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Background: Cold exposure (CE) can effectively modulate adipose tissue
metabolism and improve metabolic health. Although previous metabolomics
studies have primarily focused on analyzing one or two samples from serum,
brown adipose tissue (BAT), white adipose tissue (WAT), and liver samples, there is
a significant lack of simultaneous analysis of multiple tissues regarding the
metabolic changes induced by CE in mice. Therefore, our study aims to
investigate the metabolic profiles of the major tissues involved.

Methods: A total of 14 male C57BL/6J mice were randomly assigned to two
groups: the control group (n = 7) and the CE group (n = 7). Metabolite
determination was carried out using gas chromatography-mass spectrometry
(GC-MS), andmultivariate analysis was employed to identifymetabolites exhibiting
differential expression between the two groups.

Results: In our study, we identified 32 discriminant metabolites in BAT, 17 in WAT,
21 in serum, 7 in the liver, 16 in the spleen, and 26 in the kidney, respectively.
Among these metabolites, amino acids, fatty acids, and nucleotides emerged as
the most significantly altered compounds. These metabolites were found to be
associated with 12 differential metabolic pathways closely related to amino acids,
fatty acids, and energy metabolism.

Conclusion: Our study may provide valuable insights into the metabolic effects
induced by CE, and they have the potential to inspire novel approaches for treating
metabolic diseases.
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1 Introduction

There is a well-established relationship between ambient
temperature and mortality rates (Vialard and Olivier, 2020;
Burkart et al., 2021; Fatima et al., 2021). Cold temperatures, as a
frequent fluctuation in ambient temperature, have a profound
impact on human health. In cold environments, endothermic
organisms rely on thermogenesis to maintain their core body
temperature. This allows cells to carry out crucial physiological
processes and functions (Nguyen et al., 2011).

Brown adipose tissue (BAT) is a unique type of tissue dedicated to the
process of non-shivering thermogenesis (NST), mediated by uncoupling
protein 1 (UCP1) (Nicholls et al., 1978; Ricquier, 2017). The activation of
BAT can be induced by exposure to cold temperatures. Earlier rodent
studies have indicated that age significantly influences heat production
capabilities in response to cold, with older mice exhibiting a reduced
thermogenic effect (Talan et al., 1985; Tatelman andTalan, 1990). Initially,
researchers believed that BAT had limited thermogenic and metabolic
functions in adult humans, due to the observation that BAT depots were
more prevalent in infants (Lean, 1989). However, this perspective has
recently been questioned as multiple independent studies have reported
the presence ofmetabolically active BAT in healthy adult humans (Cypess
et al., 2009; van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009).
Studies conducted on rodents and humans have demonstrated that cold-
induced activation of BAT has several beneficial effects on metabolic
health. These effects include enhancing glucose uptake (Virtanen et al.,
2009; Orava et al., 2011), improving insulin sensitivity (Stanford et al.,
2013; Hanssen et al., 2015), stimulating lipolysis (Zechner et al., 2012),
reducing circulating levels of triglyceride (TAG) and cholesterol (Bartelt
et al., 2011; Berbée et al., 2015; Iwen et al., 2017; Worthmann et al., 2017),
as well as clearing circulating branched-chain amino acids (BCAAs)
(Yoneshiro et al., 2019). Exposure to cold leads to a swift increase in
fibroblast growth factor 21 (FGF21) expression in BAT (Chartoumpekis
et al., 2011; Hondares et al., 2011; Fisher and Maratos-Flier, 2016).
FGF21 plays a crucial role in promoting the expression of thermogenic
genes, including UCP1, within BAT (Fisher et al., 2012). Acting as a
systematic peptide hormone, FGF21 plays a significant role in regulating
energy balance, as well as maintaining glucose and lipid homeostasis.
Additionally, there is a strong correlation between FGF21 levels and
decreased circulating levels of BCAAs (Jiang et al., 2015; Karusheva et al.,
2019; Yu et al., 2021; Shah et al., 2023). These findings have reignited
interest in increasing energy expenditure by CE and BAT activation to
combat obesity and its associated metabolic complications, including
diabetes, dyslipidemia, and cardiovascular diseases in adult humans
(Kajimura and Saito, 2014; Becher et al., 2021).

However, several studies have indicated that the activation of
BAT through exposure to cold may have negative effects on health,
such as an elevated heart rate, increased blood pressure (Wang et al.,
2022), and potential involvement in the progression of breast cancer
(Singh et al., 2016). Given these concerns, it is essential to
meticulously assess the implications of this approach.
Consequently, it is crucial to thoroughly investigate the impact of
CE on the functioning of various vital organs in the body. Currently,
there is a notable absence of simultaneous analysis of multiple
tissues regarding the metabolic changes induced by CE in mice.

Metabolomics, which involves the examination of small molecule
metabolites in biological samples, offers a comprehensive understanding
of samples and valuable insights into biological alterations resulting from

disease or environmental interactions (Murphy and Sweedler, 2022).
Techniques like gas chromatography-mass spectrometry (GC-MS) and
liquid chromatography-mass spectrometry (LC-MS), have been
extensively utilized for the analysis of numerous metabolites. GC-MS,
known for its high sensitivity and capacity for high-throughput analysis,
has emerged as a valuable tool in non-targeted metabolomics
investigations (Papadimitropoulos et al., 2018).

Several studies have explored themetabolic alterations induced byCE
usingmetabolomics. But thus far, these studies have primarily focused on
analyzing one or two samples from serum, BAT, WAT, and liver (Lu
et al., 2017; Hiroshima et al., 2018; Okamatsu-Ogura et al., 2020; Hou
et al., 2021; Kovaničová et al., 2021; Chen et al., 2022). There has been a
noticeable absence of simultaneous analysis of multiple tissues regarding
the metabolic changes induced by CE. To the best of our knowledge, this
present study represents the first metabolomics investigation
simultaneously examining the effects of CE on multiple tissues,
including serum, BAT, WAT, liver, spleen, and kidney. Our findings
have the potential to provide fresh insights into the metabolic impacts
induced by CE, and they may also present new ideas for treating
metabolic diseases.

