.with the application of two
unsupervised learning methods. (A) 2D PCA scores plot illustrating the formation of observed group clusters at the allocated after treatment incubation
time points (16, 24, and 32 h), with the addition of a corresponding negative controls (C). The generated PCAmodel yielded a R2X(cum) value of 60.2% and
a Q2(cum) value of 35%. The ellipse on the scores plot represents Hotelling’s T2 confidence interval at 95%. (B) Ward-linkage HiCA dendrogram
corresponding to cluster points plotted in (A), showing the hierarchical outline of the negative controls and LPSR. sol.-treatment time points.
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evaluates whether the classification of the individuals in the two
designed control and treatment groups is statistically better than a
random classification into two arbitrary groups (Westerhuis et al.,
2008). The permutation test revealed that the originally computed
models produced higher calculated R2 and Q2 values compared to
the 200 model permutations, concluding that the obtained OPLS-
DAmodels were statistically superior to the generated permutations.
The values from all the permutated models for all the treatment
conditions were R2 < 0.97 and Q2 < −0.05 (Supplementary Table S2).

3.6 Feature selection and metabolite
annotation

The experiments focused on features positively correlated to
LPSR. sol. treatment. This selection was made using the OPLS-DA
loading S-plots (Figure 6B) and VIP scores ≥2. The cut-off values
of |p(corr)| and |(p1)| previously mentioned were determined
based on the application of descriptive statistics (ANOVA),

which also included the calculation of control- and treatment-
averaged peak intensities, the standard deviation, the coefficient
of variation, the fold change between the two groups, and the p
value on the selected features (Zeiss et al., 2021a). In the
parameter determination process, a statistical cut-off of p
value ≤0.05 was used for ANOVA. The lowest p(corr)| and
|(p1)| values of features that adhered to the aforementioned
cut-off values were used to create the initially described
parameters.

The application of descriptive statistics supplied basic
information about the unique features in the control and LPSR.
sol-treated samples and reduced the risk of discovering false positive
markers. The integration of descriptive statistics converted the data
analysis step from a qualitative exploration (e.g., monitoring the
OPLS-DA loadings S-plot) to a semi-quantitative analysis (e.g.,
comparing relative peak intensities) (Zeiss et al., 2021a).
Metabolite features with threshold values above p
value ≤0.05 and a coefficient of variation ≤30% were excluded
from the analysis.

FIGURE 6
Application of a supervised learning method for the data processing of extracts from S. lycopersicum leaf tissue (LPSR. sol. treatments and MgSO4

negative controls) at the 16 h incubation time point. (A) OPLS-DA scores plot showing the group separation of control vs. treated (LPSR. sol., green vs.
controls, purple) conditions. The calculated model yielded R2X (cum) = 40.6%, R2Y (cum) = 99.8%, and Q2 (cum) = 97%. Model validation by seven-fold
CV-ANOVA displayed a level of statistical significance with p value = 5.337 x 10−9. (B) Corresponding OPLS-DA loading S-plot. Relevant variables far
out in the loadings S-plot (x, y ≥ 0.05, 0.5) were selected and represented potential discriminating variables. (C) Receiver operating characteristic (ROC)
curve summarizing the selective ability of a binary classifier (S-plot), with a classifier having a perfect discrimination producing a ROC curve that passes
through the top left corner to indicate 100% sensitivity and specificity. (D) Response permutation test plot (n = 200) for the OPLS-DA model.
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TABLE 1 Annotation of metabolite signatures from the leaf tissue of S. lycopersicum displaying a positive correlation to the R. solanacearum-derived
lipopolysaccharide treatment at selected time intervals (16, 24, and 32 h). The metabolites were annotated in both electrospray ionization modes as indicated
using liquid chromatography coupled to high-definition mass spectrometry (UHPLC-HDMS).

