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Multiple drug resistance is themain obstacle in the treatment of bacterial diseases.
Resistance against antibiotics demands the exploration of new antimicrobial drug
targets. A variety of in silico and genetic approaches show that the enzymes of the
riboflavin biosynthetic pathway are crucial for the survival of bacteria. This
pathway is absent in humans thus enzymes of the riboflavin biosynthetic
pathway are emerging drug targets for resistant pathogenic bacterial strains.
Exploring the structural details, their mechanism of action, intermediate
elucidation, and interaction analysis would help in designing suitable inhibitors
of these enzymes. The riboflavin biosynthetic pathway consists of seven distinct
enzymes, namely, 3,4-dihydroxy-2-butanone 4-phosphate synthase, GTP
cyclohydrolase II, pyrimidine deaminase/reductase, phosphatase, lumazine
synthase, and riboflavin synthase. The present review summarizes the research
work that has been carried out on these enzymes in terms of their structures,
active site architectures, and molecular mechanism of catalysis. This review also
walks through small molecule inhibitors that have been developed against several
of these enzymes.
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Introduction

Riboflavin (also known as vitamin B2) is the originator for flavocoenzymes, flavin
mononucleotide (FMN), and flavin adenine dinucleotide (FAD), two necessary cofactors
that play key roles in various crucial cellular functions (Muller, 2018). They are involved in a
wide variety of redox reactions (single as well as two electron transfer reactions) that are vital
to energy metabolism essential for all living organisms (Mansoorabadi et al., 2007; Muller,
2018). Apart from their involvement in redox reactions, they also take part in a remarkable
number of non-redox processes including DNA damage repair, circadian clock regulation,
signal transduction, nitrogen fixation, light sensing, and bioluminescence (Salomon et al.,
2001; Bornemann, 2002; Thompson and Sancar, 2002; Wijnen and Young, 2006; Macheroux
et al., 2011). Lumazine binding proteins, which can bind riboflavin, FMN, 6, 7-dimethyl-8-
ribityllumazine non-covalently as a fluorophore, take part in the bioluminescence process as
an optical transponders in several bacterial species (Lee, 1993; Petushkov and Lee, 1997).
This astonishing photochemical reaction reveals the remarkable flexibility of the
isoalloxazine chromophore, in that the flavin cofactors side chains assist mainly as
anchors that locked the binding of the fluorophore to the cognate proteins. Flavin
cofactors also participate to form complex catalytic centers, sometimes including more
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than one coenzyme, various flavin adducts and/or other cofactors
such as iron-sulfur clusters (Roberts et al., 2003; Hudson et al., 2005;
Cheng et al., 2006).

Riboflavin is biosynthesized de novo in microorganisms and
plants, whereas in animals they depend on dietary supplements. The
riboflavin biosynthetic pathway was extensively studied and consists
of seven distinct enzymes catalyzing the reaction, starting with one
guanosine triphosphate (GTP) and two molecules of ribulose 5-
phosphate (Ru5P) as the initial precursors (Figure 1). GTP is
transformed into 2,5-diamino-6-ribosylamino-4(3H)-
pyrimidinedione 5′-phosphate (DARPP) by GTP cyclohydrolase
II. The bifunctional enzyme deaminase/reductase catalyses the
deamination and subsequent reduction to convert DARPP to 5-
amino-6-ribitylamino-2.4(1H, 3H)-pyrimidinedione 5′-phosphate
(ArPP). ARPP is dephosphorylated by yet unknown phosphatase,
resulting in 5-amino-6-ribitylamino-2.4(1H, 3H)-pyrimidinedione
(ArP). Along the parallel line, 3,4-dihydroxy-2-butanone-4-
phosphate synthase (DHBPS) catalyzes the conversion of
ribulose-5-phosphate (Ru5P) to 3,4-dihydroxy-2-butanone 4-
phosphate (DHBP). The resulting products ArPP and DHBP are
condensed by lumazine synthase (LS) to form 6,7-dimethyl-8-

ribityllumazine (DRL) with the release of inorganic phosphate.
The final step involves an unusual dismutation reaction of two
DRL, converting them into one riboflavin and one molecule of ArP.
This reaction encompasses the transfer of a four-carbon unit
between two identical substrates and the reaction is catalyzed by
riboflavin synthase (RS). ArP formed in the final reaction is recycled
back and used as a substrate by LS (Foor and Brown, 1975; Burrows
and Brown, 1978; Volk and Bacher, 1991; Kis et al., 1995; Fischer
and Bacher, 2008; 2011; Ladenstein et al., 2013).