2 Materials and methods

2.1 Animal treatment

A total of 14male C57BL/6Jmice, aged 6 weeks, were obtained from
Jinan Pengyue (Jinan, China). These mice were allowed unrestricted
access to food and water for 1 week in a climate chamber set at an
ambient temperature of 24°C ± 2°C, with a relative humidity of 40%, and
a 12/12 h light/dark cycle. Subsequently, the mice were randomly
assigned to two groups: the CE group (n = 7) and the control group
(n= 7). Themice in the CE groupwere subjected to a temperature of 4°C
for 4 h per day, continuously for two consecutive weeks. In contrast, the
mice in the control group weremaintained at room temperature (24°C ±
2°C) for the same duration. The body weight and food intake of themice
were recorded on a weekly basis. All experimental procedures were
conducted in compliance with the Regulations of Experimental Animal
Administration issued by the State Committee of Science and
Technology of the People’s Republic of China and were approved by
the University Ethics Committee (approval no. JNRM-2022-DW-054).

2.2 Sample collection and preparation

Twenty-four hours after the last CE session, the mice were
humanely euthanized. Food was withheld before sample collection
to ensure a 6-h fasting period for the mice. Anesthesia was
administered through intraperitoneal injection of sodium
pentobarbital at a dose of 50 mg/kg. Following enucleation of the
eyeballs, blood samples were collected and subsequently centrifuged
at 3,500 rpm for 8 min to obtain serum samples. For euthanasia, cervical
dislocation was performed on all mice. Immediately afterward, each
mouse was necropsied on an ice surface to acquire samples of
interscapular BAT, inguinal WAT, liver, spleen and kidney. All
tissue samples were washed with phosphate-buffered saline (PBS,
pH 7.2), rapidly frozen in liquid nitrogen, and stored at −80°C in a
refrigerator for future use.
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To prepare the serum samples, 100 μL of serum was combined
with 350 μL of methanol containing 100 μg/ml heptadecanoic acid.
The solution was then vortexed and centrifuged at 14,000 rpm for
10 min at 4°C to collect the supernatant. The supernatant was
transferred to a 2 mL tube and dried at 37°C under a flow of
nitrogen gas. Subsequently, 80 μL of o-methylhydroxylamine
hydrochloride (dissolved in pyridine at 15 mg/mL) was added to
the dried sample and thoroughly mixed. The mixture was incubated
at 70°C for 90 min. Next, 100 μL of N,O-bis (trimethylsilyl)
trifluoroacetamide containing 1% trimethylchlorosilane (Sigma-
Aldrich) was added to each sample, followed by a 60-min
incubation at 70°C. The solution was then vortexed, centrifuged
at 14,000 rpm for 2 min at 4°C, and filtered through a 0.22-μm filter
membrane before GC-MS analysis. To prepare the tissue samples
(BAT, WAT, liver, spleen, and kidney), 50 mg of each sample was
homogenized in 1 mL of methanol containing 1 mg/mL
heptadecanoic acid. After homogenization, the samples were
centrifuged for 10 min at 20,913 × g at 4°C. The subsequent steps
of the protocol were similar to those used for the serum samples. For
the quality control samples (QCs), equal amounts of tissue samples
from the control group and CE group were mixed together.

2.3 GC-MS analysis

The analysis of all samples was performed using a 7000°C mass
spectrometer coupled with a 7890 B gas chromatograph system from
Agilent Technologies (CA, United States). The separation of serum,
BAT, WAT, liver, spleen and kidney samples was performed using
an HP-5MS fused silica capillary column. Using helium gas as a
carrier, a 1 µL aliquot of the derivative solution was processed in split
mode (50:1), with the front inlet purge flow rate set to 3 mL/min and
the gas flow rate set to 1 mL/min. The temperatures for the
administration, transfer line, and ion source were maintained at
280°C, 250°C, and 230°C, respectively. The GC temperature program
started at 60°C for 4 min, followed by an increase to 300°C at a rate of
8°C/min, and then held at 300°C for 5 min. For ionization, the
voltage of the electron impact was set to −70 eV, and data acquisition
occ1urred at a rate of 20 spectra per second. MS identification was
performed using electrospray ionization (ESI) in full scan mode,
with a mass-to-charge ratio (m/z) range of 50–800.

We have effectively uploaded the source data from our GC-MS
analysis to MetaboLights. The identifier MTBLS8334 has been
exclusively assigned to our research project. To access our study,
simply follow this link: https://www.ebi.ac.uk/metabolights/
MTBLS8334.

2.4 Multivariate statistical analysis

The initial analysis of the GC-MS data was conducted using
Agilent Unknowns Analysis software and Mass Hunter Quantitative
Analysis software from Agilent Technologies (United States). The
SIMCA 14.1 software (Umetrics, Sweden) was employed for the
statistical analysis of normalized peak area percentages. Orthogonal
Projections to Latent Structures Discriminant Analysis (OPLS-DA)
was performed to differentiate between the CE group and control
group. OPLS-DA is a statistical method utilized for multivariate data

analysis, especially when dealing with high-dimensional data and a
limited number of samples. The primary objective of OPLS-DA is to
identify significant differences and relationships between two or more
groups or classes within a dataset (Bylesjö et al., 2006). The method
achieves this by modeling the systematic variation between classes,
such as different treatment groups or disease states, while effectively
removing unrelated or confounding variations. Variable Importance
in Projection (VIP) values estimate the importance of each variable in
the projection used in a least squares regression model and is often
used for variable selection (Mehmood et al., 2012; Pinto et al., 2012). A
variable with a VIP value close to or greater than one can be
considered important in given model. Variables with VIP values
significantly less than one are less important and might be good
candidates for exclusion from themodel. Model validation was further
verified using the permutation test (200 permutations). Two-tailed
Student’s t-tests were conducted using SPSS 19.0 software (SPSS,
Chicago, IL, United States). Then p values obtained from the t-test
were corrected using fdrtool (Strimmer, 2008). Metabolites with VIP
values >1.0 in the OPLS-DA analysis and p-values
adjusted <0.05 were considered statistically significant.

Differential endogenous metabolites were imported into
MetaboAnalyst 5.0 (http://www.metaboanalyst.ca) as well as the
Kyoto Encyclopedia of Genes and Genomes (KEGG; http://www.
kegg.jp) for metabolic pathway analysis. Metabolic pathways with
impact values >0 and p-values adjusted <0.05 were considered as
significantly affected pathways.

