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Introduction: Acute aortic dissection (AAD) often leads to the development of
acute lung injury (ALI). However, the early detection and diagnosis of AAD in
patients with ALI pose significant challenges. The objective of this study is to
investigate distinct metabolic alterations in the plasma samples of AAD patients
with ALI, AAD patients without ALI, and healthy individuals.

Method: Between September 2019 and September 2022, we retrospectively
collected data from 228 AAD patients who were diagnosed with ALI through post-
surgery chest X-ray and PaO2/FiO2 assessments. Univariate analysis was employed to
identify pre-surgery risk factors for ALI. Additionally, we conducted high-throughput
target metabolic analysis on 90 plasma samples, comprising 30 samples from AAD
patients with ALI, 30 from patients with AAD only, and 30 from healthy controls. After
LC-MS spectral processing and metabolite quantification, the recursive feature
elimination with cross-validation (RFECV) analysis based on the random forest was
used to select the optimal metabolites as a diagnostic panel for the detection of AAD
patients with ALI. The support vector machines (SVM) machine learning model was
further applied to validate the diagnostic accuracy of the established biomarker panel.

Results: In the univariate analysis, preoperative β-HB and TNF-α exhibited a significant
association with lung injury (OR = 0.906, 95% CI 0.852–0.965, p = 0.002; OR = 1.007,
95% CI 1.003–1.011, p < 0.0001). The multiple-reaction monitoring analysis of
417 common metabolites identified significant changes in 145 metabolites (fold
change >1.2 or <0.833, p < 0.05) across the three groups. Multivariate statistical
analysis revealed notable differences between AAD patients and healthy controls.
When compared with the non-ALI group, AAD patients with ALI displayed remarkable
upregulation in 19 metabolites and downregulation in 4 metabolites. Particularly,
combining citric acid and glucuronic acid as a biomarker panel improved the
classification performance for distinguishing between the ALI and non-ALI groups.

Discussion: Differentially expressed metabolites in the ALI group were primarily
involved in amino acids biosynthesis, carbohydrate metabolism (TCA cycle), arginine
andprolinemetabolism, andglucagon signalingpathway. Thesefindings demonstrate
a great potential of the targeted metabolomic approach for screening, routine
surveillance, and diagnosis of pulmonary injury in patients with AAD.
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1 Introduction

Acute type A aortic dissection (AAD) constitutes a
cardiovascular emergency necessitating immediate intervention
(Wang et al., 2022). Despite significant advancements in
surgical techniques and postoperative care, the incidence of
complications such as paraplegia, stroke, acute renal damage,
low cardiac output syndrome, and acute lung injury (ALI)
remains high (Wei et al., 2019). Worryingly, postoperative ALI
has been reported in 30%–50% of AAD patients, which can lead to
decreased oxygen levels in the blood and difficulty in breathing
(Liu et al., 2016). In severe cases, ALI can progress to acute
respiratory distress syndrome (ARDS), which is a life-
threatening condition with a high mortality rate. It is important
for clinicians to closely monitor patients for signs of ALI after
surgery for AAD and to take appropriate measures to prevent this
complication.

The mechanisms triggering the onset of postoperative ALI
subsequent to AAD differ markedly and are distinct from those
observed in general cardiac surgery with extracorporeal
circulation. They encompass factors like rapid AAD onset,
compromised thoracic organs’ blood supply, and an inability to
establish collateral circulation (Girdauskas et al., 2010).
Additionally, the aortic tear-induced inflammatory response and
the subsequent release of inflammatory mediators, such as
neutrophil elastase (NE), can inflict damage upon lung tissue
(Gu et al., 2015). Other influential factors comprise the
activation of the complement, kinin, and fibrinolytic coagulant
systems during prolonged extracorporeal circulation (Roumy et al.,
2020) along with ventilator-associated lung injury resulting from
lung hyperinflation and excessive tissue stretching (Rich et al.,
2000).

Clinical ALI diagnosis hinges on the criteria set forth by the
1994 European Consensus Criteria (Bernard et al., 1994) and the
2012 “Berlin criteria” proposed by the European Society of Intensive
Care Medicine (ARDS Definition Task Force, 2012). Specifically,
acute, progressive, bilateral pulmonary infiltrates visible on chest
X-ray radiographs, alveolar capillary embedding pressure of
18 mmHg (1 mmHg = 0.133 kPa), and oxygenation index (OI =
PaO2/FiO2) of 300 mmHg serve as indicators for ALI. However, the
early stage of ALI in post-AAD patients might not exhibit
discernible imaging changes, thereby limiting the utility of these
criteria. As a result, there is a pressing demand for the identification
of novel biomarkers that can predict the development and
progression of ALI in AAD patients.

The complexity and heterogeneity of ALI pathophysiology
necessitate the employment of high-throughput technologies,
such as metabolomics, for pinpointing potential diagnostic and
prognostic biomarkers for AAD with ALI. Metabolomics
facilitates a comprehensive quantitative evaluation of small
molecule metabolites (typically <1,500 Daltons) in cells, tissues,
or organisms, which provides a direct functional readout of the
physiological or pathological state of an organism (Nie et al., 2021).
This study aims to leverage a metabolomics platform to identify
diagnostic biomarkers for the early stage of AAD with ALI, address
the perturbed pathways underlying disease progression, and
illuminate the pathophysiological mechanisms of AAD with ALI.