Identification and evaluation of novel drug targets drive the
advancement of new inhibitors against pathogenic microbial strains
resistant to common antibiotics. Several in silico approaches were
engaged to investigate genomic data to identify potential drug
targets that are critical for the survival and virulence of bacterial
pathogens and with no counterpart in humans or other animal
proteins (Gupta et al., 2019). Several approaches including a whole-
genome transposon random approach to ascertain the critical gene
set found in various branches of life and were applied to the genomes
of Haemophilus influenza, Mycobacterium tuberculosis,
Pseudomonas aeruginosa, E. coli and Mycoplasma genitalium
(Akerley et al., 2002; Gerdes et al., 2002; Lamichhane et al., 2003;

FIGURE 1
Enzymes involved in riboflavin biosynthetic pathway. GTP is converted to ArP through four reactions catalysed consecutively by GTP cyclohydrolase
II, pyrimidine deaminase, pyrimidine reductas, and pyrimidine phosphatase. Similarly, DHBP is formed Ru5P catalyzed by 3,4-dihydroxy-2-butanone-4-
phosphate synthase. The two products condensed to formDRL in a reaction catalyzed by lumazine synthase. Riboflavin synthase converts twomolecules
of DRL to riboflavin and ArP. DARPP, 2,5-diamino-6-ribosyl-amino-4(3H)pyrimidinedione 5′-phosphate; ARPP, 5-amino-6-ribosyl-amino-2.4(1H,
3H)pyrimidinedione 5′-phosphate; ArPP 5-amino-6-ribitylamino-2.4-(1H, 3H)-pyrimidinedione-5′-phosphate; ArP 5-amino-6-ribitylamino-2.4-(1H,
3H)-pyrimidinedione; DHBP 3,4-dihydroxy-2-butanone-4-phosphate; DRL 6,7-dimethyl-8-ribityl-lumazine; FMN, flavin mononucleotide; FAD, flavin
adenine dinucleotide.
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Sassetti et al., 2003; Glass et al., 2006; Liberati et al., 2006). Gene
deletion techniques were also used for defining important genes in
Bacillus subtilis and Escherichia coli (Kobayashi et al., 2003; Baba
et al., 2006). These studies suggested that the enzymes of the
riboflavin biosynthesis pathway are vital and can be used as drug
targets.

Plants and many microorganisms including bacterial pathogens
can manufacture riboflavin de novo, but animals do not have this
ability, which they fulfill through their diet. Bacterial pathogens
especially the Gram-negative bacteria like M. tuberculosis and
Salmonella typhimurium stringently need endogenous riboflavin
due to the absence of a riboflavin uptake system from the
environment (Wang, 1992; Dahl et al., 2004; Long et al., 2010).
Hence, the enzymes of the riboflavin biosynthetic pathway could be
measured as selective therapeutic targets. Various research works
reinforced the significance of de novo riboflavin biosynthesis in
several pathogenic bacterial antibiotics-resistant microbes and
enzymes of this pathway as therapeutic targets. In fact, it has also
been established that riboflavin biosynthetic genes and enzymes are
virulence factors in Salmonella enterica (Becker et al., 2006;
Rollenhagen and Bumann, 2006). Hence, the development of
potential drugs against the enzymes involved in the riboflavin
(vitamin B2) biosynthetic pathway opens a fresh line of attack
for the treatment of bacterial infections. Designing novel
antimicrobial drugs that selectively target pathogens are
immediately required to tackle the multidrug resistance that
arises in various pathogens.

3,4-Dihydroxy-2-butanone 4-phosphate
synthase (DHBPS)

DHBPS is one of the first enzymes involved in the riboflavin
biosynthetic pathway and converts Ru5P to DHBP and formate
(Figure 1). DHBPS can exist as a single enzyme or it can form a bi-
functional enzyme. It combined with GTP cyclohydrolase II (GCH II)
to form a bi-functional enzyme, althoughDHBPS and GCH II can exist
as two independent enzymes. The catalytic mechanism proposed for
DHBPS involves several intermediate steps including skeletal
rearrangement and fragmentation. These intermediate stages
culminate with the release of formate and stable endiol intermediate
that undergoes protonation with the formation of DHBP (Volk and
Bacher, 1990; Richter et al., 1992). The chemical transformation
includes a skeletal rearrangement and proposes a central role for
acid/base catalysis with substrate/intermediates interaction requires
divalent metal ion Mg2+ (Volk and Bacher, 1990). DHBPS enzyme
class from various microorganisms has a primary sequence length of
204–233 amino acid residues and with 25%–60% sequence homology.

