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This mini review focuses on the opportunities provided by current and emerging
separation techniques for mass spectrometry metabolomics. The purpose of
separation technologies in metabolomics is primarily to reduce complexity of
the heterogeneous systems studied, and to provide concentration enrichment by
increasing sensitivity towards the quantification of low abundance metabolites.
For this reason, a wide variety of separation systems, from column chemistries to
solvent compositions and multidimensional separations, have been applied in the
field. Multidimensional separations are a common method in both proteomics
applications and gas chromatography mass spectrometry, allowing orthogonal
separations to further reduce analytical complexity and expand peak capacity.
These applications contribute to exponential increases in run times concomitant
with first dimension fractionation followed by second dimension separations.
Multidimensional liquid chromatography to increase peak capacity in
metabolomics, when compared to the potential of running additional samples
or replicates and increasing statistical confidence, mean that uptake of these
methods has been minimal. In contrast, in the last 15 years there have been
significant advances in the resolution and sensitivity of ion mobility spectrometry,
to the point where high-resolution separation of analytes based on their collision
cross section approaches chromatographic separation, with minimal loss in
sensitivity. Additionally, ion mobility separations can be performed on a
chromatographic timescale with little reduction in instrument duty cycle. In
this review, we compare ion mobility separation to liquid chromatographic
separation, highlight the history of the use of ion mobility separations in
metabolomics, outline the current state-of-the-art in the field, and discuss the
future outlook of the technology. “Where there is one, you’re bound to divide it.
Right in two”, James Maynard Keenan.
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1 Introduction

Global untargeted metabolomics aims at facilitating our understanding of the
dynamics of the chemical composition of biological systems. Metabolites in
heterogenous systems are chemically diverse and vary in their abundances, with many
endogenous metabolites existing at very low concentrations. The primary goal of
metabolomics is the unbiased relative quantification of each metabolite in a biological
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system. For comprehensive metabolite coverage of biological
systems to be successful, multiple separation techniques are
needed.

In this review, we outline the principles of separation systems as
applied to mass spectrometry based metabolomics. We focus on the
capabilities of the increasingly commonly used technique of ion
mobility, hyphenated (or not) to liquid chromatography. We
evaluate the current state-of-the-art of ion mobility metabolomics
in its various guises and provide a forward-looking summary of
where we can expect the technology to move in future.

2 Liquid chromatography

The term liquid chromatography was originally described by
Michael Tswett in 1906 (Tswett, 1968). The method initially used to
separate plant pigments (hence the name) has now become a
powerful and ubiquitous technique routinely applied to separate
and purify complex mixtures of molecules. Briefly, analytes are
dissolved in a solvent and then passed through a column filled with a
stationary phase. The stationary phase can be made of various
materials, such as silica or polymer beads, which are packed
uniformly into the column. As the analytes pass through the
column, different molecules interact with the stationary phase,
depending on their physicochemical properties. This interaction
causes the molecules to separate and travel through the column at
different rates, creating peaks.

There are many different stationary phases, allowing separations
to be tailored depending on the particular characteristics of the
analytes in question. A detailed analysis of stationary phases is
beyond the scope of this article, and there are already many excellent
reviews on the subject (Zou et al., 2002; Zhang, 2008; West et al.,
2010; Sobańska, 2021), but the most commonly applicable phases in
metabolomics in general are reversed phase (RP, which separates on
the basis of hydrophobicity) and hydrophilic interaction liquid
chromatography (HILIC, which separates on the basis of
hydrophilicity).

2.1 Advantages of liquid chromatography
separation

While there have been many excellent studies in the metabolomics
discipline conducted using direct infusion mass spectrometry (Maleki
et al., 2018; Dou et al., 2023; Sun et al., 2023; Wolthuis et al., 2023) and
flow injection mass spectrometry (Zang et al., 2018), chromatographic
separations are commonly hyphenated to mass spectrometry. This
coupling adds a further dimension of separation, beyond mass
spectrometry itself, which in essence is a separation.

The main aim of applying chromatographic separations up-
front of a mass spectral analysis is to reduce the complexity of highly
complex biological samples, in an effort to ameliorate the effects of
dynamic range (Want et al., 2005) and ion suppression (Furey et al.,
2013). Furthermore, chromatography provides a very valuable
concentration of each analyte as it leaves the column as a peak,
substantially improving its signal-to-noise ratio and making it more
likely to be detected and quantified, as opposed to direct infusion
mass spectrometry.