3 Results

3.1 Impact of CE on food intake and body
weight

The CE group exhibited a significant increase in food intake
compared to the control group (p-values <0.0001, Figure 1A).
Conversely, the CE group showed a decrease in body weight
(p-values <0.05, Figure 1B). These findings, consistent with the
previous report (Yang et al., 2017), suggest that CE induces
increased energy expenditure.

FIGURE 1
Impact of CE (cold exposure) on food intake and body weight. (A)
Food intake during the entire 2-week period in CE and con (control)
groups, (B) body weight over the full 2 weeks between these two
groups. Data represent mean ± SEM, n = 7, ****p < 0.0001,*p <
0.05 compared to the control group.
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FIGURE 2
Representative GC–MS total ion current chromatograms from QCs. (A) BAT, (B) WAT, (C) serum, (D) liver, (E) spleen, (F) kidney (x-axis represents
time and y-axis represents abundance).
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FIGURE 3
OPLS-DA scores and 200 permutation tests for OPLS-DAmodels. (A) BAT, (B)WAT, (C) serum, (D) liver, (E) spleen, (F) kidney. Statistical validation of
the significant OPLS-DA models by permutation testing revealed no over-fitting (note that the blue regression line of the Q2 points intersect the vertical
axis at values <0).
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3.2 GC-MS total ion chromatograms of
samples

The representative total ion chromatograms of QCs were
shown in Figure 2; Details can be seen in Supplementary

Material. The chromatograms demonstrate strong signal
responses in all samples, indicating the detection of a diverse
range of metabolites with a high peak capacity throughout the
analysis. The retention time was consistent and the
chromatograms of each tissue exhibited excellent reproducibility.

FIGURE 4
Heatmap of differential metabolites in CE and control groups. (A) BAT, (B) WAT, (C) serum, (D) liver, (E) spleen, (F) kidney. Red and blue represent
upregulation and downregulation, respectively. Rows and columns correspond to metabolites and samples, respectively.

Frontiers in Molecular Biosciences frontiersin.org06

Gong et al. 10.3389/fmolb.2023.1228771

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1228771


TABLE 1 Differential metabolites detected in BAT, WAT, serum, liver, spleen and kidney between CE and control groups.

Metabolites HMDB VIP P P adjusted Fold change

BAT

L-Glutamic acid HMDB0000148 1.43 1.73E-06 1.40E-05 3.07

Glycerol HMDB0000131 1.41 2.60E-06 1.40E-05 1.87

L-Valine HMDB0000883 1.42 2.91E-06 1.40E-05 2.68

Glycerol monostearate HMDB0011535 1.40 6.60E-06 2.64E-05 1.84

L-Methionine HMDB0000696 1.37 2.01E-05 6.60E-05 2.64

L-Leucine HMDB0000687 1.34 3.97E-05 1.03E-04 2.79

L-Isoleucine HMDB0000172 1.31 1.09E-04 2.15E-04 2.67

L-Threonine HMDB0000167 1.35 1.89E-04 3.03E-04 2.12

L-Alanine HMDB0000161 1.28 2.54E-04 3.80E-04 2.60

Urea HMDB0000294 1.34 3.24E-04 4.51E-04 4.78

L-Phenylalanine HMDB0000159 1.22 6.30E-04 7.03E-04 2.97

Serine HMDB0062263 1.21 8.04E-04 8.14E-04 2.27

1-Octadecanol HMDB0002350 1.21 8.52E-04 8.41E-04 1.42

L-5-Oxoproline HMDB0000267 1.27 1.15E-03 9.82E-04 2.18

Myo-Inositol HMDB0000211 1.13 2.17E-03 1.33E-03 1.52

Scyllo-Inositol HMDB0006088 1.15 2.55E-03 1.45E-03 2.20

Stearic acid HMDB0000827 1.12 2.68E-03 1.49E-03 1.82

Glycine HMDB0000123 1.20 2.69E-03 1.49E-03 3.23

L-Proline HMDB0000162 1.14 2.82E-03 1.53E-03 1.95

Myristic acid HMDB0000806 1.23 3.03E-03 1.58E-03 1.95

Malic acid HMDB0000744 1.11 3.17E-03 1.62E-03 2.30

Niacinamide HMDB0001406 1.09 3.96E-03 1.93E-03 2.67

Lactic Acid HMDB0000190 1.16 4.24E-03 2.04E-03 2.96

Uracil HMDB0000300 1.10 4.33E-03 2.07E-03 1.66

Phosphorylethanolamine HMDB0000224 1.08 5.80E-03 2.56E-03 1.76

L-Tyrosine HMDB0000158 1.14 6.62E-03 2.80E-03 3.72

Inosine HMDB0000195 1.05 6.92E-03 2.88E-03 2.47

Palmitic Acid HMDB0000220 1.09 9.01E-03 3.41E-03 1.58

Cystathionine HMDB0000099 1.03 9.13E-03 3.44E-03 2.46

Oxalic acid HMDB0002329 1.03 9.21E-03 3.46E-03 2.42

Eicosapentaenoic Acid HMDB0001999 1.01 9.99E-03 3.69E-03 2.00

9H-Purin-6-ol HMDB0000157 1.04 1.60E-02 5.40E-03 4.40

WAT

Urea HMDB0000294 1.72 5.76E-05 1.90E-03 3.80

Cholesterol HMDB0000067 1.69 1.42E-04 1.90E-03 1.72

Pentadecane HMDB0059886 1.55 8.26E-04 4.68E-03 1.50

Myristic acid HMDB0000806 1.45 2.98E-03 8.32E-03 1.64

(Continued on following page)
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TABLE 1 (Continued) Differential metabolites detected in BAT, WAT, serum, liver, spleen and kidney between CE and control groups.