The three-dimensional structures of DHBPS were solved from
E. coli, M. grisea, M. jannaschii, Candida albicans, S. typhimurium,
M. tuberculosis, and V. cholera (Liao et al., 2001a; Liao et al., 2002;
Steinbacher et al., 2003; Echt et al., 2004; Kumar et al., 2010; Singh
et al., 2011; Islam et al., 2015). All of the structures solved to date
indicate that DHBPS exists as a homodimer and present a
characteristic alpha + beta fold containing mainly beta strands
with a complex linkage. The homodimeric nature of DHBPS
creates two active surfaces of the enzyme and is located at the
interface between two subunits in the vicinity of the residues

conserved among species. The surface of each active site is
primarily shaped by one monomeric unit with an additional
surface being created by neighboring monomeric unit residues
(Figure 2). The active pocket of DHBPS was identified by
crystallographic studies from the archaeon M. jannaschii and C.
albicans in a complex with ribulose-5-phosphate and metal ions
(Steinbacher et al., 2003; Echt et al., 2004) and are highlighted in
Figure 2. Structures available till date suggest a degree of flexibility in
the active cavity, especially at the loop regions. The DHBPS structure
shows two different conformations of loop present near the active
site. It can be either open or closed depending on the substrate
availability. An open conformation exists in the absence of substrate
where these loops points away from the active site cavity, while it
closes up in the presence of substrate or substrate along with metals,
which are required for the completion of catalysis, as a number of
residues from these loops interact with substrate and metals (Liao
et al., 2002; Steinbacher et al., 2003; Kumar et al., 2010; Islam et al.,
2015). The substrate (Ru5P) present in the active site cavity also
shows flexibility in its conformation. Moreover, the divalent metal
ions (“dimetal center”) present at the active site (Figure 2) are crucial
for the catalytic activity of DHBPS and are proposed to be involved
in substrate and intermediates stabilization (Liao et al., 2002;
Steinbacher et al., 2003; Islam et al., 2015). The detailed
investigation of DHBPS structures in complexes with several
metals highlighted the breathing of metal or shift in the position
of two metals during the course of the reaction (Liao et al., 2002;
Islam et al., 2015). Recently, two transient intermediates were
identified using time-dependent structural studies and helps in
defining the mechanism of DHBPS (Kenjić et al., 2022).

GTP cyclohydrolase II (GCH II)

GCH II converts GTP into DARPP (2,5-diamino-6-
ribosylamino-4(3H)-pyrimidinedione 5′-phosphate), formate, and
inorganic pyrophosphate with the aid of divalent metal ion (Foor
and Brown, 1975; Foor and Brown, 1980; Ritz et al., 2001). Formate
is released from the imidazole ring while pyrophosphate is released
from the nucleotide precursor affording the formation of DARPP
(Foor and Brown, 1980; Ren et al., 2005). Biochemical studies
suggested the role of zinc ion, which plays a crucial part in
guanine ring opening although it is not needed for inorganic
pyrophosphate release (Kaiser et al., 2002). The GCH II has no
significant amino acid sequence similarity with GCH I and differs in
functional state. The two GTP cyclohydrolase have completely
different oligomeric states, while GCH II exists as a homodimer,
GCH I forms as a homodecamer (Nar et al., 1995).

Structures of GCHII in apo as well as in complex form have been
solved from E. coli, and Helicobacter pylori (Ren et al., 2005; Yadav
and Karthikeyan, 2015). It has an alpha/beta fold which mainly
consists of a central core of antiparallel β-sheets connected by loops
and helices (Figure 3). The three dimensional structure of E. coli
GCH II was also solved with GMPCPP (substrate analogue), which
showed the main residues that form the active site cavity and
participate in substrate interaction. No major conformational
changes were observed between the apo and holo forms of the
enzymes with only a small deviation of the side chains of the residues
involved in the binding of the substrate or substrate analogue (Ren
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et al., 2005). A zinc ion was bound intrinsically to the GCHII and is
coordinated through three cysteines (Figure 3). Loss of any one of
the three cysteines is enough to bring to an end the binding as well as
its enzymatic function (Kaiser et al., 2002). The active region of GCH
II contains substrate, GMP and zinc ion where the metal
coordinated by three cysteines of a CX2GX7CXC motif. The
metal was spaning the α and β phosphate moieties of the
triphosphate motif and interacted with the amino acid residue of
the protein (Figure 3). The complex structure also highlighted
Arg128 interaction with the α-phosphonate for pyrophosphate
release and formation of the proposed covalent guanylyl-GTP

cyclohydrolase II intermediate (Ren et al., 2005). The structure of
GCHII from H. pylori is similar to E. coli, although it is without any
intrinsically bound zinc ion, probably exhibiting the inactive state of
GCHII (Ren et al., 2005; Yadav and Karthikeyan, 2015).