# Rt
(min)

m/z ESI
mode

Putative identificationa Chemical
formula

Mass
error (mDa)

Diagnostic
ions

Metabolite class

1 1.00 115.002 [M–H]- Fumaric acid C4H4O4 −0.1 - Organic acid

2 1.17 133.012 [M–H]- Malic acid C4H6O5 −2.8 - Organic acid

4 1.96 166.084 [M + H]+ Phenylalanine C9H11NO2 −2.6 120 Amino acid

3 2.25 371.058 [M–H]- Caffeoyl glucaric acid isomer Ib C15H16O11 −4.7 209 Hydroxycinnamic acid
derivative

5 2.29 249.122 [M–H]- Caffeoyl putrescine C13H18N2O3 −5.7 411, 178, and 87 Hydroxycinnamic acid
amide

6 2.80 371.058 [M–H]- Caffeoyl glucaric acid isomer II C15H16O11 −6.2 209 Hydroxycinnamic acid
derivative

7 3.16 188.069 [M + H]+ Indole acrylic acid C11H9NO2 −2.3 146, 142, and 118 Indole compound

9 3.56 397.167 [M–H]- Benzoyl ornithine glycoside C18H26N2O8 2.4 293 and 235 Benzoic acid derivative

10 4.85 431.154 [M–H]- Benzoyl alcohol dihexose C19H28O11 −0.8 108 Benzoic acid derivative

11 5.14 353.083 [M–H]- Caffeoyl quinic acid C16H18O9 −5.1 191, 179, and 135 Chlorogenic acid

12 7.76 351.127 [M–H]- Feruloyl serotonin C20H20N2O4 −9.8 321, 192, and 175 Hydroxycinnamic acid
amide

13 8.56 423.184 [M–H]- Diprenyl eriodictyol C25H28O6 3.3 355 and 287 Flavonoid

14 8.79 367.100 [M–H]- Feruloyl quinic acid C17H20O9 −8.4 191 and 161 Chlorogenic acid

15 10.05 245.090 [M–H]- Acetyl tryptophan C13H14N2O3 −3.6 203 Amino acid derivative

16 10.50 203.080 [M–H]- Tryptophan C11H12N2O3 −4.8 188 and 159 Amino acid

17 10.93 693.351 [M–H]- N’,N″,N‴-tris-
(dihydrocaffeoyl)spermine

C37H49N4O9 −1.3 531, 457, 293,
and 222

Hydroxycinnamic acid
amide

18 11.21 609.139 [M–H]- Rutin C27H30O16 −6.6 463 and 301 Flavonoid

19 12.14 449.164 [M–H]- PA (18:1, ketol) C21H38O8P −1.5 295, 279, 169,
and 154

Lipid species

20 13.82 282.112 [M–H]- Coumaroyl tyramine C17H17NO3 −0.1 147 Hydroxycinnamic acid
amide

21 13.87 1096.570 [M–H +
FA]-

Hydroxy tomatine C51H86NO24 7.9 1,050 and 416 Steroidal glycoalkaloid

22 14.28 312.121 [M–H]- Feruloyl tyramine C18H19NO4 −3.2 192 and 178 Hydroxycinnamic acid
amide

23 14.46 453.231 [M–H]- LPG (14:1) C20H38O9P 3.7 379, 371, and 299 Lipid species

24 14.68 1078.550 [M–H +
FA]-

α-Tomatine C50H83NO22 3.1 578, 528, and 416 Steroidal glycoalkaloid

25 14.78 1065.570 [M–H]- Tomatidine tetrahexoside C51H86NO22 7.3 416 Steroidal glycoalkaloid

26 15.24 447.219 [M–H]- PA (18:2, ketol) C21H36O8P 0.5 293, 277, 169,
and 154

Lipid species

27 16.41 291.209 [M–H]- OPDA C18H28O3 −0.8 247 and 222 Jasmonic acid precursor

28 16.79 327.215 [M–H]- TriHODE isomer I C18H32O5 −3.2 309 Lipid species

29 17.27 335.221 [M–H]- DiHETE C20H32O4 −6.5 319 and 303 Lipid species

30 17.47 327.215 [M–H]- TriHODE isomer II C18H32O5 −3.2 309 Lipid species

31 17.49 329.231 [M–H]- TriHOME isomer I C18H34O5 −3.5 312, 297, and 281 Lipid species

