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Molecular property prediction is a crucial task in various fields and has recently
garnered significant attention. To achieve accurate and fast prediction of
molecular properties, machine learning (ML) models have been widely
employed due to their superior performance compared to traditional methods
by trial and error. However, most of the existingMLmodels that do not incorporate
3Dmolecular information are still in need of improvement, as they aremostly poor
at differentiating stereoisomers of certain types, particularly chiral ones.
Also,routine featurization methods using only incomplete features are hard to
obtain explicable molecular representations. In this paper, we propose the Stereo
Molecular Graph BERT (SMG-BERT) by integrating the 3D space geometric
parameters, 2D topological information, and 1D SMILES string into the self-
attention-based BERT model. In addition, nuclear magnetic resonance (NMR)
spectroscopy results and bond dissociation energy (BDE) are integrated as extra
atomic and bond features to improve themodel’s performance and interpretability
analysis. The comprehensive integration of 1D, 2D, and 3D information could
establish a unified and unambiguous molecular characterization system to
distinguish conformations, such as chiral molecules. Intuitively integrated
chemical information enables the model to possess interpretability that is
consistent with chemical logic. Experimental results on 12 benchmark
molecular datasets show that SMG-BERT consistently outperforms existing
methods. At the same time, the experimental results demonstrate that SMG-
BERT is generalizable and reliable.
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1 Introduction

The prediction of molecular properties is one of the fundamental tasks in chemistry
(Wieder et al., 2020) and deserves special attention. Traditional computational methods,
such as density functional theory (DFT) or field experiments, are time-consuming and
poorly scalable with size (Chen et al., 2021). This could cause inevitable and serious moral
and ethical issues with experimental testing involving animals or humans in vivo. Recently,
Machine Learning (ML), including Deep Learning (DL), has emerged as a powerful data-
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driven approach for establishing a connection between molecular
structure and properties (Chen et al., 2021). ML methods can often
deliver results that are comparable to DFT in terms of accuracy while
being significantly faster by approximately 3-5 orders of magnitude
(Hohenberg and Kohn, 1964; Kohn and Sham, 1965).

A key component/challenge in applying ML to molecular
science is molecular featurization. This transforms molecular
structures into machine-readable formats (Wu et al., 2018) and
therefore dictates the embedded chemical information into final
representations (Raghunathan and Priyakumar, 2021). Effective
molecular representations are essential for a variety of molecular
prediction tasks, such as property prediction (Du et al., 2023a),
retrosynthesis (Segler et al., 2018; Zhang et al., 2022), generative
molecular design (Moret et al., 2020), and so on (Dral and Barbatti,
2021). Current molecular representations can be categorized into
three different classes: molecular fingerprints based on molecular
topological substructures encoded as a sequence of bits, sequence-
based representations by SMILES, and graph-based representations
(Fang et al., 2022). However, current featurization methods still have
certain shortcomings, as they only focus on extracting various
hierarchical molecular information, which makes it challenging
to thoroughly integrate the molecular information and achieve
effective generalization among potential chemical compounds. In
this study, one-dimensional (1D) SMILES strings, two-dimensional
(2D) topological structures, and three-dimensional (3D) geometric
structures are the intuitive expressions of molecular information at
different levels. SMILES strings could naturally be used as input to
some NLPmodels such as Transformer (Tetko et al., 2020; Schwaller
et al., 2021) and BERT (Wang et al., 2019; Zhang et al., 2021) to
reach high performance, no matter if for a molecular generation
(Moret et al., 2020) or property prediction (Chen et al., 2021; Du
et al., 2023a), However, these methods tend to lose the chemical
context during preprocessing, as they often remove essential
chemical symbols such as “#” and “( )”, from the SMILES string.
Moreover, only 1D information would inevitably lose adjacency
information (Du et al., 2023b). The 2D topological structure is one of
the most important chemical representations, which was expertly
developed and has been used for centuries as a crucial carrier for the
exchange, dissemination, and transmission of chemical knowledge.
However, it is difficult to distinguish stereochemistry molecular
features such as cis-trans isomerism, chirality, and other
enantiomers only based on adjacency matrices (Stärk et al., 2021;
Fang et al., 2022). Therefore, 3D information is an important and
non-negligible piece of knowledge that the model needs to master to
solve stereochemical problems (Chen et al., 2021; Du et al., 2023b).
Each of these three modalities focuses on different aspects, and all
are fundamental to molecular featurization.