2 Materials and methods

2.1 Patient selection

We conducted a retrospective study at the Department of
Cardiac Surgery, Xiamen Cardiovascular Hospital of Xiamen
University, involving 228 patients who underwent surgery
between September 2019 and September 2022. These patients
were diagnosed with acute lung injury (ALI), as confirmed by
chest X-ray and PaO2/FiO2 assessments. The study was
conducted in accordance with the approval of the Ethics
Review Committee of the Xiamen Cardiovascular Hospital of
Xiamen University. Written informed consent was obtained from
all patients or their authorized representatives prior to the
operation.

Initially, a total of 228 patients who had undergone preoperative
computed tomographic angiography (CTA) were included in this
retrospective study. However, patients with a history of CAD,
coronary artery disease (CAD), acute left heart failure (ALHF),
pneumonia, and diabetes and those with insufficient clinical data or
blood samples were excluded from the study. After applying these
exclusion criteria, 92 out of the initial 228 patients remained eligible
for analysis. The patients were divided into two groups based on the
results of chest X-ray and PaO2/FiO2 assessments (Supplementary
Table S1). Furthermore, individuals with diabetes, cardiovascular
diseases, or other conditions that could influence metabolic profiles
were excluded from the study. Healthy individuals with a history or
any signs of ALI based on chest X-ray or CT evaluation were
excluded from the control group.

To conduct an unbiased search for plasma metabolites, the
metabolomics analysis commenced. A total of 30 cases were
randomly selected from 45 AAD patients diagnosed with ALI,
and 30 cases were randomly selected from 47 AAD patients
without ALI (non-ALI group). Additionally, an age- and
gender-matched control group comprising 30 healthy
individuals was randomly chosen. Detailed information
regarding these subjects can be found in Supplementary Table
S2. To ensure sample quality and facilitate result interpretation,
plasma samples were collected from all participants 1 h
postoperatively. Following collection, the samples were
promptly separated and stored at −80°C.

2.2 Metabolite extraction

The metabolites were extracted by the addition of 400 μL of cold
methanol/acetonitrile (1:1, v/v) to the sample, resulting in the
removal of proteins. Thorough vortexing was performed to
ensure proper mixing. For absolute quantification of metabolites,
a stock solution of stable-isotope internal standard was added to the
extraction solvent simultaneously (Supplementary Figure S1A). The
mixture was transferred to a new centrifuge tube and centrifuged at
14,000 g for 20 min at 4°C to collect the supernatant. Subsequently,
the supernatant was dried using a vacuum centrifuge. The dried
samples were re-dissolved in 100 μL of acetonitrile/water (1:1, v/v)
solvent and centrifuged at 14,000 g for 20 min at 4°C in preparation
for LC-MS analysis.
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2.3 LC-MS/MS analysis

The samples were analyzed using the ultra-high-performance
liquid chromatography quadrupole-trap tandem mass spectrometry
method (UHPLC-QTRAPMS). The UHPLC system used in this
study was a 1290 Infinity System from Agilent Technologies (Santa
Clara, CA, United States) coupled with a mass spectrometer QTRAP
6500+ MS from Sciex (Framingham, MA, United States).

For the separation of analytes, both HILIC (Waters UPLC BEH
Amide column, 2.1 mm× 100 mm, 130 Å, 1.7 µm) and C18 columns
(Waters UPLC BEHC18 column, 2.1 mm× 100 mm, 130 Å, 1.7 μm)
were utilized. During HILIC separation, the column temperature
was maintained at 35°C, and the injection volume was 2 μL. The
mobile phase composition consisted of 90% H2O + 2 mM
ammonium formate +10% acetonitrile (mobile phase A) and
0.4% formic acid in methanol (mobile phase B). A gradient
elution was performed, starting with 85% B at 0–1 min, 80% B at
3–4 min, 70% B at 6 min, 50% B at 10–15.5 min, and finally reaching
85% B at 15.6–23 min. The flow rate was set at 300 μL/min. During
RPLC separation, the column temperature was maintained at 40°C,
and the injection volume was 2 μL. The mobile phase consisted of
5 mM ammonium acetate and 0.2% NH3·H2O (mobile phase A) and
99.5% acetonitrile and 0.5% NH3·H2O (mobile phase B). The
gradient elution started with 5% B at 0 min, increased to 60% B
at 5 min, reached 100% B at 11–13 min, and returned to 5% B at
13.1–16 min. The flow rate was set at 400 μL/min. Throughout the
analysis process, the sample was maintained at 4°C.