(Continued on following page)
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3.7 Investigation of discriminant
phytochemicals

A total of 32 specialized metabolites positively correlated to the
LPSR. sol. treatment in the tomato leaf tissue were annotated (Table 1)
from 3,479 original variables present in the processed data matrix.
From an experimental perspective, the metabolites were annotated
based on accurate mass to (i) measure the mass of m/z ions to a
degree of accuracy and precision and (ii) limit the number of
possibilities during the calculation of elemental composition
(Brenton and Godfrey, 2010). The use of accurate mass also
facilitated the analysis of mass fragmentation patterns of each
compound.

The steps associated with the general structural elucidation and
metabolite annotation, for example, N′,N″,N‴-tris(dihydrocaffeoyl)
spermine, were based on the accurate mass and unique mass
fragmentation patterns and is visually demonstrated in Figure 7.
The polyamine–cinnamic acid conjugate has previously been
reported within plant species of the Solanaceae family in

response to wounding (Dastmalchi et al., 2014) and viral
infection (Rossouw et al., 2019). The mass fragmentation pattern
of each metabolite was investigated in both ionization modes, in
conjunction with the use of MSE energy ramping within the ESI
collision cell. These strategies were used to demonstrate how the
MassFragment plugin of theMassLynx XS software easedmetabolite
annotation and bolstered the verification of well-described
compounds. The elemental compositions of fragment ions were
also calculated as a secondary method of validating each
compound’s structural identity (Figure 7). Finally, the annotation
of each metabolite was cross-referenced with the scientific literature.

Many of the phytochemicals identified have been previously
reported in publications, dedicated tomato databases, or in related
species within the Solanaceae family (Gómez-Romero et al., 2010;
Narváez-Cuenca et al., 2013; Roldan et al., 2014; Cichon et al., 2017;
Zeiss et al., 2019). The metabolites were tabulated based on the
ascending Rt with the corresponding m/z values. Several of the
identified phytochemicals were members of the phenylpropanoid
class, e.g., hydroxycinnamic acids (HCAs), benzoates and

TABLE 1 (Continued) Annotation of metabolite signatures from the leaf tissue of S. lycopersicum displaying a positive correlation to the R. solanacearum-derived
lipopolysaccharide treatment at selected time intervals (16, 24, and 32 h). The metabolites were annotated in both electrospray ionization modes as indicated
using liquid chromatography coupled to high-definition mass spectrometry (UHPLC-HDMS).

# Rt
(min)

m/z ESI
mode

Putative identificationa Chemical
formula

Mass
error (mDa)

Diagnostic
ions

Metabolite class

32 17.86 419.219 [M + H]+ PA (17:2) C20H36O7P 0.3 265, 249, 169,
and 154

Lipid species

33 18.32 329.230 [M–H]- TriHOME isomer II C18H34O5 −5.5 312, 297, and 281 Lipid species

aThe metabolite features were annotated according to level 2 of the Metabolomics Standards Initiative (Sumner et al., 2007).
bGeometrical or positional isomers that eluted at different Rts are indicated as isomer I and isomer II, respectively.

*** Abbreviations: DiHETE, dihydroxy eicosatetraenoic acid; FA, formic acid adduct (46 Da), LPG, monoacylglycerophosphoglycerol; OPDA, oxo-phytodienoic acid; PA, phosphatidic acid;

TriHODE, trihydroxy octadecadienoic acid; and TriHOME, trihydroxy octadecenoic acid.