2.2 Limitations of liquid chromatography for
global metabolomics

One of the main limitations of chromatography is its lack of
reproducibility and its heavy reliance on a few common stationary
phases. Reversed-phase chromatography, for example, is now the
most well-developed and ubiquitous separation medium in
analytical chromatography, and rather than use a different
column, it is common to use ion-pairing reagents to adapt the
chemistry of an analyte to a reversed-phase system (Gong, 2015).
Unfortunately, the vast majority of ion-pairing reagents are not mass
spectrometry compatible, comprising (as many do) inorganic salts
or highly ionizable organic compounds in millimolar concentrations
that overwhelm the detection of less abundant endogenous
compounds in the system being studied. Various powerful
metabolomics methods exploit these properties to perform more
targeted analyses, but for broad-based untargeted metabolomics,
analysts are typically limited to RP or HILIC with volatile organic
acids, bases and salts used as separation systems. Thus, a major
limitation of liquid chromatography, as applied to mass
spectrometry is that the separation gradient is responsible for
much of the selectivity of the system, which can lead to
situations where global separations are poorly suited to the
separation of closely related compounds.

3 Ion mobility spectrometry

Ion mobility spectrometry (IMS), also known as gaseous
electrophoresis, plasma chromatography (Revercomb and Mason,
1975), or ion chromatography (Helden et al., 1995), is an
electrophoretic technique that separates ions based on their
mobility in gas phase when subjected to an electric field.
Traditional IMS measurements determine the drift velocities of
gaseous ions in a weak electric field at a constant temperature.
The applied electrical field accelerates ions through the drift region,
which is counteracted by the drift gas that impedes ion progress. The
speed of ion movement or drift velocity (νd) is therefore
proportional to the strength of the applied electric field (E), with
mobility (K) of the ion being the constant of proportionality. The
mobility of an ion is determined by its shape, size, and charge in the
given drift gas. As a result, ions traverse the drift region at a velocity
that is proportional to the inverse of their collision cross section
(CCS), a physical property that reflects the geometric shape of the
ion in the specific gas (Borsdorf and Eiceman, 2006). More compact
structural conformations undergo fewer collisions with the drift gas
and therefore have smaller CCS values, than extended planar
structures. Thus, the CCS feature provides insight into the overall
shape of the molecule, while ion mobility allows rapid separation of
mixtures, including isobaric ions, typically within milliseconds.

3.1 Types of ion mobility spectrometry

There are four major types of ion mobility spectrometry
(Figure 1). The most common and oldest ion mobility analysers
consist of a drift tube containing an inert gas, typically dubbed ‘drift
tube ion mobility spectrometry or DTIMS’ (Kirk et al., 2019), as
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described above. Travelling wave ion mobility spectrometry
(TWIMS) is a more recent modification of the traditional drift
tube on similar hardware, with the addition of an electrostatic pulse
waveform that propagates along the tube, allowing nonlinear
resolution of ions at the expense of ion heating (Shvartsburg and
Smith, 2008). Ion heating is one of the more significant limitations of
TWIMS as ion temperatures can reach 551–774 K (Merenbloom
et al., 2012) and can lead to dissociation in small molecules (Morsa
et al., 2011). More recent developments in this technology include
structures for lossless ion manipulation (SLIM) and cyclic ion
mobility (Giles et al., 2019). The SLIM architecture consists of a
sandwich structure, with parallel, mirror image electrode arrays that
can be configured for either conventional or travelling wave ion
mobility (Ibrahim et al., 2017). Currently, available commercial
instruments based on the technology configure the system in a
serpentine array, significantly extending the ionmobility path length
to a total of 13 m utilizing 44 U-turns. Resolving power varies
depending on the configuration of the ion optics and the voltages
applied, but resolutions of around 300 are available (May et al.,
2021). The cyclic IMS instrument incorporates a doughnut-shaped
cyclic ion mobility (cIM) device that allows ions to be separated via a
user-designated number of repetitive 98 cm paths. The drawback to
the instrument is that faster, lighter ions eventually end up ‘lapping’
slower ones, and to this end the instrument brackets the cIM with
ion traps, allowing isolation and selection of pre-and post-separation
ions. This allows some unprecedented and complex ion mobility
experiments, such as the one described by (Sisley et al., 2020), to be
performed.