Pyrimidine deaminase/reductase

DARPP formed by GCHII is transformed into ArPP (5-amino-
6-ribitylamino-2.4(1H, 3H)-pyrimidinedione 5′-phosphate) in two
steps comprising the deamination of the pyrimidine ring and

FIGURE 2
Structures of 3,4-dihydroxy-2-butanone 4-phosphate synthase (DHBPS) from V. cholera. Crystal structure of DHBPS in complexed with substrate
(Ru5P) and metal ions (PDBID: 4P8E) showing the active site architecture (left). Similarly, crystal structure of DHBPS in complexed with inhibitor (4PEH)
and zinc ions (PDBID: 4P6P) highlighting the binding of inhibitor and metal (right).

FIGURE 3
Structures of Escherichia coliGTP cyclohydrolase II (GCH II). Cartoon representation of Escherichia coliGCH II in apo form (PDBID: 2BZ1) revealing
the intrinsic metal binding (left). Crystal Structure of Escherichia coli GCH II in complex with GMPCPP and Zinc (PDBID: 2BZ0) enlightening the inhibitor
binding (right). Zinc is shown as grey ball.
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reduction of the ribosyl side chain. These two reactions are catalyzed
by bifunctional pyrimidine deaminase/reductase enzyme (Richter
et al., 1997). The order of the two processes is different in various
organisms studied. In bacteria and plants, deamination precedes
reduction; however, reduction precedes deamination in yeast and
archaea (Burrows and Brown, 1978; Nielsen and Bacher, 1981;
Fischer et al., 2004). The bifunctional enzyme has a deaminase
domain at the N-terminal, which contains a zinc ion, and an
NADPH-binding reductase domain at the C-terminal. The
reductive reaction requires the NADPH in reduced form and
deaminase activity abolition does not disturb the reductase
activity (Magalhães et al., 2008).

The x-ray crystal structure of bifunctional deaminase/reductase
from E. coli, B. subtilis, M. jannaschii and Acinetobacter baumannii
has been solved with several complexes (Chatwell et al., 2006; Chen
et al., 2006; 2009; Stenmark et al., 2007; Dawson et al., 2013). It forms
as a homodimer in E. coli, while exists in a homotetrameric form in
B. subtilis (Chen et al., 2006; Stenmark et al., 2007). Each monomer
is made up of two separate functional domains, comprises of an
N-terminal deaminase domain and a C-terminal reductase domain
with a short linker region dividing these domains (Figure 4). The
N-terminal deaminase domain contains beta-sheet surrounded by
alpha-helices with central portion dominated by mixed beta-strands.
Similarly, the reductase domain mainly consists of beta-sheet with
seven parallel strands and a β-hairpin. The deaminase domain
occupies the far end and the homodimeric interface is primarily
constructed by two consecutive segments of the reductase domain.
The deaminase domain binds zinc with tetrahedral coordination by
a zinc-binding motif having two cysteines, one histidine, and a water
molecule (Dawson et al., 2013). The binding of NADP occurred at
the surface of the reductase domain in a very extended conformation
(Figure 4) with slight variations at the nicotinamide ring (Stenmark
et al., 2007). The reductase active pocket was covered by the loop,
which interacts with the cofactor and substrate analogue in the

binary complexes (Ren et al., 2005). The substrate/substrate
analogue ribose 5-phosphate binds to subunit A of the enzyme
but does not bind to subunit B (Figure 4). A ternary complex of the
reductase domain was created by a combination of the substrate with
the ribitylimino intermediate and cofactor NADP binary structures
(Chen et al., 2009).

Lumazine synthase (LS)

LS facilitates the condensation of two substrates, namely, DHBP
and ArPP, leading to the biosynthesis of DRL. The subsequent
dismutation reaction of two DRL converts it into one riboflavin and
one ArPP, catalyzed by riboflavin synthase (RS). Numerous
structural, biophysical and mechanistic studies were conducted to
understand the mechanism of the reaction carried out by LS. The
enzyme-catalyzed reaction was anticipated to have several
intermediary steps and start with the substrate binding,
nucleophilic attack, formation of Schiff base intermediate, proton
abstraction, and phosphate elimination with subsequent ring
closure. Finally, the release of water would terminate the
reaction, resulting in product creation in the form of DRL (Kis
et al., 1995; Bacher et al., 1996; Zhang et al., 2003).