FIGURE 7
Mass fragmentation pattern of N′,N″,N”’-tris(dihydrocaffeoyl)spermine (m/z 695.350) in the positive ESI mode. MassFragment software facilitated
structural elucidation and compound identification, using the spectral patterns in both ionization modes (ESI negative mode not shown). The molecular
ion is 695.359 [M + H]+, while the main fragment ions observed are 531.316 [M + H-C9H8O3]

+, 457.233 [M + H-C12H18N2O3]
+, 293.182 [M +

H-C21H26N2O6]
+, and 222.112 [M + H-C25H35N3O6]

+.
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flavonoids, conjugated amides of HCAs (HCAAs), conjugated esters
of HCAs (chlorogenic acids, CGAs), amino- and organic acid
derivatives, and several members of diverse lipid classes.

3.8 Semi-quantitative analysis of
discriminant oxylipins and benzoyl ornithine

Following the metabolite investigation step, the annotated
metabolites that exhibited a positive correlation over the
described incubation intervals were selected for further
downstream analysis. The frequent identification of oxylipins as
biomarkers associated with the early host responses to MAMPs and
live pathogen infection was recently reviewed (Pretorius et al., 2021).
Here, the relative peak intensities of several oxylipin markers were
compared between the described groups over the incubation time
intervals (Figure 8). An analysis of the fluctuations during the early
16-h response revealed the increased production of four oxylipins,
namely, two isomers of trihydroxy octadecadienoic acid (Figures 8A,
C) and trihydroxy octadecenoic acid, respectively (Figures 8B, D).
Each of the oxylipin molecules demonstrated an increase 16 h aftwe
LPSR. sol.-infiltration followed by a decrease returning to levels

comparable to the corresponding control. A two-condition
pairwise Student’s t-test was applied, in addition to the previous
application of univariate descriptive statistics, to determine the
presence of a statistical difference between the groups. In
addition, the relative cellular content of a benzoyl ornithine
derivative was similarly investigated (Figure 8E). Ornithine is a
non-proteogenic amino acid and precursor of putrescine, a
polyamine (Zeiss et al., 2021b). The relative abundance of the
ornithine compound was found to transiently increase during the
16-h incubation interval followed by a decrease to new cellular
homeostatic levels during the 24 and 32 h incubation times
(Figure 8E). The synthesis of the abovementioned molecules
increased (>two-fold) during the 16-h incubation point,
suggestive of either a dedicated role during the early responses of
plant signaling and defense or as unanticipated byproducts
synthesized throughout the early stages of cellular recognition.
Interestingly, the investigated oxylipin molecules, along with
several other lipid species, have previously been reported as
discriminant markers associated with LPS-treatment (Finnegan
et al., 2016; Mareya et al., 2020; Tinte et al., 2020). From a
proteomic perspective, several plasma-membrane associated
proteins linked to oxylipin synthesis, e.g., phospholipase D, have

FIGURE 8
Fluctuating cellular levels of the selected discriminant ions in extracts from tomato leaves in the early response after treatment with LPSR. sol. The
relative peak intensities of two trihydroxy octadecadienoic acid isomers (A, C), two trihydroxy octadecenoic acid isomers (B, D), and benzoyl ornithine
glycoside (E) over the described incubation time points (16, 24, and 32 h) are presented in green. MgSO4 control (C—highlighted in purple) was included
for each time point as a comparativemeasure. Each data bar is presented as amean value (n= 9 samples) with the error bars indicating the calculated
standard deviation (σ). A two-condition paired Student’s t-test was performed to compare the treatments withMgSO4 control where the asterisks indicate
levels of statistical significance (* = p value ≤0.01, ** = p value ≤0.001, and *** = p value ≤0.0001). R indicates the position of an ester-bonded glycoside
group in the benzoyl ornithine derivative (E).
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also been discovered as markers induced by LPS chemotype
treatments (Hussan et al., 2020).