Another type of ion mobility analyser is high-field asymmetric
ion mobility spectrometry (FAIMS). This relies on the use of a
changing compensation voltage as a filter across a gas flow counter
to the direction of the ions. FAIMS was originally published by
Buryakov et al. (1993), and has since found its way into several
commercial instruments. It is generally employed as a filter
(Canterbury et al., 2008), rather than a separation device and has
therefore been sparsely used in liquid chromatography coupled to
ion mobility multidimensional separations.

Recently, the Park group introduced the trapped ion mobility
spectrometry (TIMS) device (Ridgeway et al., 2016). Unlike the
previous systems, in TIMS the ions are held in a trapping device and
exposed to a moving column of gas, based typically on a
modification of ion funnel technology. This trap and release
substantially reduce the dimensions of the ion mobility device.
Ions are separated based on their physicochemical properties as

in conventional drift tube ion mobility, however, the movement of
the gas and ions are reversed. In TIMS, ramping the electric field
gradient (E) releases ions in descending order of their mobility (K).
For an excellent review of TIMS, see (Ridgeway et al., 2018). Parallel
accumulation, serial fragmentation (PASEF) is an experimental
methodology available on TIMS instruments that uses the unique
capabilities of the ion mobility trapping device to accumulate ions,
and then sequentially pulse them into a quadrupole for isolation and
fragmentation (Meier et al., 2018). Thus, in a single drift spectrum,
fragment patterns for each MSMS spectrum are resolved via ion
mobility. This dramatically increases the acquisition rate of data
dependent acquisition experiments (Meier et al., 2015). It has
recently been modified to support data-independent acquisition
(dia-PASEF) for proteomics applications (Demichev et al., 2022),
which provides an intriguing possibility for improving
metabolomics analysis.

3.2 Advantages of ion mobility as a
separation technology

Regardless of the specific type of ion mobility device, there are
two main advantages of ion mobility spectrometry. Firstly, it allows
the separation of isomeric analytes. As discussed in Section 2.2, one
of the major limitations of chromatography is that while an optimal
liquid chromatography gradient can separate closely related ions,
the generally applicable rapid gradients used with untargeted
analysis often preclude the separation of isomeric compounds
with closely related structures. While this is an issue for
chromatography, modern ion mobility instruments with
resolutions greater than 100 can now separate many isomeric
ions within milliseconds. By coupling ion mobility to
chromatography, multidimensional separation can be performed,
allowing unprecedented resolution of complex mixtures without
extending separation times or employing complex fractionation
strategies.

Similar to the first, the second advantage of ion mobility comes
from the modern high-resolution IM instruments. Collisional cross
section is a fundamental property of an ion, and it can therefore be
calculated with greater accuracy than predicting retention times on
columns. While ion mobility devices measure ‘drift times’ rather
than CCS directly, all modern instruments can calculate CCS from
drift times, and this directly addresses one of the biggest challenges
in metabolomics—the unambiguous identification of metabolites.

FIGURE 1
Schematic representation of the different types of ion mobility and the principles of separation. The direction of drift gas flow and electric field are
indicated with dark blue and grey arrows, respectively.
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This latter poses an important challenge for the application of
IMS to metabolomics. CCSs are able to be determined from
experimental parameters via the Mason-Schamp equation (Siems
et al., 2012) in DTIMS instruments, while for other types of IMS,
calibration standards with known CCS values (derived from DTIMS
experiments) must be used (Dodds and Baker, 2019). In practice,
even on DTIMS instruments, a typical use for metabolomics, e.g.,
single field multiplexed analysis, require calibration standards
derived from slower, more complex stepped-field methodologies
(Dodds and Baker, 2019). Due to the development of large-scale,
experimentally determined libraries (Zheng et al., 2017; Picache
et al., 2019), as well as appropriate calibration, CCS features provide
an additional criterion for metabolite annotation.

