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Nonalcoholic fatty liver disease (NAFLD) is a progressive liver disease that can
progress to nonalcoholic steatohepatitis (NASH), NASH-related cirrhosis, and
hepatocellular carcinoma (HCC). NAFLD ranges from simple steatosis (or
nonalcoholic fatty liver [NAFL]) to NASH as a progressive form of NAFL, which
is characterized by steatosis, lobular inflammation, and hepatocellular ballooning
with or without fibrosis. Because of the complex pathophysiological mechanism
and the heterogeneity of NAFLD, including its wide spectrum of clinical and
histological characteristics, no specific therapeutic drugs have been approved for
NAFLD. The heterogeneity of NAFLD is closely associated with cellular plasticity,
which describes the ability of cells to acquire new identities or change their
phenotypes in response to environmental stimuli. The liver consists of
parenchymal cells including hepatocytes and cholangiocytes and
nonparenchymal cells including Kupffer cells, hepatic stellate cells, and
endothelial cells, all of which have specialized functions. This heterogeneous
cell population has cellular plasticity to adapt to environmental changes. During
NAFLD progression, these cells can exert diverse and complex responses at
multiple levels following exposure to a variety of stimuli, including fatty acids,
inflammation, and oxidative stress. Therefore, this review provides insights into
NAFLD heterogeneity by addressing the cellular plasticity and metabolic
adaptation of hepatocytes, cholangiocytes, hepatic stellate cells, and Kupffer
cells during NAFLD progression.
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1 Introduction

Nonalcoholic fatty liver disease (NAFLD) is a prevalent liver disease, estimated to affect
25%−30% of the global population (Cotter and Rinella, 2020). It is defined as triglyceride
accumulation resulting in more than 5% of hepatocytes containing lipid droplets without
causes of alcohol consumption and viral infection (Semova and Biddinger, 2021). NAFLD is
strongly associated with metabolic diseases such as obesity and type 2 diabetes (Kim et al.,
2021). The prevalence of NAFLD parallels the increasing rates of obesity, as increased caloric
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intake, sedentary lifestyles, and the resulting obesity are major risk
factors for NAFLD (Chaput et al., 2011; Byrne and Targher, 2015;
Quek et al., 2023). Several studies also found that NAFLD is closely
linked with an increased risk of type 2 diabetes, and the coexistence
of NAFLD and type 2 diabetes accelerates the progression of NAFLD
to nonalcoholic steatohepatitis (NASH), fibrosis, and hepatocellular
carcinoma (HCC) (Budd and Cusi, 2020; Targher et al., 2021; Lee
et al., 2023).

The heterogeneity of NAFLD is driven by etiological
complexity (Pal et al., 2021). NAFLD ranges from simple
steatosis (or nonalcoholic fatty liver [NAFL]) to NASH as a
progressive form of NAFL, which is characterized by steatosis,
lobular inflammation, and hepatocellular ballooning with or
without fibrosis (Pouwels et al., 2022). Traditionally, the
progression of NAFL to NASH has been explained by the “two
hit” hypothesis (Figure 1) (Dowman et al., 2010). The “first hit” is
represented by abnormal hepatic fat accumulation attributable to
excessive free fatty acids (FFAs) and insulin resistance. The
“second hit” is inflammation and oxidative stress leading to
liver injury in NAFLD. However, NAFLD is a complex disease
influenced by multiple factors, and several molecular and

metabolic changes induced by these factors can contribute to
the phenotypic variability and heterogeneity of NAFLD
(Figure 1). Reflecting the complexity and heterogeneity, the
pathogenesis and progression of NAFLD have recently been
described by the “multiple-hit” theory, which involves various
factors, such as endotoxin, secretory factors, environmental and
genetic factors, inflammation, and oxidative stress, acting in
concert (Buzzetti et al., 2016; Tilg et al., 2021). Additionally, to
further reflect current knowledge about this complex disease
related with metabolic disorders, metabolic dysfunction-
associated fatty liver disease (MAFLD) has also been introduced
to describe fatty liver disease associated with metabolic disorders
(Eslam et al., 2020; Fouad et al., 2020).

The underlying mechanism of the progression of NAFL to
NASH can be described through an understanding of cellular
plasticity (the ability of cells to transform from one phenotype to
another without genetic alterations in response to environmental
stimuli) and metabolic alterations in multiple liver cell types. The
liver is a multifunctional organ with metabolic, biosynthetic, and
detoxification functions. The liver cell population consists of two
groups: parenchymal cells and nonparenchymal cells (NPCs)

FIGURE 1
Metabolic changes and adaptive cellular plasticity induced bymultiple factors during NAFLD progression. NAFLD is a complex disease influenced by
a number of factors. The ‘first hit’ of NAFLD is excessive liver fat accumulation induced by insulin resistance. Hepatic lipid accumulation is closely
associated with ① increased hepatic FA uptake, ② increased hepatic de novo FA synthesis, ③ increased lipogenesis, ④ decreased lipolysis, ⑤ decreased FA
β-oxidation, and ⑥ decreased VLDL-TG secretion. The “second hit” of NAFLD is inflammation and oxidative stress. As well, NAFLD is developed and
progressed by complex factors, such as endotoxins and other environmental factors. The liver consists of parenchymal hepatocytes and nonparenchymal
cells (Kupffer cells, hepatic stellate cells, and endothelial cells), all of which have specialized functions. Transformation of NAFL to NASH is accelerated
through cellular plasticity and adaptive metabolic changes regulated by the specific responses and crosstalk of these cells to various stimuli such as
excessive intrahepatic FFAs, inflammation, and oxidative stress. Abbreviations: aHSCs, activated hepatic stellate cells; ApoB, apolipoprotein B; DAMPs,
damage-associated molecular patterns; EMT, epithelial-to-mesenchymal transition; FFAs, free fatty acids; GLUT2, glucose transporter 2; LPS,
lipopolysaccharide; NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis; qHSC, quiescent hepatic stellate cell; ROS, reactive
oxygen species; TG, triglyceride; TLR4, Toll-like receptor 4.
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(Werner et al., 2015; Tian et al., 2023). Parenchymal cells, mainly
hepatocytes, which are the primary effector cells for liver
physiological and central metabolic function, account for
approximately 80% of the total liver volume (Azparren-Angulo
et al., 2021). Hepatocytes are metabolically active cells that
function in glucose and lipid homeostasis, protein synthesis,
bilirubin excretion, and detoxification. Cholangiocytes are biliary
epithelial cells composing the hepatic parenchyma together with
hepatocytes, although they account for only 3%–5% of the total liver
mass. They play critical roles in bile production and composition,
are variable and heterogeneous, and are closely related to chronic
liver diseases. Hepatic NPCs comprise approximately 20% of the
liver mass. NPCs are composed of liver sinusoidal endothelial cells
(LSECs, approximately 40%), hepatic stellate cells (HSCs, 10%–

25%), liver-specific macrophages known as Kupffer cells
(approximately 30%), and other cell types (Su et al., 2021). NPCs
are specialized cells that interact with parenchymal cells
(hepatocytes) to form a functional hepatic unit. Several groups of
cells support parenchymal cells in different ways. The
transformation of NAFL to NASH is caused by the specific
responses and crosstalk of these cells in response to various
stimuli such as excessive intrahepatic FFAs, inflammation, and
oxidative stress: Lipotoxicity and dysregulated apoptosis in
hepatocytes (Geng et al., 2021); the release and activation of pro-
inflammatory cytokines from Kupffer cells or adipokines from
adipocytes (Duarte et al., 2015); and activation of HSC into
collagen type I-producing myofibroblasts that form scar tissue
(Higashi et al., 2017). The different responses of these cells are
important factors contributing to the phenotypic heterogeneity of
NAFLD.

This review aims to provide a better understanding of the
metabolic alterations and phenotypic changes in hepatocytes,
cholangiocytes, HSCs, and Kupffer cells in response to various
metabolic stresses during NAFLD progression. We will provide
insights into the heterogeneity and complexity of NAFLD by
discussing the cellular and metabolic plasticity of these different
cell types in the liver.

2 Parenchymal cells: Hepatocytes

The liver is a multifunctional organ that is critical for metabolic
homeostasis, and its functions include biosynthesis, detoxification,
glycogen storage, and bile secretion (Trefts et al., 2017). Most liver
functions are performed by hepatocytes (Trefts et al., 2017).
Although all hepatocytes are morphologically similar, their
functions are diverse depending on their location from the portal
vein to the central vein (Figure 2). Hepatocytes located in the
periportal and perivenous zones of the liver exhibit obvious
differences in the levels and activities of enzymes and proteins
(Trefts et al., 2017; Cunningham and Porat-Shliom, 2021).
Periportal hepatocytes receive high levels of nutrients from the
portal vein and oxygen and circulating hormones from the
hepatic artery (Trefts et al., 2017; Cunningham and Porat-
Shliom, 2021). Therefore, they are specialized for oxidative liver
functions, making them critical for gluconeogenesis, fatty acid (FA)
β-oxidation, and cholesterol synthesis. Conversely, perivenous
hepatocytes are exposed to lower oxygen, nutrient, and hormone

levels, and they function in glycolysis, lipogenesis, and drug
detoxification. Therefore, hepatocytes can play various roles in
response to various stimuli (Figure 2).