On the other hand, interpretability is also an obstacle to the
widespread application of deep learning models. Current ML models
mainly focus on the prediction task of compound properties, but only
a few ML methods are interpretable (Wang et al., 2021). Therefore,
there is often a trade-off between predictive performance and the
ability to interpret ML models (Rodriguez-Perez and Bajorath, 2021).
Although causal analysis theories such as contrastive explanations or
counterfactuals, feature perturbation (sensitivity analysis), and
gradient-based methods could obtain feature importance analysis
to a certain extent, interpretable results still need to be improved
to match the actual chemical logic for individual explanations

(Prosperi et al., 2020; Wang et al., 2021). Attention mechanisms
have been widely adopted for visualizing molecular prediction results,
as they allow for intuitive visualization and human-friendly
explanations (Ross et al., 2022). However, to the best of our
knowledge, current attention mechanisms rarely embed basic
chemical intuitions or expert prior knowledge to enhance
interpretability. Chemical properties are ultimately determined by
intrinsic properties (Zhang et al., 2022), and most of these are
determined by the electron density and electronegativity of
neighboring atoms, which could be represented by NMR chemical
shifts and bond dissociation energy (BDE). Thus, we could consider
them perfect candidates for ML descriptors to improve model
interpretability.

In this paper, we propose a stereo molecular graph BERT (SMG-
BERT) by integrating the 3D space geometric parameters, 2D
adjacency information, and 1D SMILES representation into a self-
attention-based BERT model. SMG-BERT could generate accurate
chemical representations for various molecules, including chiral
molecules, which provides assurance for precise property
prediction results and expands the application scope. Meanwhile,
SMG-BERT incorporates the NMR chemical shifts and bond
dissociation energies (BDEs) as chemical descriptors using a
transformer encoder to improve interpretability. This results in
visualizations that conform to chemical logic and are more
convincing. A series of experimental results show that SMG-BERT
can consistently outperform previous state-of-the-art molecular
property prediction models on 12 benchmark molecular datasets.

2 Methods

In this section, we describe in detail the data preprocessing
process, model structure, and loss function in three parts. In the data
preprocessing process, the model could obtain an input
representation that consists of three components: a molecular
representation z is generated solely from the atomic and NMR
sequence by the embedding layer, which lacks topological
information and thus can be regarded as 1D information. The
bond dissociation energy matrix B, which not only provides
topological information but also includes vital chemical
knowledge about bond energies. Finally, the distance fraction
matrix D, based on the distance matrix Draw, could be regarded
as 3D information. We present the implementation details of our
model architecture, which is based on the transformer-encoder
architecture and introduces multiple modal information of the
molecules. Meanwhile, various learning tasks are presented in the
pre-training phase to enhance the representation capabilities of the
model.

2.1 Data preprocessing

In the pre-training process, the dataset was collected from
PubChem (Kim et al., 2023). Although increasing the amount of
pre-training data could potentially further improve the performance
of the model, the improvement in model performance became less
significant after a 480 k training size (Supplementary Figure S1).
Considering the balance between training time and effect, we
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randomly selected 480 k molecules (SMILES). Three preprocessing
tasks were performed, including generating: (1) input representation
z of the molecules (2) the bond dissociation energy matrix B,(3) and
the distance fraction matrix D.

The input representation z of the molecules: we used RDKIT
to transform each SMILES into an atomic sequence SA �
[A1,A2,/,An] of length n and generate the corresponding
NMR sequence SN � [N1,N2,/,Nn] for the atomic sequence SA
by a DL model with six message-passing neural networks (MPNN)
layers and two fully connected network layers as in our previous
work (Zhang et al., 2022) (continuous NMR was transformed into
discrete). Then, 80% of Atom/NMR in the two sequences were
randomly selected and replaced by <M> (which stands for
MASKL); 10% were replaced by another Atom/NMR one, and
the rest were left unchanged. In addition, we added a global
node <G> at the beginning of the sequence, which represents
the global representation of the whole molecule. Finally, two
independent embedding layers were used to map the two new
input sequences S′A and S′N to a continuous input
representation z � [z1, z2,/, zn]:

z � EA S′A( ) ‖ EN S′N( )
where EA is the embedding layer of the atomic sequence, EN is the
embedding layer of the NMR sequence, and ‖ denotes the
concatenation operation.