The QTRAP 6500+ mass spectrometer was operated in positive
and negative switch modes. For the positive mode, the source
conditions are as follows: source temperature: 580°C; ion source
gas 1 (GS1): 45; ion source gas 2 (GS2): 60; curtain gas (CUR): 35;
IonSpray Voltage (IS): +4500 V. For the negative mode, the source
conditions were as follows: source temperature: 580°C; ion source
gas 1 (GS1): 45; ion source gas 2 (GS2): 60; curtain gas (CUR): 35;
IonSpray Voltage (IS): −4500 V. Mass spectrometry quantitative
data acquisition was performed using the multiple reaction
monitoring (MRM) method. The MRM ion pairs used are listed
in the attached file. To evaluate the stability and repeatability of the
system, polled quality control (QC) samples were included in the
sample queue. The relative standard deviations (%RSDs) in the
pooled QC (n = 10) were calculated and presented in Supplementary
Figure S1.

2.4 Metabolite identification and
quantification

The raw data obtained from themass spectrometry analysis were
converted to the .mzML format using the ProteoWizard software.
Subsequently, the XCMS program was employed for various data
processing steps, such as peak alignment, retention time correction,
and extraction of peak areas. During the peak picking step, the
centWave algorithm was used with an m/z tolerance of 25 ppm. The
peak width was set to a range between 10 and 60 data points, and a
prefilter was applied in the range between 10 and 100 data points.
For peak grouping, the bw parameter was set to 5, indicating the
bandwidth for grouping similar peaks together. The mzwid
parameter was set to 0.025, which represents the m/z width for

grouping. The minfrac parameter was set to 0.5, indicating the
minimum fraction of the samples in which a feature should be
present to be considered for grouping. The metabolite structures
were identified using exact mass number matching with a tolerance
of less than 25 ppm. This matching was performed to compare the
measured m/z values of the detected peaks with the expected mass
values of known metabolites. Additionally, the secondary spectra
matching was utilized for further identification of metabolite
structures. This technique involves comparing the acquired
spectra of the detected peaks with the reference spectra or
databases to find matching patterns. All the aforementioned steps
in data processing and metabolite identification aim to ensure
accurate and reliable quantification of metabolites in the samples.

The metabolites were quantified in over half of the samples,
indicating that some samples may have missing values for certain
metabolites. To handle these missing values, the k-nearest neighbor
(KNN) algorithm was applied for imputation. The KNN algorithm
predicts missing values by considering the values of the nearest
neighbors in the data set. The imputation process using the KNN
algorithm was performed using the DMwR package in R version
3.5.3. After imputation, the expression levels of the metabolites were
log-transformed. This transformation helps to address any skewness
or heterogeneity in the data. Normalization and autoscaling were
then applied to the log-transformed data. The quality control (QC)
samples were processed together with the biological samples,
monitoring any technical variations or instrument drift in the
data analysis. To assess the reproducibility of the measurements,
the coefficient of variation (CV) was calculated for each metabolite
in the QC samples. Metabolites with a CV less than 30% were
considered to have reproducible measurements. After performing
these steps, the metabolomics data were robust and suitable for
subsequent analysis and interpretation.

2.5 Statistical data analysis

Clinical statistical analyses were performed using the IBM SPSS
software package (version 26.0; SPSS, Chicago, IL, United States).
The clinical data were assessed for normal distribution using the
Shapiro–Wilk test (p > 0.05). The normally distributed data were
expressed as mean ± standard deviation, while the non-normally
distributed or skewed data were presented as median [interquartile
range]. The categorical data were reported as numbers (percentage).
The Student’s t-test was used for normally distributed data, and the
Mann–Whitney U test was employed for non-normally distributed
or skewed data. The Pearson chi-square test or Fisher’s exact test was
used for comparing numbers (percentage).

The significant variables (p < 0.05) identified through the
univariate analysis (which included the Student’s t-test, Pearson
chi-square test or Fisher’s exact test, and Mann–Whitney U test)
were further analyzed using the multivariate analysis to estimate the
odds ratios (ORs) for acute lung injury (ALI) and corresponding
95% confidence intervals (CIs). The selected variables (p < 0.05)
from the multiple logistic regression analysis were included in the
receiver operating characteristic (ROC) curve analysis.

The MetaboAnalyst 5.0 (https://genap.metaboanalyst.ca/
MetaboAnalyst/) and R 4.2.3 (R Foundation for Statistical
Computing, Austria) were utilized for metabolomic data analyses
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and visualizations after normalization and scaling. The multivariate
data analysis, which included the Pareto-scaled principal
component analysis (PCA), partial least squares discriminant
analysis (PLS-DA), and sparse PLS discriminant analysis (sPLS-
DA), was performed using theMetaboAnalyst. The robustness of the
models was evaluated using tenfold cross-validation and response
permutation testing. The variable importance in the projection
(VIP) value of each variable in the PLS-DA model was calculated
to indicate its contribution to the classification.

A two-tailed t-test was used to identify metabolites that differed
between the groups, that is, ALI group vs. non-ALI group, ALI group
vs. control group, and non-ALI group vs. control group. Notably, the
p-values were corrected by the Benjamini–Hochberg algorithm. The
differential metabolites were screened based on the criteria of an
intersection of fold change >1.2 or <0.833 and p-value <0.05. The
hierarchical cluster analysis was performed using the
MetaboAnalyst 5.0 with Euclidean distances as the calculation of
distances and Ward linkage as the clustering method.