NAFLD is defined by the presence of lipid droplets in more than
5% of hepatocytes (Semova and Biddinger, 2021). It is characterized
by hepatic steatosis and insulin resistance, which result from
abnormal FA accumulation in the liver (Utzschneider and Kahn,
2006). These FAs mainly result from abnormal uptake driven by diet
or adipose tissue lipolysis, and from increased hepatic de novo
lipogenesis, via which FAs are newly synthesized from excess
glucose (Kim et al., 2021). The six major mechanisms of lipid
accumulation in the liver are 1) increased hepatic uptake of
circulating FAs, 2) increased hepatic de novo FA synthesis, 3)
increased lipogenesis, 4) reduced lipolysis, 5) decreased hepatic
FA β-oxidation, and 6) decreased very-low-density lipoprotein
(VLDL)-triglyceride (TG) secretion from the liver (Figure 1)
(Kim et al., 2021). Namely, NAFLD arises when the amount of
FAs in the liver accumulated through exogenous FA uptake and
endogenous FA synthesis exceeds FA release (FA β-oxidation,
lipolysis, and VLDL-TG secretion) from the liver (Ipsen et al.,
2018; Kim et al., 2021).

Excess lipid accumulation in hepatocytes leads to lipotoxicity,
resulting in mitochondrial dysfunction associated with increased
reactive oxygen species (ROS) levels, impaired autophagy, and
altered extracellular vesicle and cytokine release. Dysfunctional
organelles promote inflammation, and hepatocellular damage,
eventually leading to hepatocyte apoptosis, through which
damage-associated molecular patterns (DAMPs) are released (An
et al., 2020; Wallace et al., 2022). When the liver is damaged,
impaired cells are removed through inflammatory responses such
as phagocytosis, and replaced by oval cells (Tanaka and Miyajima,
2016). During this process, a normal liver replaces dead epithelial
cells with healthy epithelial cells, allowing it to return to its original
structure and function (Tanaka and Miyajima, 2016). When liver
injury occurs, hepatocytes undergo epithelial-to-mesenchymal
transition (EMT), the change of epithelial cells to a mesenchymal
phenotype (Zhao et al., 2016). Through the EMT process,
hepatocytes acquire fibroblastic characteristics and progress to
liver fibrosis (Choi and Diehl, 2019). In this section, we discussed
intracellular signaling pathways and secreted factors in hepatocytes
that can contribute to NAFLD progression and heterogeneity, and
summarized in Figure 3.

2.1 Adaptive signaling and cellular plasticity
in hepatocytes during NAFLD progression

2.1.1 Lipotoxicity and lipoapoptosis
Liver cell apoptosis is a prominent feature associated with the

severity of NASH (Feldstein et al., 2003). Apoptosis, a process of
programmed cell death, is a method of cellular self-destruction that
removes damaged cells to maintain homeostasis under both normal
and pathophysiological conditions. In the pathogenesis of NASH,
hepatocellular apoptosis is recognized as an important mechanism
that can contribute to liver fibrosis. FFAs mediate lipoapoptosis,
which is a potential mechanism of apoptosis associated with NASH
(Malhi et al., 2006). Long-chain fatty acids (LCFAs) enter
hepatocytes through FAT/CD36, originally characterized as an
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FA transport protein. These FAs can directly contribute to
triacylglycerol accumulation in hepatocytes. FFAs can also enter
the mitochondria and promote the activity of electron transport
chain and FA oxidation, resulting in increased ROS production.
Excessive ROS occur oxidative stress and alter cellular biomolecules
(lipids, proteins, DNA), leading to mitochondrial dysfunction and
liver injury (Evans et al., 2002; Cazanave and Gores, 2010). The
c-Jun N-terminal kinase (JNK, also known as stress-activated
protein kinase) signaling pathway is a key regulator in ROS-
mediated cell death that well describes the relationship between
elevated FFAs and lipoapoptosis as features of NAFLD (Malhi et al.,
2006; Amir et al., 2012). FFAs can elevate ROS/oxidative stress and
sequentially stimulate JNK activation. Activated JNK induces the
lipoapoptosis of hepatocytes by stimulating the pro-apoptotic Bcl-2
protein Bax, which triggers the mitochondrial apoptosis pathway
(Malhi et al., 2006). There are two major signaling pathways leading
to apoptosis: the intrinsic apoptosis pathway initiated by
mitochondrial events and the extrinsic apoptosis pathway
initiated by death receptors such as tumor necrosis factor (TNF),
TRAIL, and FAS-L (Dhanasekaran and Reddy, 2008). JNK can play

a central role in both apoptosis pathways (Dhanasekaran and Reddy,
2008). The endoplasmic reticulum (ER) is also an organelle closely
associated with lipotoxicity and lipoapoptosis (Cazanave and Gores,
2010). Both aberrant FFAs and FFA-induced ROS are critical factors
that can trigger ER stress. Sustained ER-stress can activate the JNK
signaling pathway and sequentially modulate the pro-apoptotic Bcl-
2 family members, leading to hepatocyte apoptosis.

Conversely, AMP-activated protein kinase (AMPK), a
mitochondria fine-tuning factor, can also be stimulated by ROS.
Mitochondria-derived ROS acts on redox-sensitive cysteine residues
(Cys-299/Cys-304) on the AMPKα subunit, and elevated ROS can
activate AMPK by decreasing ATP levels or through S-glutathionylation
of cysteine in the AMPKα and AMPKβ subunits (Filomeni et al., 2015;
Hinchy et al., 2018). Activated AMPK occurs a PGC1α-dependent
antioxidant response and lowers mitochondria ROS production,
allowing for the maintenance of metabolic homeostasis and survival
(Rabinovitch et al., 2017). AMPK exerts protective effects against
hepatocyte lipotoxicity in the AMPK–PGC1α and AMPK–sirtuin 1
(SIRT1) axes (Li et al., 2020; Fang et al., 2022). Indeed, AMPK activity is
reduced in NAFLD and NASH, and liver-specific AMPK reduction

FIGURE 2
Functionally different hepatocyte populations according to their location in the liver. Liver cells aremainly composed of hepatocytes, hepatic stellate
cells (HSCs), Kupffer cells, and liver sinusoidal endothelial cells (LSECs). Additionally, there are cholangiocytes in bile ducts and smooth muscle cells near
the central vein. Liver cells have specialized functions depending on their location although hepatocytes are morphologically similar. Namely,
hepatocytes located in the portal vein and central vein have different functions, suggesting that hepatocytes in different zones exert different
functions. Periportal hepatocytes receive high levels of nutrients, oxygen, and hormones, and they are specialized for oxidative function,
gluconeogenesis, FA β-oxidation, and cholesterol synthesis. Conversely, perivenous hepatocytes obtain low levels of nutrients, oxygen, and hormones
and function in glycolysis, lipogenesis, and drug detoxification.
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leads to NASH phenotypes such as fibrosis and cell death (Li et al., 2020;
Fang et al., 2022). AMPK can ameliorate liver fat accumulation and
NASH-associated hepatocyte apoptosis (Li et al., 2020; Fang et al., 2022).

DAMPs, also termed as alarmins, are endogenous risk factors that
are released from damaged or dying cells to trigger strong
inflammatory responses by activating the innate immune system
via interactions with pattern recognition receptors (Bianchi, 2007;

Roh and Sohn, 2018). Injured hepatocytes also release DAMPs,
including metabolites, microRNAs, mitochondrial DNA, and
mitochondrial double-stranded RNA (Kubes and Mehal, 2012).
These DAMPs are recognized by macrophages, and they stimulate
multiple inflammatory pathways through Toll-like receptors (TLRs)
and inflammasomes (Zhang and Mosser, 2008; Schaefer, 2014). In
NASH progression, hepatocyte-derived DAMPs promote the

FIGURE 3
The signaling pathway in hepatocytes during NAFLD progression. FFAs are transported through CD36. FFAs enter cells via the FA transporter CD36.
Excessive FAs cause mitochondrial dysfunction either directly or indirectly through ER–stress. Increased ROS production activates the JNK signaling
pathway, which causes apoptosis through activation of the proapoptotic Bcl-2 protein Bax and suppression of the anti-apoptotic Bcl-2 family proteins. As
a result, damaged or dying hepatocytes can release DAMPs to activate Kupffer cells. Activated Kupffer cells can secrete large amounts of
inflammatory and profibrotic cytokines. Consequently, they can activate HSC, leading to liver fibrosis. In normal hepatocytes, increased ROS activate
AMPK, which maintains intracellular homeostasis through PGC1α and SIRT1. Activated PGC1α can inhibit ROS production through anti-oxidant
mechanisms. On the other hand, during NAFLD, FFAs accumulate intracellularly and can inhibit autophagy through AMPK inhibition and
mTORC1 activation. In fatty liver, upregulated CD36 in hepatocytes inhibits autophagy initiation through the AMPK/ULK1/Beclin1 pathway. In addition,
mTORC1 activation in NAFLD inactivates the autophagy enhancer Pacer, thereby interfering with autophagosome–lysosome fusion. As another key
factor that can regulate autophagy flux, cytoplasmic Ca2+ activates AMPK through CaMMK2 in normal conditions. Conversely, excessively increased
cytoplasmic Ca2+ during NAFLD disrupts autophagy flux. During NASH progression, YAP/TAZ in hepatocytes can be hyperactivated. Dietary cholesterol
promotes ER-mediated Ca2+ secretion and activated Ca2+-RhoA pathway can sequentially stabilize TAZ. TAZ entering the nucleus strongly induces the
expression of genes involved in HSC activation and fibrosis. Abbreviations: CCL5, C-C motif chemokine ligand 5; CTGF, connective tissue growth factor;
IL-1β, interleukin-1β; PDGF, platelet-derived growth factor; TGF-β, transforming growth factor-β; TNF-α, tumor necrosis factor-α.
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activation of Kupffer cells to remove damaged hepatocytes and
accelerate liver inflammation (Kazankov et al., 2019). Activated
Kupffer cells stimulate HSC activation by secreting inflammatory
cytokines [TNFα, interleukin-1β (IL-1β), IL-6, C-C motif
chemokine ligand 5 (CCL5)] and producing pro-fibrotic mediators
(transforming growth factor β (TGF-β), platelet-derived growth factor
[PDGF], connective tissue growth factor (CTGF)] (Wen et al., 2021).
Additionally, HSCs have also a purinergic receptor P2Y14 as the DAMP
receptor. The P2Y14 ligands uridine 5′-diphosphate (UDP)-glucose and
UDP-galactose are abundant in hepatocytes. HSCs can be activated by
P2Y14 ligands or secretory factors from dying hepatocytes in a P2Y14-
dependent manner (Mederacke et al., 2022). Namely, DAMPs from
damaged hepatocytes can promote inflammation and fibrosis by
stimulating Kupffer cells and HSCs during NASH progression.