The crystal structures of LS from different organisms were
reported. All the structural and oligomeric studies performed
suggest a pentameric assembly as a basic unit, although, various
degrees of the quaternary higher oligomeric states were observed for
different organisms. The LS proteins were reported in the
pentameric form in Saccharomyces cerevisiae,
Schizosaccharomyces pombe, M. grisea, and M. tuberculosis
(Persson et al., 1999; Meining et al., 2000; Gerhardt et al., 2002a;
Morgunova et al., 2005), as dimers of pentamers in Brucella abortus
(Braden et al., 2000; Zylberman et al., 2004) and as icosahedral
capsids consisting of 60 identical subunits, which can be designated

FIGURE 4
Structures of Escherichia coli bifunctional deaminase/reductase. Cartoon representation of the crystal structure of Escherichia coli deaminase/
reductase in apo form (PDBID: 2G6V) underlining the domain organization and their relative orientation (left). The crystal structure of Escherichia coli
bifunctional deaminase/reductase in complex with cofactor, NADPH (PDBID: 2O7P) binding in the active site of the reductase domain (middle). Structure
of E. coli deaminase/reductase in complex with a substrate analogue, ribose 5-phosphate (R5P), bound to the active site of the reductase domain
(right).
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as dodecamers of pentamers in B. subtilis, Aquifex aeolicus, S.
oleracea and S. typhimurium (Schott et al., 1990; Ladenstein
et al., 1994; Persson et al., 1999; Zhang et al., 2001; Kumar et al.,
2011). Moreover, in B. subtilis a new arrangement of LS and RS was
seen, they exist as a 1 MDa protein complex having LS forming the
outer capsid, while 3 RS subunits occupied the core (Ladenstein
et al., 1988; Schott et al., 1990). The mega-dalton protein complex of
LS and RS proposed to improve the catalytic productivity of the two
processes carried by these two enzymes by substrate channeling
especially at low substrate concentrations (Ritsert et al., 1995). The
topology of the higher oligomeric form (icosahedral and decameric
forms of protein) looks like that of the homopentameric LSs
(Figure 5). Comparative analysis of several crystal structures of
LS from various species displayed a flavodoxin-like fold irrespective
of the oligomeric status, either pentameric or higher quaternary
structures of the protein. The overall architecture of the single
subunit contains a four-stranded beta-sheet with alpha helices
covering the central beta strands. Structural studies of LS

structures reveal the topologically equivalent active sites and were
located between adjacent subunits creating a cavity to accommodate
the substrate (Figure 5). LS binds two substrates, namely, DHBP and
ArPP and their location were identified through several structural
studies of the protein-ligand complexes formed between the protein
and metabolically stable substrate, intermediate, and product
analogues (Ritsert et al., 1995; Persson et al., 1999; Meining et al.,
2000; Morgunova et al., 2005).

Riboflavin synthase (RS)

RS is an ultimate protein in the biosynthetic pathway of
riboflavin, that catalyzes the dismutation of two DRL to yield one
riboflavin and one molecule of ArPP (PLAUT, 1963; Harvey and
Plaut, 1966). In essence, it performs the transfer of a butane unit (4-
carbon unit) from one molecule of DRL to another DRL molecule
and in the process creating riboflavin and ArPP, hence outlining the

FIGURE 5
Structures of lumazine synthase (LS) in several oligomeric states. Pentamer assembly of LS from M. tuberculosis bound to inhibitor TS50 (5-(1,3,7-
trihydro-9-day-ribityl-2,4,8-purinetrione-7-yl)pentane 1-phosphate) at active sites (PDBID: 2C94). Each subunit is represented in different colour
(upper). Crystal Structure of LS from B. abortus (PDBID: 1XN1) showing as dimer of pentamer (lower left). Surface representation of icosahedral assembly
of S. typhimurium LS showing each pentamer in different colour (PDBID: 3MK3) (lower right).
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terminal reaction of the riboflavin biosynthetic pathway. The second
product of the reaction, ArPP, can be recycled and serve as a
substrate for LS, the penultimate enzyme in the biosynthetic
pathway of riboflavin. The enzyme-catalyzed and the uncatalyzed
reactions proceed with identical regiochemistry involving a head-to-
tail arrangement of the two 4-carbonmoieties from which the xylene
ring of riboflavin is formed (Paterson and Wood, 1969; Sedlmaier
et al., 1987; Ladenstein et al., 2013). The enzyme-catalyzed reaction
necessitates the simultaneous occurrence of two substrates in an
anti-parallel orientation at the active site of the enzyme. A proposed
reaction mechanism of RS proceeds through a pentacyclic
intermediate structure, which is formed by the dimerization of
DRL and the sequence of two elimination reaction that converts
the pentacyclic intermediate into equimolar amounts of riboflavin
and ArPP (Illarionov et al., 2001; 2005).