Python (version 3.11.4) was used for important feature selection
and classification model construction. Recursive feature elimination
cross-validation (RFECV) was employed to calculate the important
feature score using the random forest model in the sklearn.metrics
package. A support vector machine (SVM) was applied to generate a
mathematical model for discriminating between the ALI and non-

ALI groups. The predictive performance of the model was assessed
by estimating the area under the ROC curve (AUC) and confusion
matrix, which were commonly used to evaluate the overall
discriminant ability.

3 Results

3.1 Basic characteristics of patients

Adherence to the inclusion and exclusion criteria resulted in the
inclusion of 92 study participants (Figure 1A). The 92 study
participants were divided into the ALI group and non-ALI
group. The ALI group comprised patients exhibiting lung injury
signs on chest X-rays, such as increased pulmonary edema and
increased lung texture, along with a PaO2/FiO2 ratio of <300. On the
other hand, the non-ALI group consisted of patients with a PaO2/
FiO2 ratio of >300 (Figures 1A,B). The clinical characteristics of the
patients are presented in Supplementary Table S1. Themean age was
53.7 years. A total of 64.1% of the patients had hypertension and
36% were smokers. Additionally, 12% of the patients had a history of
alcohol consumption and 8% had false lumen thromboembolism.
The breaking location was the ascending aorta in 49% of the cases.
The median PaO2/FiO2 was 302.78 mmHg (IQR 93.7 years). Other

FIGURE 1
Study design and clinical cohort establishment. (A) In this retrospective study, we employed specific inclusion and exclusion criteria for the selection
of AAD patients combined with acute lung injury (ALI). (B) Chest X-rays as a diagnostic measure for AAD patients with or without ALI were assessed. (C)
The plasma levels of β-HB and TNF-α between the ALI and non-ALI groups were compared. (D) ROC analyses were conducted to evaluate the
performance of β-HB and TNF-α as potential diagnostic biomarkers. Abbreviations: CTA: computed tomography angiography; CAD: coronary artery
disease; ALHF: acute left heart failure.
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median values included hs-CRP (3.21 mg/L), UA (404.8 mol/L),
WBC (14.11*109/L), PLT (171/L), D-Dimer (4.3 mg/L), HDL
(1.05 mmol/L), glucose (7.83 mmol/L), BNP (133 pg/mL), LAC
(1.3 mmol/L), ALT (19 U/L), AST (24.6 U/L), TG (1.05 mmol/L),
CHOL (4.3 mmol/L), LDH (226.2 U/L), CKMB (14.4 ng/mL),
CREA (82.1 umol/L), β-HB (29.6 mmol/L), IL-1β (48.1 ng/L),
and IL-6 (30 pg/mL). The mean values for LDL, EF, IL-10, and
TNF-α were 2.85 mmol/L, 67%, 758.2 pg/mL, and 549.3 ng/L,
respectively (Supplementary Table S1). In order to explore more
precise diagnostic biomarkers, we introduced metabolomic
experiments, and the baseline of the 60 cases was aligned with
that of the 92 cases (Supplementary Table S2).

3.2 Univariate analysis and ROC analysis

Through univariate and multivariate analyses to explore the
relationship between the basic characteristics of the patients and
ALI, we found that β-HB and TNF-α were independent risk factors
for ALI (Table 1, Supplementary Table S1; Figure 1C). The ROC
analysis showed that β-HB and TNF-α adequately discriminated the
ALI patients with an AUC of 0.7761 (95% CI 0.68–0.88;
p-value <0.0001) and 0.7708 (95% CI 0.68–0.87; p-value <0.0001)
(Figure 1D).

3.3 Metabolite quantity and classification

The workflow of this study and quantification of metabolites for
groups between ALI patients, non-ALI, and healthy controls via the
LC-MRM/MS approach is shown in Figure 2A. After data analysis,
we obtained thousands of feature peaks, followed by the statistical
analysis, and we identified a total of 417 metabolites from 8 classes
(Figure 2B). Our results show that organic acids and derivatives
contribute the highest percentage of metabolite composition at 28%,
such as creatine, creatinine, ornithine, or sabinic acid. In addition,
lipids and lipid-like molecules represented 16% of the total
metabolites in this analysis, which included glycocholic acid and

glycohyodeoxycholic acid. Additionally, organoheterocyclic
compounds and organic oxygen compounds represented 13%
and 10%, respectively (Supplementary Table S3).

3.4 Altered metabolic profiles among three
groups

To identify metabolite variability between each group, PCA,
PLS-DA, and sPLS-DA analyses were performed. The PCA score
plots demonstrated a distinct separation between the ALI group vs.
control group and non-ALI group vs. control group (Supplementary
Figure S1A–C). To further investigate the differences in metabolites
between the ALI group and non-ALI group, PLS-DA and sPLS-DA
were conducted. The score plots of PLS-DA (Supplementary Figure
S2D–F) and sPLS-DA (Figure 2C) showed clear distinctions
between the three groups.