3.9 Semi-quantitative analysis of
discriminant nitrogen-containing
metabolites

Six nitrogen-containing metabolite features, namely, indole
acrylic acid, tryptophan, feruloyl tyramine, feruloyl
dehydrotyramine, coumaroyl tyramine, and N′,N″,N‴-
tris(dihydrocaffeoyl)spermine, were also identified as discriminant
ions positively correlated to the LPSR. sol. throughout the incubation
intervals (Figure 9). The two indole-containing compounds,
tryptophan, and indole acrylic acid (Figures 9A,B) were
upregulated during the 24- and 32-h incubation intervals. A
similar trend was also observed with feruloyl dehydrotyramine
(Figure 9C) and feruloyl tyramine (Figure 9D), where the
synthesis of both compounds was upregulated during the 24-h
interval followed by a large increase in production leading up to
the 32-h incubation point. The cellular levels of coumaroyl tyramine
were found to increase throughout each of the incubation intervals
(Figure 9E). Finally, the synthesis of the conjugated spermine

derivative was downregulated during the early and middle
incubation points. This might be indicative of reprioritization/
reallocation of metabolic reserves or utilization of the HCA and
polyamine comprising the conjugate (Zeiss et al., 2021b).
Interestingly, it was only found to increase again at the 32-h
incubation point (Figure 9F). This trend hints to the compound
playing a functional role in the overall recovery of the host’s
metabolism following the initial perturbation.

4 Discussion

4.1 LPS as a microbe/pathogen-derived
molecular pattern molecule

Plant hosts are generally exposed to a variety of pathogen-
derived MAMPs that can be perceived by the innate immune
system (Sanabria et al., 2010; Zhou and Zhang, 2020). The
resultant defense response is thus the result of a number of
perception and signal transduction events (Boller and Felix, 2009;
Malik et al., 2020). By following a reductionist approach with
discrete elicitors (Zeiss et al., 2021a; 2022), the contribution of
individual MAMPs to the combined response might be elucidated.

FIGURE 9
Fluctuating cellular levels of the selected response markers in extracts from tomato leaves after treatment with LPSR. sol. The relative peak intensities
of indole acrylic acid (A), tryptophan (B), feruloyl dehydrotyramine (C), feruloyl tyramine (D), coumaroyl tyramine (E), and N′,N″,N‴-tris(dihydrocaffeoyl)
spermine (F) over the described incubation time points (16, 24, and 32 h) are presented in green. MgSO4 control (C, highlighted in purple) was included for
each time point as a comparative measure. Each data bar is presented as a mean value (n = 9 samples) with the error bars indicating the calculated
standard deviation (σ). A two-condition paired Student’s t-test was performed to compare the treatments with the MgSO4 control where the asterisks
indicate levels of statistical significance (* = p value ≤0.01, ** = p value ≤0.001, and *** = p value ≤0.0001).
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LPS perform several roles in the interaction between the
bacterial pathogen and its eukaryotic host. In the context of
pathogenesis, LPS coating contributes to the exclusion of plant-
derived antimicrobial phytoanticipin and phytoalexin molecules
(Ranf, 2017). Although the literature has documented the roles of
LPS in promoting bacterial survival, the mechanisms surrounding
LPS perception during plant–pathogen interactions remain limited
(Sanabriavan Heerden and Dubery, 2012; Mareya et al., 2020).

R. solanacearummultiplies and spreads through the plant xylem
vessels. Due to the surface location of LPSs, high concentrations of
the MAMP would reveal the presence to the plant immune
surveillance system. However, to date, no dedicated pattern
recognition receptor (PRR) responsible for LPS perception in
plants has been documented. Assuming analogy to other defense
responses, the perception of LPS via membrane-mediated PRRs
would be the plausible outcome to generate a biochemical signal via
a PRR-RBOHD (respiratory burst oxidase homolog D) module. It is
known that LPS can trigger oxidative bursts that are low in intensity
but sustained over a long time interval. The literature on Arabidopsis
has documented the capacity of LPS to trigger two successive ROS
bursts (Shang-Guan et al., 2018). Little is known about the
mechanism by which LPS is perceived in plants and how this
dynamic results in the activation of different plant responses
(Ranf, 2017; Tinte et al., 2020). Nonetheless, ROS signaling acts
as a central driving force in plant cells by integrating many different
signal transduction pathways that would trigger induced
phytochemical responses, leading to a final biochemical
phenotype in support of plant defense and survival. Interestingly,
although LPS represents a major membrane component of potential
Gram-negative pathogens, the changes to the metabolome observed
in this study are relatively minor or attenuated when compared to
that triggered by flagellin-derived peptides flg22 and flg28 under the
same experimental conditions (Zeiss et al., 2022).