2.1.2 Autophagy in hepatocytes
Autophagy is a self-degradative process and cellular recycling

system that allows cells to degrade unnecessary or damaged
organelles and pathogens to balance energy sources in response
to environmental and nutrient stresses (Glick et al., 2010).
Autophagic processes are directly linked with the development
and progression of NAFLD. In the pathogenesis of NAFLD, the
autophagy pathway mediates the degradation of intracellular lipids
in hepatocytes, suggesting that the autophagy pathway is closely
involved in the development of hepatic steatosis (Czaja, 2016).
Simple steatosis (also known as NAFL) progresses to NASH,
which is characterized by hepatocyte injury and death,
inflammation, and fibrosis associated with increased oxidative
stress and inflammatory cytokines (Browning and Horton, 2004;
Chalasani et al., 2004). Autophagy regulates cell death signaling
pathways induced by oxidants and TNF, which mediate NASH
injury, and protects against cellular injury by removing damaged
organelles in NASH (Czaja, 2016). NAFLD impairs autophagy,
which is believed to involve various signaling pathways.
Alterations in AMPK and mTORC1 activity can lead to impaired
autophagy during NAFLD (Garcia et al., 2019; Li et al., 2019).
Upregulation of CD36, a facilitator of membrane FA transport,
inhibits autophagy initiation in the fatty liver by inhibiting the
AMPK/uncoordinated 51-like kinase 1 (ULK1)/Beclin1 pathway.
The negative effect of CD36 on autophagy is caused by the
suppression of AMPK, a major activator of autophagy (Garcia
et al., 2019; Li et al., 2019). Conversely, CD36 deficiency
increases autophagy by activating AMPK, which enhances the
activity of ULK1 and Beclin1that is important for
autophagosome biogenesis (Mercer et al., 2018; Li et al., 2019).
mTORC1 activation in NAFLD can impair autophagy by inhibiting
ULK1/2 and inactivating the autophagy enhancer (Pacer) protein,
thus interfering with autophagosome–lysosome fusion (Chen and
Kilonsky, 2011; Carroll and Dunlop, 2017; He et al., 2020).
mTORC1 activity might be influenced by AMPK (Carroll and
Dunlop, 2017; He et al., 2020).

Intracellular Ca2+ homeostasis is important for regulating lipid
and carbohydrate metabolism in normal hepatocytes (Ali et al.,
2021). Chronic lipid exposure can alter Ca2+ homeostasis in
hepatocytes (Ali et al., 2019; Ali et al., 2021). Lipids increase Ca2+

efflux from the ER and consequentially increase Ca2+ concentrations
in the cytoplasm and mitochondria. Lipids can reduce lipolysis and
β-oxidation and enhance lipogenesis, ER stress, ROS generation, and

Ca2+/calmodulin-dependent kinase activation, resulting in the
progression of NAFLD to more severe forms such as NASH,
fibrosis, and HCC (Ali et al., 2019). Ca2+ is a key regulator of
autophagy that acts through the regulation of pathways such as
rapamycin complex 1, calcium/calmodulin-dependent protein
kinase II, and protein kinase C signaling (Bootman et al., 2018).
Ca2+ is also involved in autophagic signaling pathways including
both mTOR and AMPK (Bootman et al., 2018). During obesity
involving lipotoxicity, cytoplasmic Ca2+ levels are abnormally
increased, and this is believed to attenuate autophagic flux by
inhibiting autophagosome–lysosome fusion (Park et al., 2014).
Obese mice treated with the calcium channel blocker verapamil
exhibited rescued cytoplasmic Ca2+ levels in hepatocytes and
impaired autophagosome–lysosome fusion (Park et al., 2014).
These results indicate that altered intracellular Ca2+ levels can
affect autophagy signaling during NAFLD progression.

2.1.3 EMT in hepatocytes
EMT is the cellular process in which epithelial cells lose their

apical–basal polarity and junction and acquire mesenchymal
features (Kalluri and Neilson, 2003; Thiery et al., 2009). EMT
contributes to organ fibrosis and promotes carcinoma
progression (Thiery, 2002; Kalluri and Neilson, 2003; Thiery
et al., 2009). EMT confers migratory and invasive properties to
cells (Thiery et al., 2009). Because of cellular plasticity in the liver,
epithelial cells can acquire fibroblastic properties through EMT,
leading to fibrosis. Liver fibrosis is a protective reaction against
chronic liver damage from multiple etiologies (Lotersztajn et al.,
2005). It is characterized by the excessive deposition of extracellular
matrix (ECM) produced by myofibroblasts (Miao et al., 2021).
Activated HSCs (aHSCs) are considered the major origin of
myofibroblasts (Iwaisako et al., 2012). However, hepatocytes can
also undergo EMT to influence the fibroblastic phenotype during
liver fibrosis (Zeisberg et al., 2007; Nitta et al., 2008). Hepatocytes
stimulated with TGF-β1 display fibroblast-like morphology and
express fibroblast-specific protein 1, which accounts for EMT in
hepatocytes (Zeisberg et al., 2007). Other studies also showed that
hepatocytes undergo EMT-like phenotypic changes in TGF-β-
dependent manner and participate in fibrogenesis (Kaimori et al.,
2007; Kojima et al., 2008). Conversely, specific inhibition of TGF-β
signaling in hepatocytes delayed the fibrogenic phenotype (Dooley
et al., 2008). The anti-fibrotic protein apamin can inhibit hepatic
fibrogenesis by interfering with TGF-β1–induced EMT in
hepatocyte (Lee et al., 2014). Celecoxib, a selective
cyclooxygenase-2 (COX-2) inhibitor, ameliorates hepatic fibrosis
by inhibiting hepatocyte EMT (Wen et al., 2014). These findings
indicate that hepatocyte EMT contributes significantly to liver
fibrosis.

2.1.4 Hippo signaling pathway in hepatocytes
Hippo signaling plays an important role in the control of

regeneration, stem cell self-renewal, and liver size (Pibiri and
Simbula, 2022). It was recently reported that the Hippo signaling
pathway is closely associated with fibrosis induction in multiple
organs (Mia and Singh, 2022). Yes-associated protein (YAP) and
transcriptional coactivator with PDZ-binding motif (TAZ), are the
downstream effects of the mammalian Hippo pathway, and they
function as transcriptional co-activators (Luo and Li, 2022).
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Recently, it was reported that YAP and TAZ in hepatocytes are
hyperactivated during liver injury (Mia and Singh, 2022). YAP-
expressing hepatocytes strongly induce genes related to
inflammation (TNF, IL-1β) and fibrosis [collagen type I alpha
1 chain (COL1A1), tissue inhibitor of metalloproteinase 1
(TIMP-1), PDGF-C, TGF-β2] (Mia and Singh, 2022). Conversely,
hepatocyte-specific deficiency of YAP and TAZ results in reduced
inflammation, myoblast expansion, and liver fibrosis (Mia and
Singh, 2022). Excessive cholesterol in hepatocytes can also
promote liver fibrosis by upregulating TAZ through the Ca2+-
RhoA signaling pathway (Wang et al., 2020). It has been
reported that hepatocyte-targeted TAZ silencing in murine
NASH models improves hepatic inflammation, and suppresses
hepatocyte cell death and fibrosis (Wang et al., 2016). These
results indicate that the Hippo signaling pathway in hepatocytes
is involved in inflammatory and fibrotic processes during NAFLD/
NASH progression.