Based on the PLS-DA analysis, 15 metabolites with the highest
VIP values were selected from the ALI group vs. control group
(Figure 2D), non-ALI group vs. control group (Figure 2E), and ALI
group vs. non-ALI group (Figure 2F). The top 10 metabolites with
VIP values above 1 in both the ALI group vs. control group and non-
ALI group vs. control group were considered discriminatory
metabolites. Additionally, arachidic acid, galacturonic acid, and
glucuronic acid with VIP values above 1.5 in the ALI group vs.
non-ALI group were also identified as potential differentiating
metabolites. The quality and validity of the PLS-DA
(Supplementary Figures S3A–C) and sPLS-DA (Supplementary
Figure 3G) models were evaluated through cross-validation, and
the permutation test of PLS-DA also indicated the robustness of the
models (Supplementary Figures S3D–F).

Volcano plots were generated to visualize the overall changes in
differential metabolites between the groups. These plots combined
fold change (FC) with p-values, revealing a total of 57 upregulated
and 55 downregulated metabolites in the ALI group vs. control
group (Figure 3A), 51 upregulated and 61 downregulated
metabolites in the non-ALI group vs. control group (Figure 3B),
and 19 upregulated and 4 downregulated metabolites in the ALI

TABLE 1 Multivariate analysis for acute lung injury in patients with acute aortic dissection.

Variables B SE Wald χ2 p-value OR 95% CI

DD (mg/L) 0.03 0.019 2.603 0.107 1.03 0.994–1.068

β-HB (mmol/L) −0.098 0.032 9.59 0.002 0.906 0.852–0.965

IL-1β (ng/L) 0.015 0.016 0.924 0.336 1.015 0.984–1.047

IL-6 (pg/mL) 0.058 0.035 2.717 0.099 1.06 0.989–1.135

TNF-α (ng/L) 0.007 0.002 12.306 0 1.007 1.003–1.011

PaO2/FiO2 (mmHg) −0.064 0.023 7.628 0.006 0.938 0.896–0.981

Breaking location※ 0.579 0.489 1.401 0.236 1.784 0.684–4.561

ECC (min) −0.001 0.004 0.11 0.741 0.999 0.992–1.006

AV (h) 0.004 0.004 0.827 0.363 1.004 0.995–1.013

Abbreviations: AV, assist ventilation; β-HB, β-hydroxybutyrate; B, regression coefficient; CI, confidence interval; DD, D-Dimer; ECC, extracorporeal circulation; FiO2, fraction of inspired O2;

IL-1β, human interleukin-1 beta protein; IL-6, interleukin-6; OR, odds ratio; PaO2, partial pressure of oxygen; SE, standard error; TNF-α, tumor necrosis factor-α.
Breaking location※: location of aortic dissection vessel rupture.
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group vs. non-ALI group (Figure 3C). The hierarchical clustering
analysis was performed to provide a visual representation of the
metabolite expression variation. The heatmaps of the ALI group vs.
control group (Figure 3D) and non-ALI group vs. control group

(Figure 3E) both clearly demonstrated the differences in the
metabolite profiles. However, the heatmap of the ALI group vs.
non-ALI group showed less distinct clustering, suggesting a less
pronounced differentiation than in the two other groups (Figure 3F).

FIGURE 2
Workflow of this study and quantification of metabolites for groups between ALI patients, non-ALI, and healthy controls via the LC-MRM/MS
approach. (A)Metabolites are accuratelymeasured in clinical plasma samples using the targeted LC-MRM/MS approach, allowing researchers to identify a
potential diagnostic panel for ALI. (B) A total of 418 metabolites from eight classes are identified by statistical analysis. (C) Based on the quantified
metabolites, a PLS-DA score plot is used to distinguish between the control and ALI and non-ALI groups. (D–F) The top 15metabolites ranked by VIP
scores were presented from the ALI group vs Control group, Non-ALI group vs Control group, and ALI group vs Non-ALI group, respectively.
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Furthermore, based on fold change (FC > 1.2 or <0.833) and p-
value (p < 0.05) criteria, the top 20 metabolites with the most
differential expressions were selected in each group (Supplementary
Figures S4A–C). In detail, 36 metabolites were more than twofold

upregulated and 22 metabolites were more than twofold
downregulated in the ALI group than in the control group
(Supplementary Table S4). A total of 32 metabolites were more
than twofold upregulated and 23 metabolites were more than

FIGURE 3
Volcano plots and heatmaps of the differential metabolites between three groups. (A–C) Volcano plots of the differential metabolites between ALI
vs. control (A), non-ALI vs. control (B), and ALI vs. non-ALI (C). (D–F) Significant differences for the variables among the three groups are depicted as
heatmaps. Each row represents an individual metabolite, and each column represents an individual sample. Red represents the metabolites in high
abundance, while blue represents the metabolites in low abundance.
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twofold downregulated in the non-ALI group than in the control
group (Supplementary Table S5). Likewise, when compared to the
non-ALI group, biliverdin was more than threefold upregulated in
the ALI patients, and 3-aminosalicylic acid was more than twofold
upregulated, while sphingomyelin and uridine 5′-diphosphate
(UDP) were more than twofold downregulated (Supplementary
Table S6). Collectively, the aforementioned analyses and
visualizations revealed significant differences in metabolic profiles
between the ALI group, non-ALI group, and control group. Several
discriminatory metabolites were identified, providing insights into
the metabolic alterations associated with ALI.