RS from bacteria, yeast, and plants are shown to form
homotrimers (Bacher et al., 1980; Liao et al., 2001b; Gerhardt
et al., 2002b), while, in archaea, it forms homopentamer with
completely different protein sequences (Ramsperger et al., 2006).
In all the RS studied so far, the homotrimeric RS subunits contain
intramolecular sequence similarity possibly due to two molecules of
similar substrate. The comparison of proximal and distal domains of
homotrimeric RS showed a high structural similarity, suggesting that
both domains have grown from a common ancestor probably
through gene duplication. The three-dimensional structure of RS
from E. coli, B. abortus, and S. pombe was determined and showed
that the protein was a homotrimer. Each subunit consists of two
repeating β-barrel domains that share high sequence and structural
similarity. The only difference between the two β-barrels is the
presence of a C-terminal helix at the C-terminal β-barrel which is
suggested to play a role in the trimerization of RS (Liao et al., 2001b;
Gerhardt et al., 2002b; Serer et al., 2014). The structural studies on
RS also revealed that the active site is present between the
N-terminal β-barrel of one subunit and the C-terminal β-barrel
of another subunit with its substrate binding in anti-parallel

orientation. The interactions between the subunits of the trimer
are primarily mediated by the arrangement of the C-termini (which
do not participate in the intra-subunit sequence similarity) in a triple
helical motif (Figure 6). The trimeric RS from E. coli was solved in
the apo form, while RS from S. pombe was solved complex with
substrate analogue (Liao et al., 2001b; Gerhardt et al., 2002b). The
homotrimeric structure of RS from B. abortus was solved in the
presence of riboflavin and in complex with two product analogues,
namely, roseoflavin and 5-nitro-6-ribitylamino-2.4(1H, 3H)-
pyrimidinedione (Serer et al., 2014) (Figure 6). Additionally, the
crystal structure of N-terminal domain of E. coli RS in the presence
of riboflavin was solved and showed that it can bind riboflavin and
exists as a homodimer which could be superposed with a single
subunit of full-length enzyme. This model was used to find out the
differences in substrate and product binding at the C and N-terminal
domains and validated the proposed reaction mechanism (Meining
et al., 2003).

Inhibitors of riboflavin pathway enzymes

The compound 4-phosphoerythronohydroxamic acid (4PEH)
was studied for its inhibitory ability due to structurally mimicking
the substrate Ru5P of DHBPS. The compound was found to inhibit
DHBPS activity with a Ki value of around 100 μM (Islam et al.,
2015). Apart from DHBPS, 4PEH was shown to act as a competitive
inhibitor for M. tuberculosis ribose-5-phosphate isomerase B (Roos
et al., 2005). Structure determination with inhibitor confirms the
competitive mechanism where it occupies the active site and was
unable to accommodate an intermediate that was critical for DHBPS
activity (Islam et al., 2015).

GCH II, being the rate-limiting step in the biosynthesis of
riboflavin, makes it a potential novel selective antimicrobial drug
target. Phosphomethylphosphonic acid guanyl ester, GMPCPP was
known to inhibit the GCH II and act as a GTP substrate analogue.

FIGURE 6
Structures of trimeric riboflavin synthase (RS). Crystal structure of RS from Escherichia coli (PDBID: 1I8D). Each subunit is shown in different colour
(left). Structure of trimeric RS from B. abortus in complex with one riboflavin (PDBID: 4E0F) (middle). Crystal structure of RS from B. abortus in complex
with 5-Nitro-6-(D-Ribitylamino)-2.4(1H, 3H) Pyrimidinedione (PDBID: 4GQN) highlighting the inhibitor binding in active sites (right).
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The bound inhibitor structure of E. coli GCH II with GMPCPP
revealed the detailed stereochemistry of the enzyme active site and
helped in the structure-based design of inhibitors of GCH II (Ren
et al., 2005). E. coli bifunctional deaminase/reductase structure
complexed with the substrate analogue ribose-5-phosphate (RP5)
was helpful in defining the binding pocket useful for inhibitor design
(Stenmark et al., 2007). To gain structural insights and inhibitor
design, the structure of B. subtilis bifunctional deaminase/reductase
in complex with 5-diamino-6-ribosylamino-2.4(1H, 3H)-
pyrimidinedione 5′-phosphate (AROPP) was solved at 2.56-Å
resolution (Chen et al., 2009). GMP molecule, a substrate

analogue for the deaminase reaction was observed in the
NADPH-binding site of the reductase domain, occupying the
adenine-binding pocket (Dawson et al., 2013). These initial
molecules may be exploited to provide starting points for a
structure-based approach to antibacterial drug discovery.