Metabolites HMDB VIP P P adjusted Fold change

L-Alanine HMDB0000161 1.45 3.67E-03 8.82E-03 2.08

Lactic Acid HMDB0000190 1.52 4.42E-03 9.23E-03 1.70

Oxalic acid HMDB0002329 1.40 4.74E-03 9.36E-03 1.79

1-Octadecanol HMDB0002350 1.49 5.93E-03 1.12E-02 1.48

Malic acid HMDB0000744 1.35 9.73E-03 1.63E-02 1.81

Stearic acid HMDB0000827 1.29 1.63E-02 2.27E-02 1.66

L-Glutamic acid HMDB0000148 1.32 1.70E-02 2.32E-02 4.16

Arachidonic acid HMDB0001043 1.21 2.40E-02 2.86E-02 1.91

Glycine HMDB0000123 1.17 2.75E-02 3.09E-02 2.12

Glycerol monostearate HMDB0011535 1.16 3.32E-02 3.42E-02 1.50

Ethanolamine HMDB0000149 1.17 3.38E-02 3.45E-02 1.72

1-Monopalmitin HMDB0011564 1.02 3.83E-02 3.76E-02 1.50

Palmitic Acid HMDB0000220 1.08 4.96E-02 4.51E-02 1.46

Serum

L-5-Oxoproline HMDB0000267 1.55 7.95E-05 8.32E-04 0.56

L-Alanine HMDB0000161 1.50 4.09E-04 1.84E-03 0.44

L-Proline HMDB0000162 1.49 5.77E-04 2.01E-03 0.52

Serine HMDB0062263 1.52 1.95E-03 3.41E-03 0.69

Glycine HMDB0000123 1.42 2.95E-03 3.99E-03 0.69

Lactic Acid HMDB0000190 1.33 3.24E-03 4.11E-03 0.50

Cholesterol HMDB0000067 1.30 5.55E-03 4.71E-03 0.58

Malic acid HMDB0000744 1.24 6.66E-03 4.88E-03 0.35

Palmitic Acid HMDB0000220 1.31 6.75E-03 4.89E-03 0.54

L-Valine HMDB0000883 1.38 6.86E-03 4.91E-03 0.62

Myo-Inositol HMDB0000211 1.24 7.34E-03 4.96E-03 0.43

Propylene glycol HMDB0001881 1.21 8.21E-03 5.15E-03 0.45

1-Octadecanol HMDB0002350 1.24 1.13E-02 6.42E-03 0.63

4-Hydroxybutanoic acid HMDB0000549 1.16 1.36E-02 7.30E-03 0.57

L-Isoleucine HMDB0000172 1.31 1.48E-02 7.73E-03 0.61

Glycerol HMDB0000131 1.15 1.76E-02 8.61E-03 0.59

Stearic acid HMDB0000827 1.08 2.81E-02 1.15E-02 0.44

Glycolic acid HMDB0000115 1.11 2.96E-02 1.19E-02 0.53

Citric acid HMDB0000094 1.07 3.05E-02 1.21E-02 0.56

Urea HMDB0000294 1.12 3.52E-02 1.31E-02 0.61

L-Leucine HMDB0000687 1.14 5.98E-02 1.79E-02 0.66

Liver

(R)-3-Hydroxybutyric acid HMDB0000011 1.82 1.19E-04 3.18E-03 0.40

Lactic Acid HMDB0000190 1.69 7.27E-04 4.65E-03 0.44

(Continued on following page)
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TABLE 1 (Continued) Differential metabolites detected in BAT, WAT, serum, liver, spleen and kidney between CE and control groups.

Metabolites HMDB VIP P P adjusted Fold change

Mesitylene HMDB0041924 1.65 1.18E-03 5.28E-03 0.45

Dodecane HMDB0031444 1.46 7.45E-03 2.29E-02 0.43

Glycolic acid HMDB0000115 1.34 1.69E-02 3.98E-02 0.53

Cholesterol HMDB0000067 1.33 1.83E-02 4.16E-02 0.57

Glycerol HMDB0000131 1.32 1.85E-02 4.19E-02 0.61

Spleen

Glycerol monostearate HMDB0011535 1.65 9.92E-05 3.30E-03 0.63

1-Monopalmitin HMDB0011564 1.65 1.16E-04 3.30E-03 0.51

Glycerol HMDB0000131 1.53 1.30E-03 5.73E-03 0.62

Lactic Acid HMDB0000190 1.49 2.00E-03 6.14E-03 0.59

Malic acid HMDB0000744 1.42 2.84E-03 7.71E-03 0.51

1-Octadecanol HMDB0002350 1.38 4.21E-03 1.04E-02 0.88

Stearic acid HMDB0000827 1.40 6.06E-03 1.36E-02 0.55

L-5-Oxoproline HMDB0000267 1.37 8.30E-03 1.66E-02 0.75

Cholesterol HMDB0000067 1.42 8.71E-03 1.71E-02 0.58

Uridine HMDB0000296 1.34 1.10E-02 1.95E-02 0.63

L-Proline HMDB0000162 1.28 1.95E-02 2.99E-02 0.61

Tyrosine HMDB0000158 1.18 2.15E-02 3.20E-02 0.77

Xylitol HMDB0002917 1.17 2.82E-02 3.79E-02 0.54

Palmitic Acid HMDB0000220 1.16 3.01E-02 3.94E-02 0.59

Myristic acid HMDB0000806 1.12 3.16E-02 4.05E-02 0.69

Pentadecane HMDB0059886 1.21 3.43E-02 4.24E-02 0.64

Kidney

Butanedioic acid HMDB0000254 1.53 3.83E-04 2.61E-03 2.93

Doconexent HMDB0002183 1.51 5.14E-04 2.85E-03 2.84

L-5-Oxoproline HMDB0000267 1.50 5.62E-04 2.92E-03 2.83

Decane HMDB0031450 1.58 1.13E-03 3.99E-03 2.59

Cholesterol HMDB0000067 1.52 1.50E-03 4.37E-03 2.41

Bisphenol A HMDB0032133 1.42 1.63E-03 4.48E-03 2.45

1-Hexadecanol HMDB0003424 1.43 1.92E-03 4.68E-03 2.00

Stearic acid HMDB0000827 1.41 2.14E-03 4.80E-03 2.20

D-Gluconic acid HMDB0000625 1.38 2.62E-03 5.18E-03 2.28

Malic acid HMDB0000744 1.37 2.97E-03 5.41E-03 2.44

Palmitic Acid HMDB0000220 1.46 3.43E-03 5.67E-03 2.14

Myo-Inositol HMDB0000211 1.42 4.93E-03 6.91E-03 1.53

Glycerol HMDB0000131 1.37 7.38E-03 8.71E-03 1.65

L-Threonine HMDB0000167 1.26 7.95E-03 9.08E-03 1.81

L-Serine HMDB0000187 1.25 8.65E-03 9.50E-03 2.40

(Continued on following page)
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3.3 Multivariate statistical analysis