3.5 Potential biomarkers for ALI diagnosis

The box plots demonstrated the intensities of the four selected
metabolites (galacturonic acid, glucuronic acid, mannitol, and
acetylcholine) among the three groups, as evidenced by
p-values <0.001 for all comparisons (Figure 4A). Additionally, all
four metabolites exhibited AUC values exceeding 0.95 in the ROC
analyses conducted for both groups (Supplementary Figure S4).
Consequently, all four metabolites hold the potential as biomarkers
for distinguishing between the ALI group vs. control group and non-
ALI group vs. control group.

FIGURE 4
Diagnostic panel for differentiating between the ALI and non-ALI groups. (A) Bar charts illustrate the intensities of four metabolites, namely,
galacturonic acid, glucuronic acid, mannitol, and acetylglycine, across the three groups. (B) ROC curve analysis is performed for citric acid, glucuronic
acid, and the combination of these two metabolites is presented as a panel. (C) SVM method is employed to generate a confusion matrix displaying the
classification results. (D) Incorporating β-HB and TNF-α into the panel of two metabolites and re-evaluating the model, a slightly higher AUC of
0.864 is observed. (E) This incorporated model’s accuracy (0.7083), precision (0.5816), and sensitivity (0.571) are all decreased when compared with the
model that only contains two metabolites—citric acid and glucuronic acid.
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FIGURE 5
A comprehensive analysis to assess the metabolic pathways in the three groups. (A–C) The differential abundance score map (DA Score) illustrates
the differential metabolic pathways between ALI group vs. control group (A), non-ALI group vs. control group (B), and ALI group vs. non-ALI group (C). In
the map, the red color indicates an upregulated trend in the expression of all identified metabolites within the pathway, while blue represents a
downregulated trend. The length of the line corresponds to the absolute value of the DA score, and the size of the dots at the end of the line
represents the number of metabolites in the pathway. (D–F) Enrichment analysis is further used to investigate the metabolic pathway between the ALI
group vs. control group (D), the non-ALI group vs. control group (E), and the ALI group vs. non-ALI group (F). Intensity of the red color indicates the
significance of enrichment, and the rich factor denotes the proportion of differential metabolites in the pathway when compared to the total number of
metabolites annotated in that pathway.
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To focus on biomarker discovery, specifically in the ALI group
vs. non-ALI group, a combination of criteria was applied. The
intersection of the top 20 metabolites based on fold change
(FC > 1.2 or <0.833) with p-value <0.05 (Supplementary Figure
S5A–C) and the top 15 metabolites based on VIP in PLS-DA
(Figure 2F) was chosen for the RFECV analysis. This analysis
identified 12 metabolites, and citric acid obtained the highest
feature score (Supplementary Figure S5D).

The best biomarker panel was selected through cross-
validation of random combinations of these 12 metabolites.
The combination of citric acid and glucuronic acid achieved
the highest score of 0.80158 (Supplementary Figure S5E). The
60 samples were randomly divided into training and test groups
(6:4 ratio), and an SVM classification model was used to verify
the classification performance of the biomarker panel. The ROC
curve demonstrated that combining citric acid and glucuronic
acid as biomarkers (AUC = 0.842) resulted in a higher accuracy
than when using citric acid (AUC = 0.700) or glucuronic acid
(AUC = 0.757) individually (Figure 4B). The confusion matrix of
the SVM model showed that out of 24 individuals, 4 were
misclassified (Figure 4C). In our cohort, the accuracy,
precision, F1-score, sensitivity, and specificity of the model
were calculated as 0.8333, 0.7166, 0.8181, 0.786, and 0.900,
respectively.

Furthermore, we incorporated β-Hb and TNF-α into the panel
of metabolites and re-evaluated the model, resulting in a slightly
higher AUC of 0.864 (Figure 4D). However, upon examining the
confusion matrix, we observed that the performance was inferior
when compared to the panel of the two initial metabolites (citric acid
and glucuronic acid). Additionally, the model’s accuracy (0.7083),
precision (0.5816), and sensitivity (0.571) decreased (Figure 4E).
Based on these findings, we concluded that combining citric acid
and glucuronic acid as a biomarker panel improved the classification
performance for distinguishing between the ALI group and non-ALI
group.

3.6 Altered metabolic pathways

The DA score analysis was performed using theMetaboAnalyst
to assess the differential metabolic pathways between the ALI
group vs. control group (Figure 5A), the non-ALI group vs.
control group (Figure 5B), and the ALI group vs. non-ALI
group (Figure 5C). These DA score maps provided insights into
alterations in the pathways and pathway metabolites across the
three groups.