3.3 Limitations of ion mobility

Sensitivity has been the perennial issue with ion mobility
mass spectrometry. In standard ion mobility analysis, analytes
are introduced to the ion mobility device as a packet, followed by
ion separation and concomitant detection in the mass
spectrometer. Before the next packet of ions can be
introduced to the ion mobility device, the slowest ion in the
current packet must pass through and exit the IM device. This
means that during ion mobility separation, all ions that would
otherwise be analysed are lost. Furthermore, due to imperfect
electronics, ions of interest can also be lost during the ion
mobility separation itself. There have been many attempts to
improve sensitivity, such as improving overall instrument
design as outlined in 3.1 (Deng et al., 2016), advances in the
construction of the instrument with improved lens designs and
electric field generation, and the use of multiplexing.
Multiplexing is a technique used to decrease ion packet losses
in ion mobility mass spectrometry. Multiple ion packets are
pulsed into a single ion mobility device in a pseudo-random
order. This creates a patterning effect in the ion mobility
analysis that can be deconvoluted by the use of a sliding
window algorithm during data analysis. This technique has
been reported to reduce sensitivity losses from 99% to 50%
(Reinecke et al., 2019).

Current, commercially available ion mobility instruments
possess resolving power in the hundreds, compared to the tens of
thousands of theoretical plates typical in chromatography (for a
fascinating discussion on the relationship between resolution
parameters for chromatography and spectrometry see (Rokushika
et al., 1985)). Consequently, reproducibility is a key parameter to
confidently assign collisional cross sections to analytes.
Interlaboratory studies have been performed, demonstrating
RSDs of 0.14% and ~1.5% in TWIMS-based devices (Hernández-
Mesa et al., 2020; Righetti et al., 2020) and 0.29% for DTIMS-based
devices (Stow et al., 2017), which compares favourably to
chromatography retention time RSD of 5%–20% depending on
analyte (Madji Hounoum et al., 2015).

A further limitation to ion mobility is that it does not get
around the problem of matrix effect, a somewhat complex term in
‘omics disciplines, particularly metabolomics. Typically, the
“matrix” corresponds to all of the components of a sample one
does not want to analyse, while the “analytes” are the components

one wants to detect. While all sample preparation methodologies
are biased, a good ‘targeted’ analysis aims to strip out the vast
majority of the “matrix” while leaving the “analytes” in place. In
untargeted metabolomics one does not have this luxury, and the
“matrix” and the analytes are (apart from contaminants, buffers,
salts, etc.) mostly the same thing. The interaction between these
contaminants, as well as the more abundant analytes within the ion
mobility device can result in ion suppression (or ion
enhancement).

Ion suppression is commonly associated with electrospray
ionization, although matrix effects and suppression of
ionization are also found in electron ionization used with gas
chromatography (Yarita et al., 2015) and nanoelectrospray
ionization (Kourtchev et al., 2020). Ion suppression occurs in
the ion source, but matrix effects such as ion-ion interactions
and space charging can occur in trapping instruments
(Hohenester et al., 2020). Thus, ion mobility separations,
occurring as they do, after ionization, provide no reduction
on in-source ion suppression. Consequently, suppression
resulting from, flow injection or direct infusion mass
spectrometry will not be ameliorated by the use of IMS, and
could result in additional artifacts in measurement (Levin et al.,
2014).

4 Hyphenating ion mobility to mass
spectrometry reduces sample
complexity

As previously stated, the primary purpose of separation in
mass spectrometry studies is the reduction in sample complexity
and reduction of matrix effects. The human metabolome
database currently contains 217,920 compounds (Wishart
et al., 2022), demonstrating the scale of metabolomics
researchers’ analytical challenge. Of these, 8,369 metabolites
are currently listed as ‘detected’ in human tissues, with the
remainder either predicted or derived from other sources, such
as the microbiome and the diet. With the impact of ion
suppression (see 3.3) and the limited dynamic range of mass
spectrometers (Want et al., 2005), it is very common to perform
some separation of analytes before they are presented to the
mass spectrometer.

An exception to this is mass spectrometry imaging (MSI), a
technique where mass spectrometry is used to raster across a tissue
or other spatially resolved sample, providing a spectrum per pixel.
Individual ions can be collated to generate images of the distribution
of a molecular species to, for example, a tissue structure or feature.
Of course, a typical matrix-assisted laser desorption ionization
(MALDI) (Tanaka et al., 1988) or desorption electrospray
ionization (DESI) (Takáts et al., 2004) process is extremely
challenging to hyphenate to chromatography as extraction of
analytes and ionization are performed directly from the sample.
Therefore, MSI sees considerable benefits from the incorporation of
ion mobility separation prior to mass spectrometry (Spraggins et al.,
2019), regardless of any impact of matrix effects, as high-resolution
IMS can separate isobaric compounds without prior
chromatographic separation, while also maintaining acquisition
speed.
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TABLE 1 Typical workflows in liquid chromatography ion mobility mass spectrometry utilizing multidimensional separation principles.