The bond energy matrix: we generated the bond energy
matrix B by an additional DL model with four MPNN layers
and two fully connected network layers according to the
method in our previous work (Zhang et al., 2022), and
normalized it:

Bnorm � Norm B( ) � B − Bmin

Bmax − Bmin

where Bmax is the maximum value of matrix B and Bmin is the
minimum value of matrix B.

Distance fraction matrix D′: the ground state 3D structure of
the molecule can be obtained by the RDIKT package. Based on this,
we were able to obtain the atomic distance information and generate
the original distance matrix Draw. Then, the distance matrix Draw

was transformed by a transformer encoder layer into the distance
fraction matrix D.

D � Trans Draw( )
whereDraw represents the 1, 2,/, n− th column vector ofDraw, and
Trans is a transformer encoder module.

2.2 Modified attention mechanism

Our model is based on the self-attention mechanism. For our
task, the input representation z was first mapped onto the query
matrix Q, the key matrix K, and the value matrix V using the
projection matrices Wq,Wk,Wv, respectively:

Q � Wqz

K � Wkz

V � Wvz

The attention score matrix A could then be calculated from the
Q,Kmatrix. Specifically, we computed the dot products of the query
with all keys, divided each by dk, and applied a softmax function to
obtain the weights on the values.

A � sof tmax
QKT��
dk

√( )
where dk is the dimension of the key.

However, the global attention score matrix, A, is difficult to
optimize because it requires considering the relationships among all
the atoms, resulting in a high degree of freedom. To address this
problem, we introduced an adjacency matrix to constrain the global
attention score matrix:

M � Binary B( )
A2d � A ⊙ M + λNorm Bnorm( )

where " Binary” is a binarization operation that transforms the
bond-energy matrix into an adjacency matrix M, ⊙ denotes an
element-wise product, and λ is a balancing hyperparameter between
themask attention score matrix and the bond-energy matrix. Here, λ
is set to 0.2. The hyperparameters are provided in Supplementary
Tables S1, S2.

Furthermore, to incorporate 3D information, we brought the
distance matrix D into the attention score matrix to reflect the
interaction strength of atoms:

A3d � A2d +D

Once the final correlation matrix A3d is obtained, we multiplied
it with the value matrix V to obtain the output sequence z:

z � A3dV

In addition to the attention sub-layers, the transformer encoder
layer also contains a position-wise feed-forward network:

ri � FFN zi( )
where ri denotes the final output representation of the i− th atom.
We wrote the representation of the whole sequence of atoms as r �
[r1, r2,/, rn].

2.3 Loss function

During the pre-training stage, we aimed to increase the richness
of information contained in the atomic representation sequence r.
To achieve this, we propose three self-supervised learning (SSL)
tasks: atomic and NMR reconstruction, bond energy prediction, and
3D information reconstruction.

Atomic and NMR reconstruction: During data preprocessing,
some atoms in the atomic sequence are randomly replaced by the
special token "<M>". The task of atomic reconstruction involves
predicting the correct class of these masked atoms. Specifically, given
the representation ri of the masked atom, the model outputs the
predicted class probability pi after passing through the MLP and
SoftMax layers.

pi � sof tmax MLP ri( )( )
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The cross-entropy loss is used as the loss function, which
computes the difference between the predicted probability pi and
the ground truth label yi of the masked atom:

LA � − 1
m
∑m
i�1
yilogpi

where m is the total number of masked atoms.
Similarly, the NMR reconstruction task is consistent with the

atomic reconstruction principle, which we denoted as LN .
Bond energy prediction: The bond representation can be

determined by the nodes connected at both ends. The predicted
bond energy qij between the atomic representation ri and rj can
then be obtained by running the bond representation through
the MLP.

qij � MLP ri ‖ rj( )
where ‖ denotes the concatenation operation. Mean Squared Error
(MSE) is the loss function and yij is the ground truth:

LB � ∑n
i�1
∑n
j�1

yij − qij( )2

3D information reconstruction: To avoid the complexity of
modeling direct prediction of atomic coordinates, which requires
translation-rotation invariance and order invariance, we use
intermediate quantities that reflect 3D information, such as
interatomic distances, bond angles, and torsion angles, to predict
atomic coordinates. Specifically, the atomic representation r is
mapped to a new representation r′ using the projection matrix Wr

, with a vector length of 3 to represent the coordinates in 3D space.

r′ � Wrr

The interatomic distances d̂, bond angles θ̂, and torsion angle φ̂
predicted by the model can be calculated directly:

d̂ � r′i − r′j
					 					2

θ̂ � cot−1
r′i · r′j

< r′i , r′j >
⎛⎝ ⎞⎠

φ̂ � cos−1
nα · nβ∣∣∣∣ nα| |∣∣∣∣ · ∣∣∣∣|nβ|∣∣∣∣( )

where i and j refer to two different atoms, r′i and r′j indicate the
coordinate vectors of atoms i and j, nα and nβ correspond to the
normal vector of the α and β planes.

Finally, we used the mean squared error (MSE) as the loss
function to compute the difference between the predicted values and
the corresponding ground truth values for atomic distances d, bond
angles θ, and torsion angles φ.

L3D � d − d̂( )2 + θ − θ̂( )2 + φ − φ̂( )2
Loss functions: To balance the different objective functions

represented by LA, LN, LB, and L3D, it is necessary to consider their
relative importance. The σ1, σ2, σ3, and σ4 are the learnable
parameters as the proportion of LA, LN, LB, and L3D in the total
loss (Kendall et al., 2017), and are optimized through
backpropagation to appropriate values. This enables the model to

effectively learn from all four SSL tasks while ensuring that the
different losses are appropriately weighted.

L � 1
σ21
LA + 1

σ22
LN + 1

σ23
LB + 1

σ24
L3D + logσ1 + logσ2 + logσ3 + logσ4

2.4 Baseline model and test data sets

Several advanced models in recent years were selected for
comparison as the baseline, namely, GAT (Veličković et al.,
2017), GIN (Xu et al., 2018), D-MPNN (Yang et al., 2019),
GROVER (Rong et al., 2020), GraphMVP (Liu et al., 2021a), and
AttentiveFP (Xiong et al., 2019). Among them, GIN, GAT,
D-MPNN, and AttentiveFP are all non-pre-training methods
based on GNN. GAT introduced the attention mechanism into
GNN and adaptively learned the weight of nodes. GIN was derived
from the Weisfeiler-Lehman graph isomorphism test degree and
exhibited almost the same representation ability as the WL test
D-MPNN utilizes messages that are associated with directed edges
(bonds) rather than atom nodes. AttentiveFP presents a novel graph
neural network architecture that incorporates an attention
mechanism to extract nonlocal effects at the intramolecular level
for molecular representation. GROVER and GraphMVP employ a
pre-training process. GROVER can effectively learn rich structural
and semantic information about molecules from a large volume of
unlabeled molecular data by performing SSL tasks at the node, edge,
and graph levels. Meanwhile, GraphMVP uses an SSL approach to
achieve correspondence and consistency between 2D topological
structures and 3D geometric views.

A total of 12 datasets (seven for regression and five for
classification) were selected from MoleculeNet (Wu et al., 2018)
and ADMETlab (Dong et al., 2018) to conduct downstream
experiments. According to this benchmark (Rong et al., 2020; Liu
et al., 2021b), we split these datasets with scaffolds according to the
molecular substructure, as this splitting method is more challenging
and better evaluates the generalization ability in out-of-distribution
data. In the testing process, we randomly selected 80% of the samples
as the training set, 10% as the validation set, and the remaining 10%
as the test set. Five independent runs were executed for eachmethod,
and the mean and standard deviation of the metrics were reported.
ROC-AUC, RMSE, and R2 are used as evaluation indicators for
classification and regression tasks, respectively.