It is believed that lipid A of LPS from different species lies at
the center of the biological activity of LPS (Madala et al., 2011).
Certain bacteria can manipulate the composition of their lipid A
in response to environmental cues and thereby evade, modulate,
or even antagonize the triggering of innate host responses
(Munford and Varley, 2006; Madala et al., 2012). Variations in
lipid A structures are exhibited by different acylation patterns
and the number and location of phosphates, leading to
heterogeneity observable even in the same bacterium
(Schromm et al., 1998; Holst and Molinaro, 2009). The
chemical composition, structure, and conformation of lipid A
may thus be important determinants during a plant’s interaction
with pathogenic or beneficial bacteria.

Here, we focused on the LPS from R. solanacearum that was
found to be composed of a mixture of two OPS repeating units,
i.e., either a linear tetrasaccharide (as the major component) or a
branched xylose-containing pentasaccharide (as the minor
component), which was consistent with the previous data
(Kocharova et al., 1993; Varbanets et al., 2003). Strikingly, lipid
A was found to be hypoacylated, that is, it mainly carries five or four
acyl chains, with only minor hexa-acylated forms identified. Of note,
and in accordance with previous data reported for Ralstonia genus
(Varbanets et al., 2003; Zhang-Sun et al., 2019), a high degree of
hydroxylation of secondary fatty acids has been observed with 14:
0(2-OH) or 16:0(2-OH) found on the reducing glucosamine unit.

This raises the question of whether the low level of lipid A
acylation of the R. solanacearum pathogens might play a role in i)
evasion of immune recognition or ii) dampening the intensity of the
triggered defense response. Although, in comparison with human
pathogens, much less is known about the strategies used by
phytopathogens to escape the plant immune detection, several
studies have shown that significant alterations in the lipid A
structure resulted in a decreased immunoactivity of the LPS (Di
Lorenzo et al., 2022). These structural alterations include the
reduction of the acylation degree and the non-stoichiometric
substitution of the phosphates with positively charged residues
(such as 2-aminoethyl phosphate or Ara4N) (Silipo et al., 2008;
Di Lorenzo et al., 2022). In this frame, the underacylation of lipid A
has been associated with the abatement of plant defense response,
while the occurrence of positively charged groups masking the
phosphates are considered a counter measure adopted by
phytopathogens to evade plant immune vigilance. As a matter of
fact, lipid A from the R. solanacearum strain analyzed in this study
was hypoacylated and, in minor species, it was also found to be
decorated by Ara4N. Therefore, it is tempting to hypothesize that
the peculiar lipid A chemical structure of this strain might have a key
role in facilitating/enabling bacterial survival and resilience within
the host plant. In addition, the expression of two diverse OPS, as
previously observed for other Ralstonia strains, and both containing
a high number of deoxy sugar residues, which render the OPS more
hydrophobic, might be considered additional strategies to modulate
or suppress plant defense responses, thereby facilitating the
establishment of the infection.