Type of ion
mobility

Instrument
used

Separation pre-ion
mobility

Run
length
(min)

Sample Comments Reference

TWIMS Waters Metabolites: BEH Amide 30 Not listed Paglia and Astarita
(2017)

Synapt G2S Lipids: C18

DTIMS Agilent Waters Atlantis HSS
T3 RPLC

21 Pichia pastoris Feuerstein et al.
(2021)

6560

TIMS Bruker timsTOF fleX Matrix-assisted laser
desorption ionization
(MALDI)

N/A Human kidney IM separation only, mass
spectrometry imaging

Neumann et al.
(2020)

DTIMS Agilent LC-MS: Atlantis T3 C18 20 Pichia pastoris Combines conventional LC-
IMMS and heart cutting 2D
LC-IMMS

Causon et al. (2019)

6560 Heart cutting: Hypercarb
porous graphetised
carbon

DTIMS Agilent Capillary electrophoresis Not listed Mass Spectrometry
Metabolite Library of
Standards (Sigma)

Drouin et al. (2021)

6560

TWIMS Waters Flow injection 3 Serum (prostate cancer) No chromatographic
separation

Zang et al. (2018)

Synapt G2-S

DTIMS Modified Agilent Laser ablation
electrospray ionization
(LAESI)

Not listed Allium cepa IM separation only, single-cell
mass spectrometry

Taylor et al. (2021)

6538

DTIMS Agilent Agilent Zorbax Eclipse
Plus C18

22.5 Human serum
(xenobiotics)

Foster et al. (2022)

6560

TWIMS Waters Waters HSS T3 RPLC 26 Human serum Tebani et al. (2016)

Synapt G2-S

DTIMS Modified Agilent Waters BEH C18 5 Pichia pastoris Data independent MS/MS Mairinger et al.
(2019)

6560

TIMS Bruker timsTOF Pro Bruker Solo C18 23 Olive oil Drakopoulou et al.
(2021)

TWIMS Waters Waters HSS T3 29 Ginseng root, leaf, bud Li et al. (2021)

Vion IM-QToF

TWIMS Waters Waters CORTECS C18 18 Human plasma (orange
metabolites)

Lacalle-Bergeron
et al. (2020)

Vion IM-QToF

DTIMS Agilent Not listed Not listed Not listed Protocol paper Reisdorph et al.
(2019)

6560

DTIMS Modified Thermo Direct infusion Not listed Standards and bovine heart
extract

Maleki et al. (2018)

LTQ-Velos

DTIMS Custom Ionwerks Direct infusion Not listed Rat lymph Kaplan et al.
(2013b)

DTIMS Tofwerk Direct infusion 20 Rat brain tissue after
cocaine administration

Kaplan et al.
(2013a)

Resistive Glass Ion
Mobility-ToF MS

TWIMS Waters Waters BEH Amide
(HILIC) and Waters BEH
C18 (RP)

HILIC: 12 Saposhnikoviae Radix Wang et al. (2020)

Vion IM-QToF RP: 17

(Continued on following page)
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Outside the world of MSI, hyphenation of chromatography
to mass spectrometry has been used to ameliorate ion
suppression and the effects of limited dynamic range for
decades, and the recent advances in ion mobility peak
capacities have made this a viable addition, or alternative, to
chromatography separations.

5 The use of multidimensional
separation and best practices

Typical multidimensional separation workflows consist of
coupling multiple liquid chromatography-based separation
chemistries and hyphenating to mass spectrometry. A full
overview of metabolomics applications with liquid
chromatography is beyond the scope of this article. For a
comprehensive review of recent methods please read (Lv
et al., 2019).

Many examples of ion mobility used as a separation method for
metabolomics studies appear in the literature (see Table 1). Of the
28 tabulated articles, nine perform no prior separation to analysis via
ionmobility-mass spectrometry. Of these, four are single-cell studies
using a variety of methods (laser ablation electrospray ionization,
matrix-assisted laser desorption ionization, microsampling), where

the addition of chromatography would be challenging, if not
impossible. For the remainder, a variety of chromatography
methods are hyphenated. The most common remains the use of
RP chromatography employing C18 columns, but a growing
number of HILIC chromatography methods are beginning to be
applied. A single method by Causon et al. incorporates heart-cutting
two-dimensional liquid chromatography into a metabolomics
workflow, while an additional two methods incorporate both
HILIC and RP chromatography, performed separately, into their
analyses.