3 Results and discussion

3.1.1 Model architecture of SMG-BERT

The architecture of our model is shown Figure 1, consisting of
one embedding layer, six transformer encoder layers, and one output
layer. The model processes 1D, 2D, and 3D information separately.
The 1D information includes both the atomic sequence obtained
from the SMILES string using the RDKIT package (Landrum, 2019)
and the NMR sequence generated (Zhang et al., 2022) (the predicted
NMR values are discretized). Each sequence is independently
masked by about 20% (as a hyperparameter) and then embedded
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in a high-dimensional vector space through two separate embedding
layers. For the 2D information, we introduced the bond energy result
(B matrix in Figure 1) to provide differentiation information about
the bond connection. The B matrix is fused into the global attention
score matrix (A matrix in Figure 1) at the transformer encoder layer.
As for the 3D geometric information, we calculated the interatomic
distances, bond angles, and torsion angles in the ground state
conformations using the RDKIT package (Faber et al., 2017;
Lubbers et al., 2018). The distance matrix was then processed by
an additional transformer encoder module to obtain the distance
fraction matrix (D matrix in Figure 1) as the final 3D information,
where the farther distance could have a smaller value. These three
modal inputs, along with multiple self-supervised learning tasks,
which include masked atom inference and 3D geometric feature
reconstruction, allow for a multimodal representation of model
learning.

The resulting molecular representation would be used for
downstream tasks and would adopt the fine-tuning method.
Specifically, after pre-training, the atom representation of the
global super-node “<G>” is the final molecular representation,
with a 512-dimensional vector. This would be fed into a two-
layer, fully connected network with random initialization, which
yields the final prediction results. The network uses ReLU as the
activation function and sets the dropout ratio to 0.1. Considering
that catastrophic forgetting issues could occur as the model targets
specific downstream tasks that are completely different from the
pre-training process (Kirkpatrick et al., 2017), we would retain the
pre-training loss as a regular term, which would maintain the
chemical information and spatial characteristics learned in the
pre-training process In addition, our model is a flexible,

comprehensive feature fusion framework that supports multi-
dimensional information removal and fusion. For specific
downstream tasks, 3D or chemical information could be
considered a super parameter, and we could dynamically adjust
or increase the available input features according to the target.

3.2 Model validation results on common
datasets

Table 1 shows that compared to no pre-training, the RMSE
index decreased by 12.71%, while the ROC-AUC improved by 20.7%
on the classification task. And R2 increased by 5.07% in
Supplementary Table S3. These results demonstrate the
importance and necessity of pre-training in our strategy.
Moreover, a noteworthy trend is that the smaller the dataset,
such as FreeSolv and ESOL, the higher the improvement effect to
some extent, which demonstrates the excellent generalization ability
of the pre-trainedmodel. Besides, Table 1 also records the prediction
results and the performance of our model with several advanced
models. SMG-BERT outperforms six out of eight baselines and
achieves a close second in the other two (Tox21 and HIV).
Specifically, in all four regression datasets, SMG-BERT achieves
the SOTA results and has an overall relative improvement of 15.3%
on average compared to previous SOTA results. Relatively, only
5.81% is achieved on average for the AUC-ROC score in
classification tasks, which could be due to the regression tasks
being more relevant to the 3D geometric information of
molecules (Fang et al., 2022), such as the label of water-soluble
or hydration-free energies in ESOL and FreeSolv dataset, which is

FIGURE 1
The model architecture of SMG-BERT. 2D topology graphs and 3D ground state conformations are generated by SMILES. A is an attention score
matrix and B is a binding energy matrix. D is an adjusted distance matrix between atomic pairs by a basic transformation model.
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closely related to the molecular polarity, which is in turn the
geometric symmetry concept of the 3D conformation of a
molecule. Especially on the QM7, QM8, and QM9 datasets, the
improvement results are more significant, reaching an average of
20.7%. The properties in these datasets are directly related to the 3D
geometric information.

On the other hand, stereochemical molecules deserve our special
attention because they are a rarely studied class of molecules in
nature. Current DL models often overlook chiral pair
discrimination, leading to inaccurate predictions (MacKenzie and
Stachelek, 2021; Cho et al., 2023). Although chiral analysis is
fundamental to many fields, limited datasets restrict our ability to
study it. Nonetheless, we conducted a macromolecule chiral
classification task to evaluate SMG-BERT’s prediction and
generalization capabilities. A protein-chiral ligand binding dataset
was used in this case, where each enantiomer of the ligand could
demonstrate significantly different binding affinities. In this dataset,
a chiral pair was defined as two enantiomers measured in the same
biochemical binding assay, which is a common occurrence in
biochemistry referred to as a “chiral cliff” (Schneider et al., 2018)
(Figure 2A). The dataset contained approximately 3,800 chiral pairs
with a more complex structure that included a diverse range of
atoms and elements, such as C, H, O, N, B, Br, Cl, and so on
(Figure 2B).