3 Parenchymal cells: Cholangiocytes

In the liver, cholangiocytes and hepatocytes are the twomain types
of epithelial cells derived fromhepatoblasts (embryonic liver stemcells)
and are found in the liver parenchyma (Dianat et al., 2014; Huang et al.,
2022; Sahoo et al., 2022). Cholangiocytes are biliary epithelial cells that
line the bile ducts (Wang et al., 2022). They make up only 3%–5% of
the total liver mass but play an important role in the production and
homeostasis of bile, a digestive fluid that contributes to cholesterol
excretion and detoxification in the liver (Boyer, 2013; Wang et al.,
2022). Cholangiocytes also have liver regenerative potential (Sahoo
et al., 2022). After liver injury, self-replication of hepatocytes is essential
for maintaining liver size and function (Huang et al., 2022). However,
when severe liver damage can destroy almost all hepatocytes, making
hepatocyte regeneration impossible, hepatocytes are newly reproduced
through the transdifferentiation of cholangiocytes (Sato et al., 2019;
Huang et al., 2022). In other words, if hepatocyte regeneration is
impaired by severe liver injury, cholangiocytes contribute to liver
regeneration. Studies elucidating the pathogenesis of NAFLD in
liver parenchymal cells have been mainly focused on hepatocytes
(Lakhani et al., 2018; Lin et al., 2020; Lewis et al., 2023). However,
the functional heterogeneity of cholangiocytes in the development and
progression of NAFLD is important and is receiving increasing
attention (Zhou et al., 2021; Cadamuro et al., 2022).

Cholangiocytes are heterogeneous in size and function and
display active secretory functions that modify bile composition
(Marzioni et al., 2002; Tabibian et al., 2013; Banales et al., 2019).
Disruption of the homeostatic equilibrium in cholangiocytes is
recognized by innate immune cells and can result in excessive
deposit of scar tissue and biliary cirrhosis through inflammatory
and pathological reparative reactions (Banales et al., 2019). In a
heterogeneous response to environmental insults, some
cholangiocytes exhibit reactive and proliferative phenotypes,
whereas others display senescent and growth arrest phenotypes
(Guicciardi et al., 2020). Both reactive and senescent populations
of cholangiocytes significantly contribute to progressive liver failure,
including inflammation and fibrosis, through the secretion of
proinflammatory cytokines and chemokines (Guicciardi et al.,
2020; Meadows et al., 2021). Ductular reaction (DR) and biliary

senescence are hallmarks of cholangiopathies (Guicciardi et al.,
2020; Meadows et al., 2021). They are increased in patients with
NAFLD and NASH and are considered major causes of NAFLD
progression (Sorrentino et al., 2005; Sato et al., 2019). In this section,
we discussed the heterogeneity of cholangiocytes in NAFLD
progression and summarized in Figure 4.

3.1 Cellular heterogeneity and plasticity in
cholangiocytes during NAFLD progression

3.1.1 Structural and functional properties of
cholangiocytes

Cholangiocytes are morphologically and functionally
heterogeneous (Glaser et al., 2009; Maroni et al., 2015). In
humans, cholangiocytes are divided into small, medium, and large
cells based on the correspondence with the diameter of the bile duct
(BD) (Kanno et al., 2000; Glaser et al., 2009; Franchitto et al., 2013). In
rodents, they exist in small and large sizes (Tabibian et al., 2013;
Maroni et al., 2015; Little et al., 2023). Cholangiocytes exhibit different
functions depending on their size. Small cholangiocytes line along the
small intrahepatic BDs and have a relatively undifferentiated
phenotype with large nuclei and small cytoplasm (Franchitto et al.,
2013; Sato et al., 2018). They reside in the biliary progenitor cell
compartment of the liver. They are known to be more resistant to
damage than large cholangiocytes, and when large cholangiocytes are
damaged by severe injury, they can differentiate into large
cholangiocytes via Ca2+-activated signaling (Mancinelli et al., 2010;
Mancinelli et al., 2013). Namely, small cholangiocytes can function as
progenitor cells for large cholangiocytes. Large cholangiocytes line
along the large intrahepatic and extrahepatic BDs and have small
cytoplasm and large nuclei (Franchitto et al., 2013; Sato et al., 2018).
Large cholangiocytes are thought to be more mature cholangiocytes
than small cholangiocytes (Maroni et al., 2015). They are dependent
on cyclic adenosine monophosphate (cAMP) signaling and are
sensitive to injury (Glaser et al., 2009; Maroni et al., 2015). During
liver injury, large cholangiocytes can undergo senescence and enter a
senescence-associated secretory phenotype (SASP) state, secreting
proinflammatory factors that exacerbate the damage (Huda et al.,
2019). On the other hand, when the large cholangiocytes are damaged,
small cholangiocytes proliferate and transdifferentiate into a large
cholangiocyte phenotype, playing an important role in repairing the
damaged epithelial lining (Mancinelli et al., 2013). These cell size-
dependent differential responses will be thought to help understand
the heterogeneity of cholangiocytes.

Under the healthy condition, quiescent cholangiocytes function
as immunological and antimicrobial defense systems by secreting
biliary immunoglobulin (especially secretory IgA) and various
antimicrobial factors such as β-defensin 2, mucins, and
lactoferrin into the bile (Farina et al., 2011; Demetris et al.,
2016). These immunological functions are closely linked with the
intestinal mucosal immune system (Chen et al., 2008; Demetris et al.,
2016). Cholangiocytes that play an active role in immune
pathogenesis fundamentally express TLRs (Chen et al., 2005;
Chen et al., 2008). TLRs expressed by cholangiocytes recognize
pathogen-associated molecular patterns (PAMPs) derived from the
intestine or bloodstream, and consequently activated downstream
signals induce the secretion of antimicrobial factors and
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inflammatory cytokines (Chen et al., 2005; Ninlawan et al., 2010;
Oya et al., 2014). The complicated interaction between innate and
adaptive immunity not only enhances biliary defense but also can

promote inflammation. For example, intestine-derived
lipopolysaccharide (LPS), a representative of typical PAMPs, and
hepatocyte-derived DAMP can bind to TLR4 expressed by biliary

FIGURE 4
Heterogeneity of intrahepatic biliary epithelial cells during NAFLD progression. Ductal plate cells consist of cholangiocytes, canal of hering, and
hepatocytes. Cholangiocytes are fundamentally divided into large cholangiocytes and small cholangiocytes based on the diameter of the bile duct (BD).
Large cholangiocytes depend on cAMP-signaling and are more susceptible to damage than small cholangiocytes. During liver injury, large
cholangiocytes enter a senescence-associated secretory phenotype (SASP) state and secrete proinflammatory factors that exacerbate the damage.
When the large cholangiocytes are damaged, small cholangiocytes act as a progenitor to large cholangiocytes and differentiate into large cholangiocytes
via Ca2+-activated signaling. In a healthy state, quiescent cholangiocytes play an important role in immune and antimicrobial defense in response to
PAMPs (e.g., LPS) originating from the intestine or DAMPs derived from damaged hepatocytes. PAMPs and DAMPs bind to TLR4 expressed by biliary
epithelial cells. Quiescent cholangiocytes can also present antigens to unconventional T-cells including NKT cells and MAIT cells. During NAFLD
progression, activated cholangiocytes contribute to inflammation and fibosis. The process is as follows: ① During NAFLD progression, excessive FAs
stimulate cholangiocytes. ② Activated cholangiocytes, also known as reactive ductular cells (RDCs), show 1) proliferation phenotype or undergo 2)
senescence. Senescent RDCs secrete SASP factors (TGF-β, PDGF, TNF-α and IL-1β). ③ SASP factors stimulate immune cells and myofibroblasts, which
promote inflammation and fibrosis, and some immune cells infiltrate into the bile duct. RDCs and mesenchymal and immune infiltration constitute
ductular reaction (DR), a state in which they coexist. ④ The recruitment and infiltration of immune cells into the bile duct cause 1) severe inflammation and
2) fibrosis. ⑤ Small cholangiocytes transdifferentiate into large cholangiocytes to replenish the damaged cholangiocytes.
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epithelial cells during NAFLD development and progression (Guo
and Firedman, 2010; Fabris et al., 2017). Persistent liver damage
activates cholangiocytes to participate in liver inflammation by
releasing inflammatory cytokines (Pinto et al., 2018).

Cholangiocytes are antigen-presenting cells that fundamentally
express human leukocyte antigen (HLA) class I molecules (Syal
et al., 2012; Schrumpf et al., 2015). Adhesion molecules such as HLA
class II, leukocyte functioning antigen (LFA)-3, and intercellular
adhesion molecule-1 (ICAM-1) are also expressed in cholangiocytes
(Syal et al., 2012). Unconventional T cells are densely populated in
sections adjacent to the liver and intestine (Godfrey et al., 2015).
Cholangiocytes can present antigens to unconventional T cells
including natural killer T (NKT) cells and mucosa-associated
invariant T (MAIT) cells (Godfrey et al., 2015). Unconventional
T-cell receptors recognize antigens expressed by HLA class I
molecules (Mayassi et al., 2021). NKT cells perceive lipid
antigens by a cluster of differentiation (CD) 1 by cholangiocytes
(Schrumpf et al., 2015). MAIT cells perceive antigen bacterial B
vitamins by MR1 molecules on cholangiocytes (Jeffery et al., 2016).
Namely, cholangiocytes exposed to lipids activate NKT cells, and
cholangiocytes exposed to bacteria activate MAIT cells, leading to
releasing inflammatory cytokines and participating in inflammatory
responses (Schrumpf et al., 2015; Jeffery et al., 2016).