Liquid chromatography hyphenated with ion mobility mass
spectrometry has become a powerful technique for reducing
complexity in untargeted metabolomics. Publications should, of
course, adhere to the most appropriate rigorous standards for
reporting, the most recent of which is currently (Kirwan et al.,
2022), but ion mobility mass spectrometry is a relatively recent
development and standards are still evolving. At minimum, the
parameters for the ion mobility device should be recorded along
with those for the mass spectrometer it is hyphenated to. This is
relatively straightforward for dedicated hybrid instruments, but
can be more complex for aftermarket or less intrinsically-linked
hardware. Additionally, calibration standards should be noted
and the parameters of the calibration should be recorded.
Typically these are performed before every batch, but IM

TABLE 1 (Continued) Typical workflows in liquid chromatography ion mobility mass spectrometry utilizing multidimensional separation principles.

Type of ion
mobility

Instrument
used

Separation pre-ion
mobility

Run
length
(min)

Sample Comments Reference

FAIMS Owlstone FAIMS
with Agilent 6230

Agilent Poroshell
120 HILIC

13 Human urine Szykuła et al. (2019)

TWIMS Waters Direct infusion 2 Exhaled human breath
condensate (cystic fibrosis
patients)

Zang et al. (2017)

Synapt G2-S

TWIMS Waters Phenomenex Kinetex
C18 and CORTECS
HILIC

18 Herbal cigarettes (14 herbs
plus tobacco)

Gil-Solsona et al.
(2021)

Vion IM-QToF

TWIMS Waters Inertsyl Phenyl-3 47 Zucker rat plasma (high fat
diet)

Wickramasekara
et al. (2013)

Synapt G2-S

TWIMS Waters Waters HSS T3 C18 30 Mouse feces (bile diversion
surgery)

Poland et al. (2019)

Synapt G2-S

TWIMS Waters LAESI Not listed Human neuroblasts IM separation only—single
cell mass spectrometry

Stopka and Vertes
(2019)

Synapt G2-S

FAIMS Sciex Single cell microsampling Not listed Raphanus sativus single
cells

IM separation only—single
cell mass spectrometry

Fujii et al. (2015)

SelexION QTRAP
5500

TWIMS Waters Waters HSS T3 C18 25 Vangueria agrestis
glycosides and terpenoids

Avula et al. (2020)

Vion IMS-QToF

DTIMS Agilent Agilent HILIC-Z 4 Bacillus sp. Plant growth
promoting rhizobacteria

Pičmanová et al.
(2022)

6560

TWIMS Waters Waters BEH Amide 3.3 Rat urine (tienilic acid
study)

King et al. (2019)

Synapt G2-S
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calibration samples at both the beginning and the end of a run
would provide good evidence that the system was working to
appropriate parameters during sample acquisition. CCS
libraries, both predicted (Zhou et al., 2020) and
experimentally determined (Nichols et al., 2018) are now
commonly used in ion mobility mass spectrometry analyses.
Both are useful but which library and what criteria (typically a
1%–2% window is used to match CCS) were used is critically
important information in the quality assessment of
identifications, and should be rigorously reported.

Of course, libraries are not valuable without software to
support their use, and academic software that supports the
diversity of ion mobility datasets has been relatively slow in
development in comparison to the advances in
instrumentation. The three most commonly used packages in
the field are MS-Dial (Tsugawa et al., 2015), Skyline (MacLean
et al., 2010) and MzMine (Schmid et al., 2023). All three are
graphical applications that provide peak picking, metabolite
annotation and statistics, with Skyline being more closely
aimed at targeted applications and MS-Dial having the benefit
of integrated large-scale libraries. Ideally, the development of
modular tools accessible via R and/or Python would support
rapid advancement in terms of new features, that could then be
backported into more attractive GUI applications while allowing
the possibility of building pipelines into interfaces such as
Workflow4Metabolomics (Giacomoni et al., 2015).

6 Conclusion and prospects

Ion mobility spectrometry hyphenated to mass spectrometry has
seen rapid technological advancement in the previous 10 years.
Initially confined to a few specialists, it is finding itself now routinely
applied in proteomics and metabolomics studies for the valuable
additional information it provides. Given its capacity for extremely

rapid separations, we anticipate a great future for the technology and
expect to see further developments to improvements in resolution
for the technology.
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