Most of the inhibitors were designed or studied centered around
LS and RS due to their involvement in the last step of the pathway.
The development of LS and RS inhibitors was focused on the
modifications of the central pyrimidinedione core, side chain
extension from the core and various stable substrates,
intermediate and product analogues. Based on the crystal

TABLE 1 List of inhibitors (substrate, intermediate and product analogues) for riboflavin biosynthetic enzymes.

Enzymes Inhibitors References

3,4-dihydroxy-2-butanone 4-phosphate
synthase (DHBPS)

4-phosphoerythronohydroxamic acid (4PEH) Islam et al. (2015)

GTP cyclohydrolase II (GCH II) Phosphomethylphosphonic acid guanylyl ester, GMPCPP Ren et al. (2005)

Pyrimidine deaminase/reductase Ribose-5-phosphate (RP5) Stenmark et al. (2007)

5-diamino-6-ribosylamino-2.4(1H,3H)-pyrimidinedione 5′-phosphate (AROPP) Chen et al. (2009)

Guanosine monophosphate (GMP) Dawson et al. (2013)

Lumazine synthase (LS) 1.5,6,7-Tetrahydro-6,7-dioxo-9-day-ribitylaminolumazines bearing alkyl phosphate
Substituents (Ribitylamino)uracils bearing fluorosulfonyl, sulfonic Acid, and carboxylic

Acid

Cushman et al. (2005)

2,6-dioxo-(1H,3H)-9-N-ribitylpurine Cushman et al. (1997)

2,6-dioxo-(1H,3H)-8-aza-9-N-ribitylpurine Cushman et al. (1998)

6-(6-D-ribitylamino-2,4-dihydroxypyrimidine-5-yl)-1-hexylphosphonic acid Cushman et al. (1998)

9-day-Ribitylamino-1.3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and
α,α-difluorophosphonate Substituents

Cushman et al. (1999b)

6-Carboxyalkyl and 6-phosphonoxyalkyl derivatives of 7-Oxo-8-ribitylaminolumazines Cushman et al. (2004)

1,4-bis [1-(9-D-ribityl-1,3,7-trihydropurine-2,6,8-trionyl)]butane Cushman et al. (2002a)

5-nitro-6-ribitylamino-2.4-(1H,3H) pyrimidinedione Cushman et al. (2001)

1,3,7-Trihydro-9-day-ribityl-2,4,8-purinetrione-7-yl (TS13) Ritsert et al. (1995)

3-(1,3-dihydro-9-day-ribityl-2,4,8-purinetrione-7-yl)propane 1-phosphate (TS44) Morgunova et al. (2007)

4-(6.7(5H,8H)-dioxo-8-day-ribityllumazine-5-yl)butane 1-phosphate (GJ43) [4-(6-
chloro-2,4-dioxo-1,2,3,4 tetrahydropyrimidin-5-yl)butyl] phosphate (JC33)

Morgunova et al. (2007)

3-Alkyl phosphate derivatives of 4.5,6,7-tetrahydro-1-day-ribityl-1H-pyrazolo [3,4-day]
pyrimidinedione

Morgunova et al. (2007)

N-[2,4-dioxo-6-day-ribitylamino-1.2,3,4-tetrahydropyrimidin-5-yl]oxalamic acid
derivatives

Morgunova et al., 2007 Zhang et al.,
2007 Zhang et al., 2008

Riboflavin synthase (RS) 1.5,6,7-Tetrahydro-6,7-dioxo-9-day-ribitylaminolumazines bearing alkyl phosphate
Substituents

Cushman et al. (2005)

Bis(6,7-dimethyl-8-D-ribityllumazines) Cushman et al. (1999a)

2,6-dioxo-(1H,3H)-9-N-ribitylpurine Cushman et al. (1998)

2,6-dioxo-(1H,3H)-8-aza-9-N-ribitylpurine Cushman et al. (1998)

9-day-Ribitylamino-1.3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and
α,α-difluorophosphonate Substituents

Cushman et al. (2004)

5-phosphonoalkyl-6-D-ribitylaminopyrimidinediones (Amide derivatives) Cushman et al. (2002b)

N-[2,4-dioxo-6-day-ribitylamino-1.2,3,4-tetrahydropyrimidin-5-yl]oxalamic acid
derivatives