To further identify the significantly affectedmetabolic and signal
transduction pathways, the enrichment analysis was conducted by
using the R package, and the significance levels of metabolite
enrichment for each pathway were calculated. This analysis
resulted in an enrichment pathway map for each group (Figures
5D–F). Notably, several biological processes, such as the
tricarboxylic acid cycle (TCA), biosynthesis of amino acids
pathways, glucagon signaling pathway, arginine and proline
metabolism, and 2-oxocarboxylic acid metabolism, were
significantly altered in all three groups.

The key metabolic pathways, such as the TCA cycle and arginine
and proline metabolism, along with the differential metabolites

identified in these pathways, were presented for the ALI group
vs. control group (Figure 6A), non-ALI group vs. control group
(Figure 6B), and ALI group vs. non-ALI group (Figure 6C). The
intensities of metabolites, such as creatine, creatinine, and others,
exhibited significant alterations among the three groups
(Figures 6D–F).

Additionally, the De-Biased Sparse Partial Correlation
(DSPC) network analysis was conducted using MetaboAnalyst
5.0 to explore the correlation between the metabolites. In the ALI
group vs. control group, the metabolites 7-dehydrocholic acid,
galactitol, acetylcholine, glucuronic acid, and gamma-
aminobutyric acid showed close correlations, with galactitol
being negatively correlated with gamma-aminobutyric acid
(Figure 6G). Similarly, in the non-ALI group vs. control
group, 7-dehydrocholic acid, acetylcholine, and gamma-
aminobutyric acid exhibited dense correlations (Figure 6H).
However, in the ALI group vs. Non-ALI group, the
correlations between elaidic acid, oleic acid, linoelaidic acid,
and petroselinic acid were worth exploring further (Figure 6I).

Overall, these analyses provided comprehensive insights into the
differential metabolic pathways, key metabolites, and correlations
between metabolites in the ALI group, non-ALI group, and control
group.

4 Discussion

The occurrence of ALI severely affects the prognosis of
patients with AAD (Zhang et al., 2019). AAD is a subset of
thoracic aortic dissection (TAD) that specifically refers to
dissections occurring in the ascending aorta, while TAD is a
broader term that encompasses dissections in different sections
of the thoracic aorta. TAD is a serious medical condition that
involves a tear in the inner layer of the aorta, a major blood vessel
responsible for delivering oxygenated blood from the heart to the
entire body. This tear creates a false channel within the aortic
wall, allowing blood to flow between the layers of the vessel wall.
As a result, TAD poses a severe risk to life and necessitates urgent
medical attention and intervention to address the condition
effectively.

Metabolomics has witnessed rapid advancements and offers a
comprehensive and unbiased methodology for identifying
metabolic alterations associated with AAD and TAD. Several
metabolite alterations, such as upregulated plasma succinate and
trimethylamine N-oxide (TMAO) and decreased LPCs and
sphingolipids were observed in AAD patients and regarded as
potential biomarkers (Zhou et al., 2019; Cui et al., 2021; Zeng
et al., 2020; Yang et al., 2020). However, these metabolomic
findings are rarely correlated with prognosis in patients
with AAD.

The role of inflammation in the progression of AAD is
indeed widely recognized (Sugano et al., 2005; Kurabayashi
et al., 2010; Chen et al., 2016). This study found that
elevated preoperative levels of β-HB and TNF-α were
associated with AAD combined with ALI. β-HB, a signaling
metabolite that inhibits the activation of the
NLRP3 inflammasome (Wei et al., 2022), has the potential to
serve as an early biomarker for ALI. TNF-α, a well-known
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inflammatory indicator, has also been implicated in ALI in
previous studies (Kurabayashi et al., 2010).

It is important to note that while β-HB and TNF-α show
promise as potential biomarkers, further research using high-
throughput technologies is required to identify more accurate
biomarkers for the identification of AAD patients combined with
ALI. Metabolomic analysis can provide valuable insights into the
metabolic alterations associated with this condition. Our study
identified relevant metabolic alterations in several pathways,
such as in the TCA cycle, amino acid biosynthesis, protein
digestion and absorption, ABC transporter, and glucagon
signaling pathway. These pathways are known to play

important roles in cellular metabolism, inflammation, and
tissue damage.

The TCA cycle constitutes the center of cellular metabolism and
supports the basic functions of cellular bioenergetics (Williams and
O’Neill, 2018). The abundance of different TCA cycle metabolites
has emerged as a crucial determinant of cellular function and fate in
diverse contexts (Martínez-Reyes and Chandel, 2020). The TCA
cycle has also been recognized as an important component of
glycolysis, and perturbations in the TCA cycle metabolites can
have profound effects (Fernie et al., 2004). The accumulation of
metabolites from the TCA cycle, particularly succinate, can
contribute to a vascular inflammatory response by activating