3.1.2 Activated cholangiocytes: Reactive and
senescent cells

Cholangiocytes can be activated by various factors such as infection,
endotoxins, and FAs (O’Hara et al., 2013; O’Hara et al., 2017). Activated
cholangiocytes are characterized by increased proliferation and
increased secretion of proinflammatory and profibrotic factors
(Pinto et al., 2018; Strazzabosco et al., 2018). Activated
cholangiocytes are involved in the inflammatory responses by
releasing cytokines and chemokines (Adams, 1996; Chen et al.,
2008). Sustained biliary cell damage can lead to excessive scar
formation, biliary cirrhosis, and the chronic proliferation of
cholangiocytes (Banales et al., 2019). Signals generated by the loss of
cholangiocyte homeostasis drive the repair process (Fabris et al., 2016;
Banales et al., 2019). These signals are recognized by inflammatory cells
including macrophages and neutrophils and scaffold-producing cells
including myofibroblasts and portal fibroblasts, and endothelial cells
forming vasculature (Banales et al., 2019). These cells and
corresponding signals form the biliary reparative complex referred to
as ductular reactions (DR) (Sato et al., 2019; Chen et al., 2022). Namely,
DRs are a response to a wide diverse of hepatobiliary damage that aims
to recover compromised physical function after liver injuries (Jain and
Clark, 2021).

Activated cholangiocytes, inflammatory cells, and mesenchymal
cells are core cells that form DRs (Banales et al., 2019). As described
above, activated cholangiocytes participate in inflammatory responses
by secreting proinflammatory cytokines and chemokines. These
secreted inflammatory factors activate and recruit immune cells.
Liver mesenchymal cells are also activated by these inflammatory
signals from the bile duct and are attracted to the bile duct (Cai et al.,
2023). Activated mesenchymal cells secrete vesicles and soluble
paracrine factors and stimulate cells in the bile (Banales et al., 2019;
Azparren-Angulo et al., 2021). This epithelial-mesenchymal
interaction demands the complementary expression of agonists and
their corresponding receptors by epithelial and mesenchymal cells.

TGF-β, PDGF, and monocyte chemoattractant protein-1 (MCP-1)/
CCL2 are known to be released by reactive ductular cells (RDCs) and
can activate myofibroblast (Kinnman et al., 2003; Kruglov et al., 2006;
Fabris et al., 2017). RDCs exhibit a biliary phenotype as an epithelial
component located around the portal space (Roskams et al., 2004).
However, they can acquire morphologically and functionally
mesenchymal properties (Fabris et al., 2016). This well describes the
phenotypic plasticity of RDCs. RDCs exhibit upregulated EMT
markers [S100A4, vimentin, matrix metalloproteinase 2 (MMP2)]
and decreased epithelial markers (E-cadherin) in chronic
cholangiopathies (Fabris and Strazzabosco, 2011). This ability of
RDCs to increase mobility is essential for wound repair (Park,
2012). RDCs-induced biliary repair is mediated by morphogenetic
pathways (Fabris et al., 2017). Among them, the Notch and YAP/TAZ
pathways play critical roles in maintaining the biliary structure during
biliary repair (Fiorotto et al., 2013; Morell et al., 2017; Panciera et al.,
2017). Hepatocyte Notch activation induces hepatocyte-to-
cholangiocyte conversion that expresses biliary SOX9 and HNF1β
(Morell et al., 2017). Direct interaction of Notch-expressing hepatic
progenitor cells (HPCs) with Jagged-1-expressing portal
myofibroblasts occurs HPCs-to-RDCs conversion (Strazzabosco and
Fabris, 2013; Nakano et al., 2017). Additionally, Notch signaling plays
an important role in branching tubulogenesis in bile duct repair
(Fiorotto et al., 2013). Depletion of Notch signaling attenuates
biliary repair, whereas sustained Notch activation can lead to liver
epithelial dysplasia and HCC (Geisler and Strazzabosco, 2015). These
suggest that reactive cholangiocytes contribute to advanced liver failure
including inflammation through secretion of proinflammatory
cytokines and fibrosis through cholangiocyte proliferation and
direct interaction with myofibroblasts.

Circulating FAs are increased in patients with NAFLD and NASH
(Puri et al., 2009; Zhou et al., 2016; Feng et al., 2017). Excessive FAs
induce cholangiocyte lipoapoptosis in a FoxO3/miR-34a-dependent
manner. NAFLD patients show increased DR and fibrosis as markers of
cholangiocyte damage (Natarajan et al., 2014; Natarajan et al., 2017).
Cytokeratin 19 (CK19) is a biliary epithelial marker that is detected in
the cytoplasm of DR-positive hepatobiliary cells (de Lima et al., 2008;
Cai et al., 2016). CK19-positive DRs is more pronounced in areas with
severe liver damage, as confirmed in liver sections from choline-
deficient high-trans-fat diet-fed rat as a NAFLD model (de Lima
et al., 2008). Biliary senescence is closely related to NAFLD and
NASH progression (Meijnikman et al., 2021). Senescent RDCs can
amplify inflammation and fibrotic responses through the senescence-
associated secretory response (SASP) mechanism. Senescent
cholangiocytes exhibit increased secretion of SASP factors such as
TGF-β, PDGF, TNF-α, and IL-1β (Wu et al., 2016; Lopes-Paciencia
et al., 2019; Blokland et al., 2020). This induces the recruitment and
infiltration of immune cells and consequently exacerbates
microvesicular steatosis and fibrosis during NAFLD progression.

4 NPCs: HSCs

HSCs are pericytes existing in the space between hepatocytes
and LSECs, and they account for 5%–8% of the human liver (Lele
et al., 2022). In healthy livers, most HSCs are quiescent and contain
numerous cytoplasmic lipid droplets (Kamm and McCommis,
2022). The cytoplasmic lipid droplets in quiescent HSCs (qHSCs)
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play a major role in storing retinoids, a synthetic form of vitamin A
(Bobowski-Gerard et al., 2018; Haaker et al., 2020). HSCs store
approximately 80% of all retinoids in the body (Bobowski-Gerard
et al., 2018; Haaker et al., 2020). Vitamin A (retinol) plays an
important role in normal growth, reproduction, regeneration,
immune responses, and intracellular metabolism. Upon liver
injury, HSCs lose retinoid-containing lipid droplets to become
myofibroblast-like cells producing ECM proteins such as collagen
(Bobowski-Gerard et al., 2018; Trivedi et al., 2021). aHSCs are
characterized by reduced intracelluar vitamin A storage and
peroxisome proliferator-activated receptor γ expression (Trivedi
et al., 2021). During HSC activation, retinyl ester levels within
cells decrease together with triacylglycerol levels (Haaker et al.,
2020). However, HSC proliferation, contractility, and chemotaxis
increase with the expression of HSC activation-related proteins such
as smooth muscle actin (α-SMA) and abundant ECM proteins such
as fibronectin and collagens. Liver damage induced by high-
cholesterol diet consumption (Teratani et al., 2012), virus
infection (Wang et al., 2016; You et al., 2023), or immune-
mediated injury (Xu et al., 2012) can transform qHSCs into aHSCs.

Liver fibrosis is a process that results in the excessive
accumulation of ECM proteins, which can lead to the
development of scar tissue (Bobowski-Gerard et al., 2018; Trivedi
et al., 2021). Liver fibrosis can be caused by chronic liver injury such
as NAFLD and NASH. aHSCs are the major sources of ECM
proteins in the liver, producing large amounts of collagen and
other ECM proteins that interfere with normal liver function.
Researchers are currently investigating various strategies for
targeting HSCs to prevent or reverse fibrosis in the liver,
including the use of drugs that can inhibit HSC activation or
promote their apoptosis (Ding et al., 2019; Kang et al., 2022).
Therefore, understanding the role of HSCs in liver fibrosis is
crucial for developing effective treatments for liver disease. In
this section, we discussed the signaling pathways in HSCs during
NAFLD progression and summarized in Figure 5.

4.1 Cellular plasticity in HSCs during NAFLD
progression

4.1.1 TGF-β/SMAD signaling pathways in HSCs
In the liver, TGF-β is an essential molecule for organ homeostasis

that regulates organ size and growth by limiting cell proliferation and
promoting apoptosis in hepatocytes (Giannelli et al., 2016; Fabregat
and Caballero-Diaz, 2018). Loss of these functions can lead to
hyperproliferative disorders including cancer (Dooley and ten Dijke,
2012; Giannelli et al., 2016). TGF-β exerts tumor-suppressive effects in
the early stage of carcinoma, whereas it promotes carcinogenesis in the
late stage of carcinoma (Massagué, 2008).

TGF-β is well-known as a key factor in HSC activation and
ECM production, which triggers fibrosis in the liver (Fabregat and
Caballero-Diaz, 2018). It contributes to the progression from
initial liver injury, including inflammation and fibrosis, to
cirrhosis and HCC (Dooley and ten Dijke, 2012). Cell plasticity
can contribute to the adaptation of liver cells to metabolic stress
and facilitate the transition from NAFL to NASH to fibrosis
(Dooley and ten Dijke, 2012). During pathological conditions
caused by chronic liver damage, HSC activation is mediated by

various signals such as growth factors (e.g., PDGF, CTGF), lipids,
ROS, cytokines produced by hepatocytes, Kupffer cells, endothelial
cells, and cholangiocytes (Yin et al., 2013; Tsuchida and Friedman,
2017). Among these cytokines, TGF-β plays a central role in HSC
activation from a quiescent state to an activated myofibroblastic
phenotype (Dewidar et al., 2019). Namely, TGF-β is closely
associated with the plasticity of HSCs, and it promotes liver
fibrosis (Fabregat and Caballero-Diaz, 2018). At the plasma
membrane level, TGF-β primarily binds to and activates types I
and II serine/threonine kinase receptors to phosphorylate the
downstream mediators SMAD proteins (Hata and Chen, 2016;
Tzavlaki and Moustakas, 2020).