Metabolomics tools and approaches have developed to a core
technology in the plant sciences that produces large,
information-rich datasets. Metabolic profiling using an
untargeted UHPLC-MS approach provided adequate levels of
resolution and sensitivity required to capture the fine fluctuations
frequently observed in the metabolome. In general, plants
mobilize similar chemical defense responses as reflected by the
activation of similar pathways leading to secondary metabolite
synthesis (Zeiss et al., 2021b). At the metabolite level, this might
be reflected in enhanced synthesis of secondary metabolites with
antimicrobial and antioxidant activities. Moreover, plants
execute the triggered defenses based on the perceived stimulus
and the existing biochemical background operative in the naïve
vs. stress-related conditions. Allowing for the dynamic nature of
plant metabolism, qualitative and quantitative differences of
specific metabolites or classes of metabolites within the
broader metabolomic profiles may modulate the eventual
outcome of a host response to attempted infection (Mhlongo
et al., 2021). These molecules (Table 1 and discussed as follows)
were found to accumulate in varying amounts in the LPSR. sol.-
infiltrated leaves and exhibit varying accumulation patterns.
These patterns indicate differential reprogramming over time
(either high or low accumulation at specific time points,
reflecting early, late, or oscillatory responses). The time-
dependent reprogramming is an indication that plants re-
adjust their metabolomes toward defense responses in order to
ward off infection (Mhlongo et al., 2021). In the absence of a real
infection by the R. solanacearum pathogen, the levels of the LPSR.
sol. -induced metabolites decrease with the establishment of a new
cellular homeostasis.
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4.2 Changes in lipidome components

The annotated metabolomics data suggest a positive correlation
between the early stages of LPSR. sol. treatment, i.e., the 16-h
inoculation point and the increased metabolic activity within the
oxylipin biosynthetic pathway (as shown in Figure 8). A previous
study investigating the changes observed in the metabolome of
Sorghum bicolor after treatment with LPS from Burkholderia
andropogonis reported the increased production of triHODE
among other identified lipid molecules (Mareya et al., 2020). Our
recent review has described the direct involvement of fatty acids and
oxylipins in plant defense (Pretorius et al., 2021). Fatty acid
peroxidation can occur via enzymatic or non-enzymatic means.
However, the intricate process of lipid peroxidation along with the
discriminant increase in oxylipin content during the 16-h interval
would suggest direct enzymatic action following initial LPSR. sol.

perception and the subsequent launch of an early immune response
from the lipoxygenase pathway. The overall antimicrobial activity of
the oxylipins is dependent on various structural and chemical
properties, e.g., length of the carbon chain, as well as the
presence, number, position, and orientation of double bonds
(Deboever et al., 2020). Membrane lipids are often regarded as
substrates to produce several signaling molecules such as
phosphatidic acid and phosphoinositide species, as well as free
fatty acids and phytohormones, where the production of these
molecules is typically initiated as a response to stress. Lipids also
have auxiliary functions in plant defense, which include acting as
structural defense contributors (cell membrane and -wall) and
serving as specialized antimicrobial compounds (Mareya et al.,
2020). The external signals and underlying mechanisms that
mediate the subsequent release and synthesis of these
hydrophobic molecules remain an unexplored scientific field. The
development of emerging lipidomics in conjunction with the
advances in MS instrumentation will have a direct impact on the
functional analysis of these lipid molecules in coming years.

4.3 Hydroxycinnamic acid amide (HCAA)
production

This study demonstrated that the infiltration of LPSR. sol. into the
leaf tissues resulted in the elevated production of the phenolic
conjugates coumaroyl tyramine, feruloyl tyramine, and feruloyl
dehydrotyramine during the later stages of the induced response.
The induction of these compounds by R. solanacearum-derived
peptide elicitors (flg22, flgII-28, and csp22) have been previously
reported in the same experimental model (Zeiss et al., 2021a; Zeiss
et al., 2022). Relatedly, a previous study showed the chitosan-
induced production of the abovementioned compounds in
tomato, and through fluorescence detection and mutant analysis,
it demonstrated that the production of feruloyl tyramine was
responsive to the cellular levels of systemin and jasmonic acid
(Pearce et al., 1998). The production of coumaroyl tyramine,
feruloyl tyramine, and associated conjugates was also observed in
the metabolic profiles of Nicotiana tabacum cells after treatment
with LPS, chitosan, and flg22 (Mhlongo et al., 2016). The presence of
the HCAAs in response to biotic stress implicated these secondary
metabolites with associated roles in the Solanaceae host defense