In OPLS-DA analysis, clear differences were observed
between the CE group and the control group. The parameters
(BAT R2X = 0.622, R2Y = 0.997, Q2 = 0.904; WAT R2X = 0.522,
R2Y = 0.989, Q2 = 0.791; serum R2X = 0.59, R2Y = 0.918, Q2 =
0.731; liver R2X = 0.736, R2Y = 1, Q2 = 0.824; spleen R2X = 0.515,
R2Y = 0.992, Q2 = 0.673; and kidney R2X = 0.669, R2Y = 0.997,
Q2 = 0.805) indicated the effectiveness of the model, allowing
clear differentiation between the CE group and the control
group. Each parameter value was close to 1.0, signifying a
stable and reliably predictive model. Model validation was
verified through permutation tests (200 permutations), and the
intersection of the blue regression lines (the Q2 points) and the
vertical axis (on the left) all fell below zero (Figure 3).

We used MetaboAnalyst 5.0 to investigate metabolic differences
between the two groups. Cluster analysis of the expression of
metabolites in tissues revealed that most samples were grouped
into two differentiated clusters with only a small part of the sample
cluster overlapping (Figure 4). These results were consistent with
those of the OPLS-DA analysis.

3.4 Identification of discriminant
metabolites

The significance threshold for identifying differential
compounds between the control and CE groups was set at VIP
values >1.0 and p-values adjusted <0.05. Metabolites meeting
these criteria were considered significantly different.
Furthermore, metabolites exhibiting an upward trend were
indicated by fold change (FC) > 1, while a downward trend
was indicated by FC < 1. There were 32, 17, 21, 7, 16 and
26 discriminant metabolites in BAT, WAT, serum, liver,
spleen and kidney between the two groups, respectively. A
detailed summary of altered metabolites in major tissues
following exposure to cold was provided in Table 1.

3.5 Analysis of metabolic pathways

In our study, we employed MetaboAnalyst 5.0 to investigate the
metabolic pathways associated with the specific metabolites identified
through a comparison between the CE and control groups. Through
our analysis, we identified 12 metabolic pathways that exhibited
significant differences (with p-values adjusted <0.05 and impact
values >0). In BAT, these pathways included phenylalanine, tyrosine
and tryptophan biosynthesis; glutathione metabolism; phenylalanine
metabolism; glycine, serine and threonine metabolism; as well as
arginine biosynthesis. In WAT, these pathways included arginine
biosynthesis; glutathione metabolism; alanine, aspartate and
glutamate metabolism; glyoxylate and dicarboxylate metabolism;
primary bile acid biosynthesis; fatty acid biosynthesis; as well as
D-Glutamine and D-glutamate metabolism. In the serum, these
pathways included glutathione metabolism; glyoxylate and
dicarboxylate metabolism. In the spleen, these pathways included
phenylalanine, tyrosine and tryptophan biosynthesis; along with fatty
acid biosynthesis. In the kidney, these pathways included aminoacyl-
tRNA biosynthesis; nicotinate and nicotinamide metabolism; as well as
alanine, aspartate and glutamate metabolism. The specifics of the
metabolic pathway analysis were depicted in Table 2; Figure 5. A
summary of metabolic pathways was presented in Figure 6.

4 Discussion

CE has significant effects on body metabolism.When exposed to
cold temperatures, the body initiates a series of physiological
responses to maintain core body temperature. These responses
primarily involve increased energy expenditure to generate heat
and altered metabolic processes.

In our study, we observed a significant increase in food intake in
the CE group (p < 0.0001, Figure 1A); however, body weight was
decreased (p < 0.05, Figure 1B). These findings were consistent with
a previous report (Yang et al., 2017). One possible explanation for
these results is that the cold-exposed mice needed to expend a

TABLE 1 (Continued) Differential metabolites detected in BAT, WAT, serum, liver, spleen and kidney between CE and control groups.

Metabolites HMDB VIP P P adjusted Fold change

Urea HMDB0000294 1.21 1.28E-02 1.18E-02 4.66

L-Valine HMDB0000883 1.19 1.45E-02 1.25E-02 2.24

L-Leucine HMDB0000687 1.18 1.56E-02 1.30E-02 2.17

Niacinamide HMDB0001406 1.16 1.67E-02 1.34E-02 2.97

L-Aspartic acid HMDB0000191 1.16 1.68E-02 1.34E-02 2.49

Scyllo-Inositol HMDB0006088 1.16 1.84E-02 1.42E-02 1.43

Arachidonic acid HMDB0001043 1.12 2.67E-02 1.76E-02 2.06

Adonitol HMDB0000508 1.10 2.88E-02 1.83E-02 2.09

D-(−)-Lactic acid HMDB0001311 1.01 4.75E-02 2.63E-02 1.35

Dodecane HMDB0031444 1.01 5.53E-02 2.91E-02 1.31

1-Octadecanol HMDB0002350 1.05 5.80E-02 3.00E-02 1.62
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significant amount of energy to generate heat and maintain their
body temperature. The increase in energy consumption can
potentially lead to higher food intake and a decrease in body weight.

Through GC-MS identification and statistical analysis, 32, 17,
21, 7, 16, and 26 differential metabolites were respectively identified
in BAT,WAT, serum, liver, spleen and kidney after exposure to cold.
These discriminant metabolites were involved in 12 pathways,
mainly pertaining to amino acid, fatty acid, and energy metabolism.

Based on the altered metabolites and the associated differential
metabolic pathways, it is evident that BAT was the most severely

affected tissue. CE was also associated with varying degrees of
metabolic effects in WAT, serum, liver, spleen and kidney. The
metabolic effects in different tissues were discussed separately below.

4.1 BAT metabolism analysis

Branched chain amino acids (BCAAs), including leucine,
isoleucine and valine, are essential amino acids. BCAAs can be
oxidized to provide energy for cells (Sivanand and Vander Heiden,

TABLE 2 Details of differential metabolic pathways in various tissues.