There are three different types of the SMAD proteins based on
their functions: receptor-regulated SMADs (SMAD2, SMAD3,
SMAD1/5/8), a common SMAD4, and inhibitory SMADs
(Smad6, Smad7) (Hata and Chen, 2016). Among the SMAD
proteins, TGF-β is known to upregulate SMAD2 and SMAD3,
whereas downregulate SMAD7. The balance between SMAD2/
3 and SMAD7 is known to play a critical role in liver fibrosis. Upon
ligand binding, TGF-β receptors phosphorylate SMAD2/3, which
forms a complex with SMAD4. This SMAD complex regulates the
transcription of target genes including pro-fibrogenic genes along
with cofactors after translocation to the nucleus (Hata and Chen,
2016). Conversely, the anti-fibrotic factor SMAD7 can directly
bind to TGF-β receptors to inhibit SMAD2/3 phosphorylation
(Yan et al., 2009), and can target and degrade Type I receptors by
forming the complex with SMAD ubiquitination regulatory factor,
an E3 ubiquitin ligase (Kavsak et al., 2000).

Several studies also describe SMAD3 as the major mediator of
TGF-β–induced fibrogenic responses in HSCs, especially those
associated with the induction of collagen expression (Inagaki et al.,
2001; Schnabl et al., 2001; Furukawa et al., 2003). TGF-β can
promote SMAD3 phosphorylation by activating p38 mitogen-
activated protein kinase (MAPK), resulting in HSC activation
and fibrosis progression (Inagaki et al., 2001; Schnabl et al.,
2001; Furukawa et al., 2003). TGF-β and PDGF can activate
HSCs via the JNK pathway (Yoshida et al., 2005). JNK in
aHSCs directly phosphorylates SMAD2/3, resulting in the
transcriptional activation of plasminogen activator inhibitor-1,
which promotes HSC migration and fibrosis in liver tissue
(Yoshida et al., 2005). Additionally, TGF-β can also activate
noncanonical SMAD-independent pathways such as PI3K/AKT,
mTOR, MAPK, and Rho/GTPase signaling pathways (Dewidar
et al., 2019).

Meanwhile, SMAD7 can inhibit TGF-β–induced
transdifferentiation and arrest HSCs in a quiescent stage by
reducing the mRNA and protein levels of inhibitor of
differentiation 1, which promotes hepatic fibrogenesis via the
activin-like kinase 1/SMAD1 pathway (Dooley et al., 2003;
Wiercinska et al., 2006). As well, miR-130a-3p can directly target
TGF-β receptors and induce HSC inactivation and apoptosis,
suggesting miR-130a-3p as a negative regulator in the progression
of NASH through TGF-β/SMAD signaling (Wang et al., 2017).

4.1.2 ROS-related signaling pathways in HSCs
ROS play a crucial role in the pathogenesis of liver fibrosis

(Gandhi, 2012). They drive the activation of pro-fibrogenic HSCs,
leading to ECM synthesis. During liver injury, ROS can be generated
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by two major enzyme families, namely, the NADPH oxidase
(nicotinamide adenine dinucleotide phosphate oxidase [NOX])
and CYP450 families (Fabregat and Caballero-Diaz, 2018).
Following liver injury, NOX isoforms in aHSCs are remarkably
upregulated (Paik et al., 2011; Aoyama et al., 2012). For example,
HSC-induced phagocytosis of hepatocyte-derived apoptotic bodies
can activate NOX and stimulate TGF-β signaling and
COL1A1 expression (Zhan et al., 2006; Jiang et al., 2010). NOX-
generated ROS are also known to play essential roles in HSC
activation and liver fibrosis (De Minicis and Brenner, 2007; Liang
et al., 2016). ROS can stimulate TGF-β signaling by activating matrix

metalloproteinases, enhancing TGF-β expression, or promoting
TGF-β release (Richter and Kietzmann, 2016; Fabregat and
Caballero-Diaz, 2018).

In an activated state of HSCs, NOX mediates pro-fibrogenic
responses triggered by various stimuli, including TGF-β, PDGF,
Ang II, and leptin (Liang et al., 2016). Among these stimuli, TGF-
β is the most influential modulator that induces myofibroblastic
HSC activation in the liver, leading to collagen protein and α-
SMA expression (Gressner et al., 2002). The expression of NOX
isoforms depends on the type of liver resident cells (Liang et al.,
2016). Kupffer cells mainly express phagocytic NOX2, whereas

FIGURE 5
The signaling pathway in HSCs during NAFLD progression. TGF-β is well-known as a critical factor for HSC activation and liver fibrosis. The TGF-β
signaling pathway is divided into a canonical SMAD-dependent pathway and a noncanonical SMAD-independent pathway. In a canonical SMAD-
dependent pathway, TGF-β binds to and phosphorylates types I and II serine/threonine kinase receptors. Sequentially, it phosphorylates SMAD2/3 to form
a complex with SMAD4. These SMAD complexes translocate into the nucleus, and regulates the expression of genes involved in oxidative stress and
liver fibrosis. Both TGF-β and PDGF can also phosphorylate SMAD2/3 via JNK, leading to induction of fibrogenic genes. Conversely, anti-fibrotic
SMAD7 can inhibit SMAD2/3 phosphorylation by directly binding to or indirectly degradation of TGF-β receptors. On the other hand, the SMAD2/3/
4 complexes in nucleus can also induce NOX4, a major source of mitochondrial oxidative stress. NOX4-derived ROS production can increase TGF-β
expression and secretion. Nrf2 is a transcription factor that mitigates ROS by increasing the expression of various ROS-detoxifying enzymes such as
GPX2 and GST. On the other hand, TGF-β can also regulate various intracellular pathways, including PI3K/AKT, mTOR, MAPK, and Rho/GTPase, through a
noncanonical SMAD-independent pathways. The Hh signaling pathway in HSCs is one of the important signaling pathways induced during NAFLD and
NASH. During liver damage, Hh ligands are increased and then activate the Gli-responsive transcription factor to promote the expression of fibrogenic
genes. Consequentially, qHSCs (qHSC markers: LRAT, BAMBI) transdifferentiate into aHSCs (aHSC markers: α-SMA, GFAP, PDGFR-β, COL1α1, COL1α3,
desmin, and vimentin).
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hepatocytes, HSCs, and endothelial cells express phagocytic
NOX2 and nonphagocytic NOX1 and NOX4. NOX4 mediates
TGF-β-associated fibrogenic responses in various organs
(Cucoranu et al., 2005; Hecker et al., 2009; Bondi et al., 2010;
Sampson et al., 2011; Boudreau et al., 2012). In liver fibrosis,
TGF-β enhances NOX4-induced ROS generation during HSC
activation (Proell et al., 2007). In bile duct ligation (BDL)- and
CCL4-induced fibrosis, TGF-β promotes NOX4 expression and
activity via SMAD3 in HSCs (Jiang et al., 2012; Sancho et al.,
2012).

Nuclear factor-erythroid 2-related factor 2 (Nrf2) is
considered an antagonistic factor in liver fibrosis. As a
transcription factor, Nrf2 modulate the expression of ROS-
detoxifying enzymes such as glutathione S-transferase (GST)
and glutathione peroxidase 2 (GPX2) (Tonelli et al., 2018).
Nrf2 signaling represents a cytoprotective mechanism induced
in cells exposed to oxidative stress (Tonelli et al., 2018). Further,
Nrf2 exerts a protective effect against toxin-induced liver fibrosis
(Xu et al., 2008). In line with this, sulforaphane, an
Nrf2 activator, also improves hepatic fibrosis by inhibiting
TGF-β signaling in the BDL model (Oh et al., 2012).
Additionally, HSCs with reduced Nrf2 levels display markedly
increased aHSC markers including ECM components through
the TGF-β/SMAD signaling (Prestigiacomo and Suter-Dick,
2018). These well describe the association among TGF-β, ROS,
and Nrf2 during the liver fibrosis process.

4.1.3 Hedgehog (Hh) signaling pathways in HSCs
Hh pathway is a signaling cascade that regulates tissue

morphogenesis by directing cell fate during embryogenesis and
modulates injury-induced tissue remodeling in adults (Sicklick
et al., 2005; Omenetti et al., 2011). It is a highly conserved and
complex signaling pathway. The canonical Hh pathway consists of
four main parts: 1) Hh ligands (Sonic hedgehog, Indian hedgehog,
and Desert hedgehog), 2) cell surface receptor Patched (PTCH), 3)
signal transducer Smoothened (SMO), and 4) glioblastoma (Gli)
transcription factors as the effectors (Omenetti et al., 2011; Machado
and Diehl, 2018).