Zhang et al. (2008)
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structures complexed with substrate and product of the reaction
catalyzed by LS, several organic compounds have been synthesized
and characterized by various docking, simulation and
spectrophotometrically as inhibitors of LS from M. tuberculosis,
B. abortus and C. albicans (Cushman et al., 1998; Braden et al., 2000;
Cushman et al., 2001; Cushman et al., 2002a; Cushman et al., 2004;
Chen et al., 2005; Cushman et al., 2005; Zhang et al., 2008). The
crystal structure of icosahedral B. subtilis LS capsids with 5-nitro-6-
ribitylamino-2.4-(1H, 3H) pyrimidinedione, a substrate analogue
inhibitor, was solved allowing a detailed description of the substrate
analogue binding site (Ritsert et al., 1995). Based on the structure-
based drug designing, several substrate analogous inhibitors of LS
from C. albicans have been synthesized, namely, 1,3,7-Trihydro-9-
day-ribityl-2,4,8-purinetrione-7-yl (TS13); 3-(1,3-dihydro-9-day-
ribityl-2,4,8-purinetrione-7-yl)propane 1-phosphate (TS44); 4-
(6.7(5H, 8H)-dioxo-8-day-ribityllumazine-5-yl)butane 1-
phosphate (GJ43); and [4-(6-chloro-2,4-dioxo-
1,2,3,4 tetrahydropyrimidin-5-yl)butyl] phosphate (JC33). The
binding affinities of these inhibitors were measured using
isothermal titration calorimetry and were found to be in the
micromolar range (Morgunova et al., 2007). Several amide
derivatives of 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione
were synthesized and their selectivity for inhibition for LS as well as
RS was evaluated. These amide derivatives showed better inhibitory
potency to RS than LS and this was further validated by molecular
docking demonstrating that the active site of the RS protein could
gladly harbor two substrate/substrate analogue/inhibitor molecules
(Cushman et al., 2002b).

Several phosphonate inhibitors of LS were manufactured in that
the phosphorus atom was separated from the pyrimidinedione ring
by a carbon linker. These inhibitors were metabolically stable
analogues of intermediate structure designed using enzyme-
inhibitor complex. These phosphonates show remarkable LS
inhibitory potency with Ki in the range of 100–500 μM
(Cushman et al., 1999c; 1999b). Three bis(6,7-dimethyl-8-D-
ribityllumazines) containing two lumazine moieties and
(ribitylamino) uracils bearing fluorosulfonyl, sulfonic acid, and
carboxylic acid were synthesized. These compounds showed very
weak inhibitors of RS, although more potent for LS (Cushman et al.,
1997; 1999a).

The inhibitors created by the replacement of the
pyrimidinedione core with a purine showed inhibition for B.
subtilis LS and E. coli RS in mid micromolar range which further
improved to lower micromolar range upon the addition of a ketone
group (Cushman et al., 1998; Cushman et al., 2001). A series of
inhibitors based on 8-aza derivative with alkyl and phosphate moiety
were synthesized. All the synthesized compounds were exceptionally
potent inhibitors of LS ofM. tuberculosis,M. grisea, C. albicans, and
S. pombe with inhibition potency in the low nanomolar to sub
nanomolar range (Zhang et al., 2007). The designs of dual inhibitors
were rapidly progressed because of their effectiveness against LS and
RS and the fact it would be rare to mutate both enzymes
simultaneously to create a resistant pathogen. Several dual
inhibitors were synthesized and found to be effective in
inhibiting the LS and RS of various organisms (Cushman et al.,
2002a; Cushman et al., 2005; Talukdar et al., 2012).

A robust high-throughput screening (HTS) platformwas developed
for screening the inhibitors against DHBPS, LS, and RS (Kaiser et al.,

2007; Talukdar et al., 2009; Zhao et al., 2009). Covalent hydrates of
trifluoromethylated Pyrazoles were recognized as inhibitors of RS, and
showed potent antimicrobial activity againstM. tuberculosis (Zhao et al.,
2009). Recently, HTS approach has identified ten molecules from initial
44,000 low molecular weight compounds against RS from Brucella
spp. With inhibition in the low micromolar range. Several of the most
effective inhibitors were subsequently optimized and represent a
promising and effective antimicrobial for brucellosis (Serer et al.,
2019). Table 1 summarizes all the inhibitors of riboflavin
biosynthetic enzymes mentioned in this section.

Conclusion

Structures of all the enzymes of the riboflavin biosynthetic pathway
were solved from several bacterial pathogens. High-resolution
structures along with enzyme kinetics were helpful in finalizing the
reaction mechanism with the formation of various possible
intermediates. Structure-based drug designing has started due to the
abundant complex structures of these enzymes with substrate, substrate
analogs, intermediates, product and product analogs. Several stable
compounds were synthesized based on modification of the pyrimidine
core, phosphate, and alkyl chain especially for LS and RS. The inhibitors
were tested on various microorganisms and found to be effective which
provides a template to generate new lead compounds in the
development of therapeutics.
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