Tissue Pathway name Match
status

Hits P P
adjusted

Impact

BAT Phenylalanine, tyrosine and tryptophan
biosynthesis

2/4 L-Phenylalanine; L-Tyrosine 1.59E-
03

1.17E-03 1.00E+00

Glutathione metabolism 3/28 Glycine; L-Glutamate; 5-Oxoproline; 1.04E-
02

4.42E-03 1.15E-01

Phenylalanine metabolism 2/10 L-Phenylalanine; L-Tyrosine 1.12E-
02

4.59E-03 3.57E-01

Glycine, serine and threonine metabolism 3/33 L-Cystathionine; Glycine; L-Threonine; 1.64E-
02

5.41E-03 2.46E-01

Arginine biosynthesis 2/14 L-Glutamate; Urea 2.18E-
02

5.99E-03 1.17E-01

WAT Arginine biosynthesis 2/14 L-Glutamate; Urea 3.98E-
03

2.47E-03 1.17E-01

Glutathione metabolism 2/28 Glycine; L-Glutamate 1.57E-
02

4.97E-03 1.08E-01

Alanine, aspartate and glutamate
metabolism

2/28 L-Alanine; L-Glutamate 1.57E-
02

4.97E-03 1.97E-01

Glyoxylate and dicarboxylate metabolism 2/32 Glycine; L-Glutamate; 2.02E-
02

5.38E-03 1.06E-01

Primary bile acid biosynthesis 2/46 Cholesterol; Glycine 4.00E-
02

7.00E-03 5.82E-02

Fatty acid biosynthesis 2/47 Hexadecanoic acid; Tetradecanoic acid 4.16E-
02

7.08E-03 1.47E-02

D-Glutamine and D-glutamate metabolism 1/6 L-Glutamate 4.19E-
02

7.10E-03 5.00E-01

Serum Glutathione metabolism 2/28 Glycine; 5-Oxoproline 3.23E-
02

1.33E-02 9.58E-02

Glyoxylate and dicarboxylate metabolism 2/32 Citrate; Glycine 4.14E-
02

1.46E-02 1.38E-01

spleen Phenylalanine, tyrosine and tryptophan
biosynthesis

1/4 L-Tyrosine 2.81E-
02

2.01E-02 5.00E-01

Fatty acid biosynthesis 2/47 Hexadecanoic acid; Tetradecanoic acid 4.16E-
02

2.01E-02 1.47E-02

kidney Aminoacyl-tRNA biosynthesis 5/48 L-Aspartate; L-Serine; L-Valine; L-Leucine;
L-Threonine

1.46E-
04

2.03E-04 1.67E-01

Nicotinate and nicotinamide metabolism 2/15 L-Aspartate; Nicotinamide 1.22E-
02

6.79E-03 1.94E-01

Alanine, aspartate and glutamate
metabolism

2/28 L-Aspartate; Succinate 4.03E-
02

1.40E-02 2.24E-01
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2020). They are commonly converted into branched-chain alpha-
ketoacids (BCKAs) through the catalytic action of branched-chain
aminotransferases (BCATs) (Ichihara and Koyama, 1966).
Subsequently, the branched-chain alpha-ketoacid dehydrogenase
complex further converts the BCKAs into branched-chain acyl-

CoA derivatives, which can then be metabolized into either acetyl-
CoA or succinyl-CoA (Johnson and Connelly, 1972; Neinast et al.,
2019). These metabolites eventually enter the tricarboxylic acid
(TCA) cycle. In our study, we found that CE significantly
increased the content of BCAAs in BAT. These findings were

FIGURE 5
Summary of pathway analysis using MetaboAnalyst 5.0. The node color is based on the p-values (y-axis) and the node radius represents the pathway
impact values (x-axis). (A) BAT, (B)WAT, (C) serum, (D) liver, (E) spleen, (F) kidney. (a) Phenylalanine, tyrosine and tryptophan biosynthesis. (b) Glutathione
metabolism. (c) Phenylalanine metabolism. (d) Glycine, serine and threonine metabolism. (e) Arginine biosynthesis. (f) Alanine, aspartate and glutamate
metabolism. (g) Glyoxylate and dicarboxylate metabolism. (h) Primary bile acid biosynthesis. (i) Fatty acid biosynthesis. (j) D-Glutamine and
D-glutamate metabolism. (k) Aminoacyl-tRNA biosynthesis. (l) Nicotinate and nicotinamide metabolism.
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consistent with previous studies (Lu et al., 2017; Okamatsu-Ogura
et al., 2020). According to Yoneshiro et al. (Yoneshiro et al., 2019),
the higher BCAAs content in BAT is attributed to increased uptake
from circulation. Indeed, previous studies have reported that the
activity of BCATs increases following CE in rats (López-Soriano and
Alemany, 1987). Consistent with this, more than 60% of genes
encoding BCAAs catabolic enzymes, including the gene for the rate-
limiting enzyme BCAT2, were more highly expressed in brown
adipocytes relative to white adipocytes (Yoneshiro et al., 2019).
Taken together, these data indicated that in vivo, BCAAs are used as
significant energy sources for thermogenesis in BAT during CE. In
our study, we observed a significant decrease in serum levels of
BCAAs after exposure to cold, which was consistent with a previous
human study (Kovaničová et al., 2021). Notably, elevated circulating
BCAAs levels are closely linked to insulin resistance, obesity, and
type 2 diabetes (Huffman et al., 2009; Newgard et al., 2009; Wang
et al., 2011). CE enhances BCAAs clearance from the bloodstream by
significantly increasing mitochondrial BCAAs uptake and oxidation
in BAT (Yoneshiro et al., 2019). This process depends on the
presence of SLC25A44, a mitochondrial BCAAs transporter in
brown adipocytes, which might contribute to improved metabolic
health (Yoneshiro et al., 2019). However, it remains unclear whether
CE promotes the expression of SLC25A44, thereby enhancing
BCAAs uptake. Further research is required.

Our study revealed a significant increase in glutamate levels in
BAT following cold exposure, which aligns with previous research
findings (Okamatsu-Ogura et al., 2020). A human study utilizing
microdialysis demonstrated that CE increased glutamate uptake
specifically by BAT (Weir et al., 2018), providing a potential
explanation for the observed elevation in glutamate levels.