HSCs participate in remodeling of the injured liver, and they can
exert considerable plasticity during the fibrosis process. The Hh
signaling pathway mediates adaptive responses during NAFLD,
NASH, and fibrosis as well as in liver regeneration and injury
(Fleig et al., 2007; Verdelho Machado and Diehl, 2016; Machado
and Diehl, 2018). Hh ligands are rarely expressed in the healthy
adult liver, whereas they are highly expressed during liver injury,
activating the signal transduction pathway (Machado and Diehl,
2018). Hh signaling activation enhances the expression of fibrogenic
genes (α-SMA, COL1A1, vimentin, and TGF-β) and Snail, a Gli-
responsive transcription factor that mediates TGF-β–induced EMT,
whereas it reduces the expression of qHSC markers (Choi et al.,
2009). During HSC activation, bmp7 and its target id2 are
downregulated, resulting in decreased E-cadherin expression
(Valcourt et al., 2005). Conversely, inhibition of the Hh signaling
recovers the expression of the epithelial markers (bmp7, id2,
E-cadherin) and qHSC markers, and results in a loss of the
fibrotic phenotype of aHSCs (Choi et al., 2009). EMT in HSC is
closely associated with cytoskeletal reorganization. Therefore, it is
accompanied by alterations in the activity of the small GTPase

Rac1 that is associated with cytoskeleton. In both in vitro HSCs and
in vivo mouse models, Rac1 activation promotes Hh signaling and
the fibrogenic phenotype and aggravates liver fibrosis (Choi et al.,
2010).

4.2 Cellular plasticity markers in HSCs

4.2.1 qHSC markers
4.2.1.1 Retinol processing proteins: Lecithin retinol
acyltransferase (LRAT)

Most of the vitamin A in the body of healthy vertebrates is
contained within lipid droplets present in the cytoplasm of HSCs
(Bobowski-Gerard et al., 2018; Haaker et al., 2020). LRAT is an
enzyme that catalyzes vitamin A esterification and is essential for
maintaining vitamin A homeostasis (Nagatsumaet al., 2009; Blaner
et al., 2009). LRAT is predominantly expressed in quiescent HSCs
under healthy conditions in which HSCs have a lipid-storing
phenotype (Nagatsumaet al., 2009; Shang et al., 2018).

4.2.1.2 BMP and activinmembrane-bound inhibitor (BAMBI)
The TGF-β–Pseudoreceptor BAMBI is a transmembrane

glycoprotein that negatively regulates TGF signaling (Onichtchouk
et al., 1999). It is mainly expressed in HSCs. It is highly expressed
in qHSCs whereas low expressed in aHSCs (Liu et al., 2014).

4.2.2 aHSC markers
4.2.2.1 Cytoskeletal protein: α-SMA

α-SMA is considered a reliable marker of aHSCs and liver
fibrosis (Carpino et al., 2005; Friedman, 2008; Hoffmann et al.,
2020). This cytoskeletal protein is undetectable in normal liver. It
exists exclusively in portal myoblasts and vascular smooth muscle
cells but not in other liver cells (Nagatsuma et al., 2009; Shang et al.,
2018). Its expression is used to quantify liver fibrosis in preclinical
and clinical studies.

4.2.2.2 Neural marker: Glial fibrillary acidic protein (GFAP)
GFAP is an intermediate filament protein found predominantly

in astrocytes of the central nervous system (Hol and Pekny, 2015).
GFAP is also expressed in the quiescent state of rodent HSCs (Geerts
et al., 2001). GFAP expression has been reported to be absent in the
normal human liver or observed in a small subpopulation of
periportal cells (Zakaria et al., 2010; Hassan et al., 2014). In
fibrotic livers, GFAP was detected in HSCs and the periseptal
region of the regenerative nodules (Levy et al., 1999). It is
considered a useful marker to validate early HSC activation
(Hassan et al., 2014).

4.2.2.3 ECM protein: COL1α1 and COL3α1
ECMproteins, such as collagens,fibronectins, and laminins, play critical roles

in cell adhesion,migration, and tissue formation (Zhang et al., 2021). During liver
injury, aHSCs undergo myofibroblastic differentiation that abundantly secrete
ECM proteins (Zhang et al., 2016).

4.2.2.4 Platelet-derived growth factor receptor beta
(PDGFR-β)

PDGFR-β is a receptor tyrosine kinase that drives cellular
fibrosis and proliferation (Bedekovics et al., 2013). PDGFR-β
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induction is a hall marker of HSC activation (Kocabayoglu et al.,
2016). Its expression is extremely decreased in the healthy liver but
markedly increased during liver injury (Breitkopf et al., 2005).

4.2.2.5 Cytoskeletal protein: Desmin
Desmin is an essential intermediate protein that plays a critical

role in maintaining the integrity and mechanical stability of HSCs
(Geerts et al., 2001). It is one of the useful markers for identifying
HSCs, and it is strongly upregulated during HSC activation (Zhang
et al., 2018).

4.2.2.6 Cytoskeletal protein: Vimentin
Vimentin is a type III intermediate filament that play a

functional role for cellular organization, organelle distribution,
and EMT (Hwang and Ise, 2020; Viedma-Poyatos et al., 2020).
HSC activation manifested as proliferation and migration is an
important event involved in the progression of liver fibrosis.
Vimentin is highly expressed with desmin during HSC activation
(Zhang et al., 2018). It contributes to stabilizing focal adhesion,
which governs cell migration and motility (Tsuruta and Friedman,
2017).

5 NPCs: Kupffer cells

Kupffer cells are liver-resident macrophages that play a critical role
in the innate immune response (Wen et al., 2021). Kupffer cells have
high heterogeneity and plasticity, allowing them to maintain
homeostasis and perform defense functions (Wen et al., 2021). They
are the most abundant macrophage, accounting for about 80%–90% of
total macrophages in mammalian bodies (Chaudhry et al., 2019).
Hepatic macrophages are mainly composed of Kupffer cells
originating from fetal yolk sacs and monocytes/macrophages derived
from bonemarrow (Beattie et al., 2016). Kupffer cells are the first innate
immune cells that exert a protective response against infection by
pathogens in the liver (Li et al., 2017; Chen et al., 2020). They have self-
renewal capacity and can differentiate into classically activated
M1 macrophages or alternatively activated M2 macrophages
depending on microenvironmental signals (Li et al., 2017; Chen
et al., 2020). Proinflammatory M1 macrophages are induced by LPS
or interferon gamma (IFNγ) and produce huge amount of
inflammatory cytokines. They exhibit a strong ability to present
antigens and elevated nitric oxide and ROS production (Tan et al.,
2016), and also show pro-glycolytic activity to increase energy efficiency
and availability in the hypoxic state (Tawakol et al., 2015; Chen et al.,
2022). In addition, they are involved in directing T-cells toward the type
1 T helper cell phenotype. Conversely, M2 macrophages exhibit anti-
inflammatory properties that can counterbalance proinflammatory
M1 macrophages by releasing anti-inflammatory cytokines to reduce
inflammatory activity (Ruytinx et al., 2018). These cells play a key role in
synthesizing essential mediators associated with tissue remodeling and
angiogenesis, and enhance T helper cell type 2 immune responses. In
normal conditions, M2-type cells stimulate the apoptosis of M1-type
cells to maintain the M1/M2 balance, which is considered to play an
important role in maintaining liver homeostasis and liver function
(Wan et al., 2014).

In NASH progression, Kupffer cells are the first cells to respond
to the liver microenvironment, and they have critical importance in

accelerating NASH (Chen et al., 2020). Hepatic steatosis alters the
M1/M2 phenotypic balance through various signals, which evolves
into chronic inflammation of the liver (Lefere and Tacke, 2019). In
addition, the ambivalence of activated Kupffer cells contributes to
NASH progression. For example, in NASH, M2 type Kupffer cells
have the advantage of reducing hepatic inflammation by inhibiting
the activation of M1 type Kupffer cells, but have the ability to induce
fibrosis (Qian et al., 2020). Understanding the intracellular signal to
determine the Kupffer cell phenotype and its effects on other cells or
organs could be a great help in the development of NASH
treatments. Additionally, the diverse population of hepatic
macrophages exhibits different phenotypes and distinct behaviors.
Therefore, there is a need to understand the complex heterogeneity
and functional diversity of macrophages in the liver. In this section,
we discussed the signaling pathways in Kupffer cells during NAFLD
progression and summarized in Figure 6.

5.1 Cellular plasticity in Kupffer cells during
NAFLD progression

5.1.1 Toll-like receptor 4 (TLR4) pathway in Kupffer
cells

TLR4 is a transmembrane protein member of the TLR family that
mediates the activation of innate immune responses and recognizes
LPS (Kawasaki and Kawai, 2014). Obese individuals or patients with
NAFLD have an overgrowth of intestinal bacteria, resulting in
increased LPS production compared to the findings in normal-
weight individuals (Wigg et al., 2001; Crane et al., 2015). Kupffer
cells express TLR4, which recognizes LPS. Based on the gut–liver axis,
intestine-derived LPS activate Kupffer cells by binding to TLR4.
Activation of TLR4-mediated signaling pathway triggers large
amounts of pro-inflammatory cytokines through nuclear factor-
kappa B (NF-κB), MAPK, extracellular signal-regulated kinase 1,
p38, JNK, and interferon regulatory factor 3 (IRF3) (Bieghs and
Trautwein, 2013). Consequently, excessive pro-inflammatory
cytokines can be produced during liver fibrosis, and they cause liver
damage through the activation of HSCs (Bieghs and Trautwein, 2013).