This dataset was divided into training, validation, and test sets in
a ratio of 8:1:1. As shown in Figure 2C, SMG-BERT could effectively
discriminate between chiral molecules, achieving an AUC score of
0.75, which is about 12.81% higher than the other models on
average. The PRC curve also shows that our model outperformed
the other models (Figure 2D). Obviously, including 3D geometric
information models such as GraphMVP or GROVER is better than
using models based on 2Dmolecular graphs since the left- and right-
handed versions of enantiomers have identical connectivity (Du
et al., 2023b). Additionally, as we can see, without the pre-training
process, the classification accuracy of the model would drop
significantly, approaching 50%. This level of accuracy is virtually
meaningless, given that the problem is a binary classification task.
3D information is relatively difficult to capture and is especially
important in 3D-related downstream tasks. During pre-training, our
model focuses on learning the complete 3D stereo geometric
information of the molecules by incorporating interatomic
distance, angle, and dihedral angle, which is a critical factor
contributing to the superiority of our model over other models.
In addition, the explicitly introduced distance information is also
more conducive to the interpretability of the model and better
reflects the correlation between the atoms.

3.3 Interpretability analysis

In the final phase of our study, we examined the attention matrix
generated by SMG-BERT to reveal the chemical insight acquired
during pre-training. We calculated the similarity between
attentional scores for atoms at different levels of information
integration, using the benzophenone molecule (C15H12O) as a
case study. We also presented visualization results for several
molecules.
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Figure 3A shows that the molecular representation obtained solely
from 1D SMILES string information in pre-training for the
benzophenone molecule (depicted in Figure 1) is relatively vague. The
similarity between different atoms is within 0.001, indicating a lack of
learned explicit chemical information and atomic differences (Figure 3A).
However, after incorporating 2D information, the overall correlation
between atoms increased, and some regions became more pronounced
(Figure 3B). Notably, the current high correlation is closely related to the
adjacency matrix, especially the higher attention scores of the atoms
themselves, while the correlation in other unrelated regions is relatively
low. This suggests that the model initially pays sufficient attention to
adjacency information, but it is still not the chemically logical result we
expected. Furthermore, the addition of 3D geometric information led to
significant changes in themodel’s attention scores, with atoms themselves
receiving a score of 0 due to the 3D information matrix values, and two
nearly symmetrical rectangular regions emerging (Figure 3C). This is
because benzophenone has two symmetrical phenyl rings on its left and
right sides with nearly identical geometric information. These findings are
consistent with expectations and demonstrate that 3D information
significantly enhances the model’s output representation, making it
more consistent with chemical spatial geometric information. After
incorporating the chemical information, noticeable differences are seen
in the roughly similar phenyl ring regions compared to the previous
results (Figure 3D). This phenomenon could be attributed to the ketone
group (C=O), as a strongly polar group, having a stronger electron cloud-
attracting ability than the phenyl ring, which disrupts the original large π

bond conjugation system of the phenyl ring and re-forms a stable
conjugated structure. In this case, the chemical information clearly
reflects the influence of the chemical environment on the atoms, such
as chemical shifts in NMR. This clearly shows that the added chemical
information effectively improves the interpretability of the model and
makes the results of the attention matrix more in line with chemical
knowledge.

Here we present another six molecules to represent the pre-
training results of SMG-BERT (Figure 3E). The model can
effectively capture the weight results of different atoms and even
differentiate between symmetric substructures in molecules such as
benzophenone. Our results highlight the integration of spatial
structure information and chemical priors in the model.