system. The HCAAs are nitrogen-containing molecules synthesized
by the enzymatic action of hydroxycinnamoyl transferase(s) that act
on the free amine groups of either polyamines or aromatic amines,
and the activated thioester (Co-A) derivatives of the HCAs, the latter
precursors are synthesized via the early phenylpropanoid pathway
(Zeiss et al., 2021b). Moreover, the detection and elevated
production of the benzoyl ornithine derivative points to the
activation of the polyamine biosynthetic pathway. HCAAs are
regarded as the end products of polyamine and aromatic amine
metabolism that create a metabolic storage pool to modulate the flux
of both parental constituents. The conjugation of the two precursors
alters the overall characteristics of the product molecules. These
altered chemical properties facilitate the translocation, chemical
stability, and compartmentalization of the HCAAs within the
host cells (Zeiss et al., 2021b).

In addition to their antimicrobial activity as soluble phenols,
HCAAs have also been proposed to crosslink structural polymers in
the cell wall during infection, potentially contributing toward the
formation of a phenolic barrier that can make the cell wall more
resilient to pathogenic degradation (Zeiss et al., 2021b). Relatedly,
cell wall defenses have been identified as important as inducible
barriers against infection and spreading of R. solanacearum (Shi
et al., 2023). A recent paper reported that tomato varieties tolerant to
virulent strains of R. solanacearum have the ability to restrict
bacterial movement and to slow disease progression, thus
enhancing apparent resistance to the pathogen (Kashyap et al.,
2022). These resistant tomato cvs. specifically responds to
infection by assembling a vascular structural barrier formed by a
ligno-suberin coating and tyramine-derived HCAAs.

5 Conclusion

Detection of infection by microbial phytopathogens through
immune receptors triggers signaling cascades that initiates dynamic
and interconnected, multi-level defense responses. To date, little is
known about the underlying mechanisms that mediate LPS
perception in tomato and other plants. We have previously
argued that the lipid and glycan molecular patterns of the LPS
molecule act as partial agonists, but that the intact LPS structure is
required for the full agonist activity. The structural analysis of the
LPSR. sol. points to the composition and acylation pattern of lipid A
as a mechanism by which the pathogen may attempt to evade
immune recognition or to dampen the intensity of the MTI
defense response, as well as alter the dynamics that result in the
activation of downstream plant defense strategies. Overall, the
results generated from this untargeted metabolomics approach
demonstrated that LPSR. sol. perception in S. lycopersicum leads to
a redirection of cellular metabolism in support of producing several
defense-related metabolites such as the HCAs, HCAAs, and
oxylipins. By comparison, few flavonoids and steroidal
glycoalkaloids were identified as discriminatory biomarkers.
Specific metabolites identified as potential biomarkers for future
studies were from the HCAA class which included feruloyl tyramine,
coumaroyl tyramine, as well as indole acrylic acid and the aromatic
amino acid, tryptophan as the precursor molecule of secondary
metabolites. Various studies have documented the production of
HCAAs in tomato and other species of the Solanaceae family in
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response to biotic stress or elicitor treatments, suggesting that these
molecules have dedicated functional roles during plant–pathogen
interactions. The HCAAs clearly play a significant role in the defense
response of tomato and may be determining factors in the resistance
response to R. solanacearum infection. Several oxygenated fatty acid
derivative molecules, namely, trihydroxy octadecadienoic acid and
trihydroxy octadecenoic acid, were also found to be upregulated in
tomato during the early stages of LPSR. sol. treatment. The oxylipins
were also identified as potential markers within the lipid class that
can be studied in future research relating to plant defense within the
Solanaceae family. The increased production of the lipid molecules
during elicitor treatment is suggestive of the active involvement of
oxylipins during host perception, signal transduction, and plant
defense. Some of the abovementioned compounds have been
reported in the scientific literature, but the inducers and cellular
dynamics by which these molecules contribute to the overall plant
defense in the tomato, R. solanacearum pathosystem, remain largely
unknown.
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