Furthermore, exposure to cold in BAT resulted in an elevation of
the expression of genes encoding glutamate dehydrogenase (GLUD1),
an enzyme responsible for catalyzing the production of α-ketoglutaric
acid from glutamate (Okamatsu-Ogura et al., 2020). These findings
collectively suggest that glutamate serves as an important energy
substrate for BAT thermogenesis in vivo. Additionally, we observed an
increase in glycine content and an enhanced activity of the glutathione
metabolism pathway in BAT after exposure to cold. CE triggers
adaptive responses in the body, including the production of
reactive oxygen species (ROS) as byproducts of increased
metabolism and thermogenesis (Wang et al., 2015; Chouchani
et al., 2016; Lettieri-Barbato, 2019). Uncontrolled ROS
accumulation can lead to cellular oxidative damage. However,
glutathione plays a crucial role as an antioxidant by scavenging
ROS and protecting cells from oxidative stress. The observed
enhancement in the glutathione metabolism pathway in BAT
indicates an adaptive response to counteract the increased ROS
generation during CE (Mory et al., 1983).

Lactic acid is produced through anaerobic glucose metabolism.
Glucose transporters (GLUTs) play a vital role in cellular glucose
uptake. In humans, there are a total of 14 different types of GLUTs
(Thorens and Mueckler, 2010), with GLUT1 and GLUT4 expressed
in BAT (James et al., 1988; James et al., 1989; Pessin and Bell, 1992).
CE promotes a significant increase in the expression of GLUT1 and
GLUT4 in mouse BAT (Daikoku et al., 2000; Yu et al., 2002). In line
with this, studies using 18F-fluorodeoxyglucose-positron emission
tomography/computed tomography (18F-FDG-PET/CT) have
shown that CE enhances glucose uptake in the BAT of healthy
humans (van Marken Lichtenbelt et al., 2009; Virtanen et al., 2009;
Ouellet et al., 2012; Lee et al., 2016), In vivo [U-13C]glucose tracing

FIGURE 6
Schematic diagram of related metabolic pathways affected by CE processing in the main tissues. Black arrows indicate energy metabolism
pathways, including the tricarboxylic acid cycle. Deep red arrows indicate the phenylalanine, tyrosine, and tryptophan biosynthesis. Red arrows indicate
the glutathione metabolism pathway. Orange arrows indicate the glycine, serine, and threonine metabolism. Light green arrows indicate the arginine
biosynthesis. Light blue arrows indicate the primary bile acid biosynthesis. Blue arrows indicate the fatty acid biosynthesis. Yellow arrows indicate the
D-Glutamine and D-glutamate metabolism. Purple arrows indicate nicotinate and nicotinamide metabolism.
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experiments have also demonstrated that chronic cold exposure
significantly increases glucose oxidation in BAT by promoting
glucose flux into the mitochondrial TCA cycle (Wang et al.,
2020). Notably, genes associated with glucose uptake and
glycolysis were remarkably unregulated in cold-activated BAT
(Hao et al., 2015). Taken together, these data indicate that CE
enhances glucose uptake and oxidation. As we know, lactate
dehydrogenases (LDH) play a crucial role in catalyzing the
reversible conversion of pyruvate to lactate. It was observed that
exposure to cold significantly induced the expression of Ldha and
Ldhb mRNAs, as well as the LDHA protein in BAT (Hao et al.,
2015). So, it is not surprising that lactic acid levels were significantly
increased upon CE in BAT in our study. Previously considered a
metabolic waste product, lactic acid is now recognized as a crucial
metabolic fuel in BAT (Hui et al., 2017; Rabinowitz and Enerbäck,
2020). Recent studies have demonstrated that carbon derived from
lactic acid can be utilized by brown adipocytes to synthesize fatty
acids (Saggerson et al., 1988). As a result, lactic acid may play a role
in swiftly replenishing BAT triglycerides following CE (Carpentier
et al., 2023).

4.2 Serum metabolism analysis

Our study revealed that CE led to a decrease in the levels of fatty
acids, specifically palmitic acid and stearic acid, as well as cholesterol in
the serum of mice. CE induces the sympathetic nerves to release
norepinephrine, which subsequently binds to β3-adrenoceptors (β3-
ARs) found on the surface of adipocytes. This binding activates the
cAMP–protein kinase A (PKA) signaling pathway, ultimately
promoting intracellular TAG lipolysis (Cannon and Nedergaard,
2004; Zechner et al., 2012; Caron et al., 2018). When lipolysis
occurs in WAT, it releases a significant amount of fatty acids into
the bloodstream, which serve as the main energy substrate for BAT
thermogenesis (Wang et al., 2021; Carpentier et al., 2023). Activated
brown/beige adipocytes exhibit enhanced fatty acid uptake, as
evidenced by 18F-fluoro-thiaheptadecanoic acid-positron emission
tomography/computed tomography (18F-FTHA-PET/CT) imaging
(Ouellet et al., 2012; Blondin et al., 2015). Moreover, CE causes a
selective increase in lipoprotein lipase (LPL) expression in BAT
(Chondronikola et al., 2016), while reducing the expression of
angiopoietin-like 4 (ANGPTL4), an inhibitor of LPL activity (Dijk
et al., 2015). As a result, activated BAT can effectively eliminate the
majority of circulating triglyceride-rich lipoprotein (TRL) lipids
(Bartelt et al., 2011; Berbée et al., 2015; Khedoe et al., 2015).
Subsequently, fatty acids are transported into the mitochondria of
brown fat cells via carnitine acyltransferases (CPTs), where they
undergo β-oxidation and participate in the TCA cycle. Earlier
research has demonstrated that CE can upregulate mRNA
expression of cpt (Yu et al., 2002), thereby stimulating the β-
oxidation of fatty acids in BAT of mice. Cold-activated BAT in
mice holds promise for alleviating hyperlipidemia, providing
benefits in conditions such as obesity or genetic
hypertriglyceridemia (Bartelt et al., 2011; Berbée et al., 2015).
Moreover, this activation indirectly reduces hypercholesterolemia
by facilitating an increased hepatic uptake of cholesterol-enriched
lipoprotein remnants, thereby offering protection against the
development of atherosclerosis (Berbée et al., 2015; Bartelt et al., 2017).