TLR4 signaling consists of myeloid differentiation primary
response 88 [MyD88]-dependent and MyD88-independent
signaling pathways, which are mediated by various adaptor
proteins. The MyD88-dependent pathway induces pro-
inflammatory cytokines by directly stimulating NF-κB and
activator protein 1 (AP-1) through the adaptor molecules
MyD88 and MyD88 adaptor-like (Mal, also termed TIRAP)
(Akira and Takeda, 2004; Guo and Friedman, 2010). On the
other hand, the MyD88-independent pathway is mediated by
Toll/IL-1R domain-containing adaptor-inducing IFN-β (TRIF)
and TRIF adaptor-related adaptor molecule (TRAM) (Kawai
et al., 2001; Doyle et al., 2002; Yamamoto et al., 2003a;
Yamamoto et al., 2003b; Kagan et al., 2008; Tanimura et al.,
2008). These adaptors activate IRF3, which regulates type I IFN
expression, late NF-κB activation, and pro-inflammatory immune
responses (Kawai et al., 2001; Doyle et al., 2002; Akira and Takeda,
2004). Activated Kupffer cells produce inflammatory factors
including TNF and IL-6 and recruit infiltrating inflammatory
cells. It is thought that these events contribute to NAFLD
progression at multiple levels (Leroux et al., 2012). As
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endogenous TLR4 ligands, DAMPs derived from damaged
hepatocytes can stimulate Kupffer cells (Cha et al., 2018;
Takimoto et al., 2023). DAMPs can act on TLR4, which activates
M1-type Kupffer cell and promote the secretion of pro-
inflammatory cytokines (Takimoto et al., 2023).

5.1.2 ROS-related signaling pathways in Kupffer
cells

ROS critically affect Kupffer cell function. The primary source of
ROS in macrophages is NOX (Canton et al., 2021). Kupffer cells

generate superoxide, a major form of ROS, through the phagocytic
NOX2 in response to microbial stimuli, including LPS (Lambeth,
2004). It helps kill microorganisms or stimulates redox-sensitive
targets including protein kinase C, NF-κB, and ERK family members
(Forman and Torres, 2002).

Mitochondria represent the largest source of metabolic ROS
induction (Turrens, 2003). Mitochondrial substrate oxidation
creates the electrochemical proton gradient across the inner
mitochondrial membrane. The electrochemical energy is used for
the synthesis of ATP via oxidative phosphorylation. The energy of

FIGURE 6
The signaling pathway of Kupffer cells during NAFLD progression. Kupffer cells can be activated by DAMPs released from damaged hepatocytes and
LPS secreted by intestine during NAFLD progression. DAMPs and LPS bind to TLR4 on Kupffer cell membrane and activates TLR4 signaling. TLR4-mediate
signaling pathways in Kupffer cells are divided into MyD88-dependent or MyD88-independent signaling. MyD88-dependent signaling is mediated by
MyD88 and Mal/TIRAP, which activate MAPK signaling, including ERK, JNK, and p38, and activate NF-κB and AP-1 to produce pro-inflammatory
cytokines. On the other hand, the MyD88-independent signaling is mediated by TRIF and TRAM, leading to the activation of IRF3 and regulates the
expression of IFN. LPS can also promote NOX2 to produce ROS via TLR4 activation. Excessive ROS production by mitochondria promotes NF-κB and
MAPK signaling to secrete pro-inflammatory cytokines. Conversely, UCP2, a mitochondrial inner membrane protein, counteracts ROS production to
maintain homeostasis. Abbreviation: AP-1, activator protein 1; ETC., mitochondrial electron transport chain; IRF3, interferon regulatory factor 3; Mal/
TIRAP, MyD88 adaptor-like/TIR domain containing adaptor protein; MAPK, mitogen-activated protein kinase; MyD88, myeloid differentiation primary
response 88; NF-κB, Nuclear factor kappa B; NOX2, NADPH oxidase 2; TRAM, TRIF adaptor-related adaptor molecule; TRIF, Toll/IL-1R domain-
containing adaptor-inducing IFN-β; ROS, Reactive oxygen species; UCP2, uncoupling protein 2.
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the electrochemical gradient can also be dispersed as heat via
uncoupling. Among uncoupling proteins, uncoupling protein 2
(UCP2) is distributed in most tissue, and it is abundantly
expressed in immune cells (Brand and Esteves, 2005; Mattiasson
and Sullivan, 2006). UCP2 overexpression reduces ROS production
and immune cell activation (Kizaki et al., 2002; Ryu et al., 2004),
whereas loss of UCP2 promotes ROS production, pro-inflammatory
cytokine secretion, and NF-κB activation (Arsenijevic et al., 2000;
Bai et al., 2005). LPS can inhibit UCP2 expression in macrophages
(Arsenijevic et al., 2000; Kizaki et al., 2002). This indicates that
TLR4-mediated signaling might use mitochondrial ROS in an
amplifying circuit. In fact, LPS-induced TLR4 signaling activates
JNK and p38 through mitochondrial ROS in the peritoneal
macrophages from ucp2−/− mice (Emre et al., 2007). These
findings suggest that UCP2 can inhibit ROS-sensitive
TLR4 signaling, including JNK, p38, and NF-κB. ROS-mediated
amplification of TLR4 signaling might result from dysfunctional
UCP2 in Kupffer cells.

5.1.3 TGF-β pathway in Kupffer cells
Inflammation is a key driver of liver fibrosis (Seki and Schwabe,

2015; Koyama and Brenner, 2017). During liver injury, immune
cells, including macrophages, lymphocytes, and eosinophils,
infiltrate the damaged area. Lymphocytes generate cytokines and
chemokines that activate macrophages (Tanaka and Miyajima,
2016). Activated macrophages stimulate inflammatory cells to
secrete pro-inflammatory cytokines and excessively activate
inflammatory signals to generate ROS. In fibrosis, macrophages
generate fibrosis-promoting factors such as TGF-β and PDGF, and
they are found near the myofibroblasts that produce collagen (Seki
and Schwabe, 2015; Koyama and Brenner, 2017). These finding
suggest that macrophages are closely associated with the activation
of myofibroblasts.

Macrophages exhibit a heterogeneous cell population with
enormous cellular plasticity and various microenvironmental
stimuli cause them to polarize into different phenotypes (Zhu
et al., 2015; Viola et al., 2019). Hepatic macrophages consist of
Kupffer cells (liver-resident macrophages) and circulating
monocytes (inflammatory recruiting macrophages) (Beattie et al.,
2016). Both cells can activate HSCs, and they can be
transdifferentiated by TGF-β. Resident hepatic macrophages
recruit monocytes to promote liver fibrosis by secreting the
chemokine CCL2 (Cai et al., 2018; Wen et al., 2021).

Macrophages are classified into pro-inflammatory M1 type
and anti-inflammatory M2 type (Chun and Kim, 2018; Yu et al.,
2018). M1 macrophages are predominant during liver injury and
promote EMT and ECM deposition, whereas M2 macrophages
release anti-inflammatory factors including IL-10, arginase, and
HO-1 (Li et al., 2017; Chen et al., 2020). However, during chronic
liver injury, M2 macrophages can contribute to the production of
pro-fibrotic factors, especially TGF-β and PDGF (Sun et al.,
2017).

Thus, macrophages are the primary sources of TGF-β, and they
are important contributors to the development of liver fibrosis (Seki
and Schwabe, 2015; Koyama and Brenner, 2017). TGF-β can cause
macrophage polarization towards a M2-like phenotype through
SNAIL1 (Zhang et al., 2016). SNAIL overexpression in human
THP-1 macrophages stimulates the expression of M2 markers

(such as CD206) and anti-inflammatory IL-10. Conversely,
SNAIL deficiency triggers M1 polarization by enhancing pro-
inflammatory cytokines.

6 Conclusion and prospects

Currently, there are no approved therapies for NAFLD despite
ongoing attempts. To find an appropriate treatment for NAFLD, it
is necessary to observe various factors from a broader perspective.
The heterogeneity of NAFLD, including its wide spectrum of
clinical and histological characteristics, is a primary factor
complicating the treatment of NAFLD. The term NAFLD does
not fully reflect current knowledge about this complex disease,
which has a complex etiology associated with various metabolic
disorders. The introduction of the term MAFLD is an effort to
explain the complex pathophysiological mechanism and
heterogeneity of NAFLD with several clinical and histological
characteristics.

The heterogeneity of NAFLD is closely associated with the
cellular heterogeneity and plasticity of cell populations with
specialized functions according to their localization in the liver.
Under normal conditions, cellular heterogeneity and plasticity in the
liver play critical roles in maintaining metabolic homeostasis,
adaptation, and defense against pathogens. However, this also
endows cells with strong and flexible adaptability to
environmental changes. Therefore, in order to adapt to various
environmental changes in a complex disease state, these liver cells
will undergo complex and diverse changes and will be developed to
act in new roles. Although not addressed in this review,
understanding cell-to-cell communication as these cells acquire
new identities and undergo phenotypic changes is also
considered crucial. Therefore, an in-depth understanding of
exosomes and cytokines secreted from damaged organs and
perspectives on their impact during NAFLD progression will be
helpful for developing effective therapeutics for the treatment of
heterogeneous and complex NAFLD.
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