FIGURE 6
Key metabolic pathways involved in AAD patients with or without ALI, along with the differential metabolites identified in these pathways. (A–C) In
the comparisons of ALI group vs. control group (A), the non-ALI group vs. control group (B), and the ALI group vs. non-ALI group (C), upregulated
metabolites are represented by red circles, while downregulated metabolites were denoted by blue circles in the TCA cycle as well as the arginine and
proline metabolism pathways. (D–F) Bar charts are generated to visualize the intensities of differential metabolites between the ALI vs. control (D),
non-ALI vs. control (E), and ALI vs. non-ALI (F). (G–I) De-Biased Sparse Partial Correlation (DSPC) network analysis is performed for the differential
metabolites in the ALI group vs. control group, non-ALI group vs. control group, and ALI group vs. non-ALI group. Metabolites are represented as nodes,
and the edges depict the partial correlation of DSPC between two metabolites after conditioning on all other metabolites. The width of the edges
represent the strength of the partial correlation coefficient.
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inflammatory signaling pathways, inducing oxidative stress, and
modulating immune cell functions (Williams and O’Neill, 2018; Cui
et al., 2021). Recent evidence demonstrate that enhancing glycolysis
in alveolar epithelial cells during lung tissue injury can helpmaintain
cellular energy balance, reduce oxidative stress, regulate
inflammation, and support cell repair processes (Ning et al.,
2023). Our findings indicate a downregulation of TCA cycle
metabolites and disrupted degradation of citric acid, which may
contribute to lung function damage in AAD combined with ALI.
These metabolic alterations reflect the dysregulation of energy
metabolism and cellular function in the lung tissue of these patients.

The role of amino acids in cellular processes, such as protein
synthesis, energy production, and cell repair, is well established
(Holeček, 2018; Yang et al., 2020). Alterations in plasma amino acid
levels have been associated with various diseases, and specific amino
acids have been identified as biomarkers for disease susceptibility,
severity, and recovery. For example, arginine and proline have been
recognized as critical biomarkers in acute respiratory distress
syndrome (ARDS) (Viswan et al., 2017). The upregulation of
L-proline transport can further provide the necessary precursors
required for vascular SMC collagen deposition and growth,
promoting arterial remodeling at the site of vascular injury
(Ensenat et al., 2001; Reyna, 2004). L-lysine has shown protective
effects against acute lung injury (ALI) in animal models (Zhang
et al., 2019). The dysregulation of amino acids may contribute to the
development and progression of ALI in the context of AAD.

Pulmonary surfactant, composed of lipids and proteins, is
essential for maintaining lung function and preventing atelectasis
(Wang et al., 2021). The loss of pulmonary surfactant leads to
decreased pulmonary compliance and edema in ALI (Cattel et al.,
2021). The glucagon signaling pathway and ABC transporter
pathway are implicated in the regulation of pulmonary
surfactant. The glucagon-like peptide-1 (GLP-1) analog has been
shown to increase pulmonary surfactant expression (Sato et al.,
2020), suggesting the involvement of the glucagon signaling pathway
in ALI. Additionally, ABC transporters, highly expressed in the lung,
are associated with surfactant deficiency (Van Der Deen et al., 2005).
ABC transporters have been confirmed to be involved in cholesterol
homeostasis, blood pressure regulation, endothelial function,
vascular inflammation, and platelet production and aggregation
(Schumacher and Benndorf, 2017). Consistent with our results,
the ABC transporter pathway may play crucial roles in the early
stages of ALI development in the context of AAD.

Hyaluronic acid (HA) is involved in tissue repair and wound
healing processes (Toole, 2004; Papakonstantinou et al., 2012). The
circulating and alveolar levels of HA, composed of D-glucuronide
and N-acetylglucosamine, have been found to correlate with the
severity of lung injury (Viswan et al., 2017; Sato et al., 2020).
Glucuronic acid, a component of HA, may have an important
role in regulating ALI in the context of AAD.

It is important to acknowledge the limitations of our study.
The sample size was relatively small, and further validation in a
larger population is necessary. Being a retrospective study,
potential misclassification bias cannot be completely ruled
out. Additionally, the effects of surgery itself on lung tissue
should be considered, and including postoperative ALI cases in
future studies would provide a more comprehensive

understanding of the metabolic changes associated with AAD
combined with ALI.

5 Conclusion

In conclusion, our study provides valuable insights into the
metabolic alterations in patients with AAD combined with ALI. We
identified significant changes in metabolic pathways, such as the
TCA cycle, amino acid biosynthesis, protein digestion and
absorption, ABC transporter, and the glucagon signaling
pathway. Specifically, we observed significant variations in the
concentrations of β-HB, TNF-α, citric acid, and glucuronic acid
in AAD patients accompanied by ALI. These findings contribute to
the early identification and evaluation of ALI in AAD patients.

However, further research is required to validate these identified
biomarkers and understand the precise mechanisms underlying the
pathophysiology of ALI in AAD patients. Future studies should
involve larger patient cohorts and consider other factors that may
influence metabolic alterations in order to enhance the clinical
relevance and applicability of these findings. Additionally,
functional studies and mechanistic investigations are warranted
to gain a deeper understanding of the metabolic pathways
involved in AAD patients with ALI.
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