4.3 Liver metabolism analysis

The liver’s role in maintaining cholesterol balance is pivotal due
to its ability to uptake, synthesize, convert cholesterol into bile acids,
and excrete cholesterol within very low-density lipoprotein (VLDL)
particles. Our study observed a substantial reduction in liver
cholesterol levels following exposure to cold conditions. This
phenomenon could be attributed to the cold-induced conversion
of cholesterol into bile acids in the liver (Worthmann et al., 2017).
Specifically, the researchers found that the levels of most bile acid
species in the liver were notably higher in mice housed in cold
conditions compared to the control group in warm conditions.
Additionally, the study revealed a significant upregulation in the
expression of the important gene Cyp7b, which is involved in
alternative bile acid synthesis pathways, in response to CE
(Worthmann et al., 2017).

4.4 Spleen metabolism analysis

The spleen plays a crucial role as a lymphatic and immune organ
in the human body. Our research has revealed a decrease in the levels
of lactic acid and malic acid within the spleen during CE, indicating
a weakening of anaerobic respiration and TCA cycle processes.
Furthermore, a transcriptomic study has indicated that gene sets
associated with biological processes, including the innate immune
response in mucosa, neutrophil-mediated killing of symbiont cells,
inflammatory response, and various other responsive systems, were
downregulated in the spleen (Hadadi et al., 2022). This phenomenon
can be attributed to the spleen’s primary immunological functions, a
biological process that might become less effective during cold
conditions. This aligns with the concept that maintaining
immune functions requires significant energy expenditure,
potentially competing with other energy-demanding functions,
including thermogenesis (Spiljar et al., 2021). Furthermore, the
process of triglyceride catabolism was found to be subdued in the
spleen during cold exposure (Hadadi et al., 2022). It is not
unexpected that the levels of glycerol and fatty acids (such as
palmitic acid, stearic acid, myristic acid, glycerol monostearate,
and 1-Monopalmitin) showed a decrease within the spleen
according to our study. To some extent, this could suggest a
redistribution of metabolic energy towards the tissues essential
for responding to cold, as a consequence of prioritizing other
maintenance-related biological processes.

4.5 Kidney metabolism analysis

The kidneys play a vital role in regulating various essential
physiological functions. They are responsible for producing urine,
removing metabolic toxins, and maintaining the balance of water,
electrolytes, and acid-base levels (Imenez Silva and Mohebbi, 2022).
Consequently, the kidneys are organs with high metabolic activity
(Clark and Parikh, 2020). Research has indicated that the kidneys
have the second highest concentration of mitochondria per weight,
surpassed only by the heart (Pagliarini et al., 2008). To meet their
energy demands, the kidneys metabolize significant amounts of
nutrients, such as fatty acids, glucose, and amino acids.
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Nicotinamide (NAM), a member of the vitamin B3 group, has
the capacity to generate nicotinamide adenine dinucleotide (NAD+).
NAD+ plays a crucial role as an electron acceptor in several catabolic
processes, including glycolysis, the TCA cycle, and fatty acid β-
oxidation (FAO). Subsequently, the acquired electrons are
transferred to oxygen through the mitochondrial respiratory
chain, leading to the conversion of ADP into ATP via
phosphorylation (Fontecha-Barriuso et al., 2021). In our research,
following CE, we observed a significant increase in NAM levels and a
notable enhancement in the pathway of nicotinate and NAM
metabolism. Based on this, we hypothesized that CE may
enhance renal energy metabolism. However, a recent time-series
study conducted in South Korea identified a correlation between CE
and hospital admissions and deaths associated with acute kidney
injury (AKI) (Kim et al., 2023). These conflicting results could be
attributed to various factors, such as the duration and intensity of
CE, the individual’s health condition, and their capacity to adapt to
the cold. Consequently, further research is necessary to investigate
the impact of CE on renal metabolism in both animal models and
clinical settings.

4.6 Interorgan communication in response
to CE

The process of cold-induced thermogenesis is intricately tied to
a well-coordinated metabolic adjustment program spanning
multiple tissues. This program functions to uphold the
equilibrium of fuel and energy within the body. Cold stimuli
trigger the initiation of lipolysis within WAT, leading to the
liberation of free fatty acids (FFAs). These FFAs either act as
direct substrates for BAT-mediated thermogenesis or journey to
the liver. In the liver, these FFAs undergo a transformation into
acylcarnitines, facilitated by an increase in the expression of the
CPT1 gene, brought about by the activation of HNF4a (Simcox et al.,
2017). The acylcarnitines produced in the liver are predominantly
taken up by BAT (Simcox et al., 2017), where they contribute
significantly to thermogenic processes. Traditionally, bile acids,
generated solely by the liver through the conversion of
cholesterol, can follow either the classical pathway or the
alternative pathway. Cold exposure particularly triggers the
activation of the alternative pathway, leading to a substantial rise
in bile acids expelled through feces (Worthmann et al., 2017). This
surge is accompanied by a distinct transformation in the
composition of the gut microbiome (Worthmann et al., 2017).
This altered configuration of the microbiome has the potential to
result in the creation of microbial metabolites possessing inherent
thermogenic properties (Worthmann et al., 2017).

While our study provided valuable insights, it is crucial to
acknowledge its limitations. In order to achieve a comprehensive
understanding of the metabolic alterations induced by CE, it is
imperative to explore its effects on other tissues, such as the heart,
lung, cortex, hippocampus, stomach, pancreas, skin, and bone.
However, obtaining samples from multiple tissues is challenging
and time-consuming, as it involves the collection, rinsing, and
freezing of multiple tissues in liquid nitrogen. Additionally, many
metabolites have a short turnover time, which could potentially
impact the accuracy of metabolite measurements. Furthermore, it’s

worth noting that the use of anesthesia during the sampling procedure
can induce metabolic changes in tissues, potentially influencing the
results. Another factor to consider is that food intake was not
normalized between groups, which could contribute to the
observed differences in metabolites (Jang et al., 2018).

5 Conclusion

Metabolic changes induced by CE in multiple tissues in mice were
analyzed using GC-MS, providing a deeply understanding of the effects
of CE. We observed that CE altered the levels of various metabolites
acrossmultiple tissues, with notable impacts on amino acidsmetabolism,
fatty acids metabolism and energy metabolism. Our findings provide
systematic insights into the metabolic impacts induced by CE and may
also present new ideas for treating metabolic diseases.
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