3.4 Ablation experiment

In this section, we present various ablation analyses of SMG-BERT
to gain insight into its remarkable performance. To understand the
impact and confirm the importance of explicit information, we
performed a series of ablation analyses by removing the
corresponding modal components from SMG-BERT. This new
variant removes either 3D information and/or chemical information
and serves as a comparison to the vanilla version. We conducted
10 random tests on eight datasets for classification and regression
tasks. First, we compared the variant without chemical information in

FIGURE 2
Performance of the SMG-BERTmodel in discriminating chiral molecules. (A) A pair of chiral molecules of L-proline and R-proline as an example. (B)
Atom count distribution of the chiral molecule dataset. (C) ROC and (D) PRC curves of CFFN compared with other random classification models in
discriminating enantiomeric pairs. PT: Pre-training.
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terms of changes in classification and regression tasks. Overall, SMG-
BERT exhibited varying degrees of performance degradation after
removing chemical information, especially in more challenging
regression tasks where its RMSE increased by approximately 10%
(Figures 4A and 4B). Conversely, removing chemical information
had only a small impact on classification tasks, with a decrease of
approximately 5% (Figure 4C). This demonstrates that incorporating
chemical knowledge can enhance the model’s expressive power and
improve its performance. Furthermore, we removed 3D information on
this basis (without 3D & Chem) and found that the model’s results
became worse, with an average increase in RMSE errors of
approximately 7%. This also illustrates the effectiveness and
importance of 3D information.

Explicitly adding 3D and chemical information introduces a
new problem: an increase in complexity. However, with more
complete guidance, unsupervised large-scale models are more
likely to learn detailed molecular/atomic features and output
precise molecular representations. 3D information increases
the model’s attention to the relationship between atoms and
unbound atoms, while chemical information supplements the
influence of the surrounding groups on atoms. This information
can provide guidance for the model’s important domain
knowledge, resulting in superior performance. The ablation
analysis results of the three sets of experiments undoubtedly
confirm the accuracy and robustness of our model. And the
importance of 3D and chemical information.

FIGURE 3
Visualization of molecular representations for benzophenone in SMG-BERT with varying degrees of features. (A)Only 1D information is considered.
(B) 1D + 2D information is considered. (C) 1D+ 2D+ 3D geometric information is considered. (D) 1D + 2D + 3D + chemical information is considered. The
red squares are the positions of the two benzene rings. (E) Attention maps for (left column, from top to bottom) benzophenone, propranolol, betahistine,
ofloxacin, betahistine, hexitol, and amiloride. Greener areas represent higher weight values.

FIGURE 4
Results of the ablation experiment on regression and classification datasets. Test results on (A)QM7, QM8, and QM9 datasets; (B) on FreeSolv, Lipo,
LogS, and ESOL datasets; and (C) on BACE, Tox21, HIV, BBBP, and SIDER datasets.
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4 Conclusion

Molecular representations play an important role in determining
both the performance and the interpretability of machine learning
models. While most explanatory methods can be applied regardless of
the features or descriptors used, the interpretability of features is
critical for effective explanations. In particular, features should be both
understandable and chemically intuitive whenever possible. For
instance, if a specific atom or functional group strongly influences
the prediction of high metabolic clearance, a medicinal chemist may
consider replacing it. Thus, it is essential that key descriptors are
actionable to understand the process by which a prediction is made,
which can increase model transparency, facilitate the integration of
expert knowledge, enable model tuning for specific applications, and
uncover valuable insights, such as learned QSPR patterns.

In this study, we introduced a novel model, called stereo
molecular graph BERT (SMG-BERT), which integrates a number
of molecular features, including 3D spatial geometric parameters,
2D adjacency information, and 1D SMILES representation, into a
self-attention-based BERT architecture. Additionally, SMG-BERT
incorporates NMR chemical shifts and BDEs as chemical
descriptors through a transformer encoder, which improves
interpretability and results in visualizations that are chemically
consistent and more compelling As the result shows, SMG-BERT
generates accurate chemical representations for various molecules,
including chiral molecules, ensuring precise property prediction
results and expanding the scope of applications. In contrast, our
work focuses exclusively on chiral pairs, meaning that only
compounds with a chiral center were considered, while chiral
centers in sulfur or phosphorus were excluded. Diastereomers
and atropisomers were not taken into account in this work, as
diastereomers are not mirror images, and the conformation of
atropisomers is typically not described in most activity databases.
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