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Breast cancer is the second leading cause of cancer death in women among all
cancer types. It is highly heterogeneous in nature, which means that the tumors
have different morphologies and there is heterogeneity even among people who
have the same type of tumor. Several staging and classifying systems have been
developed due to the variability of different types of breast cancer. Due to high
heterogeneity, personalized treatment has become a new strategy. Out of all
breast cancer subtypes, triple-negative breast cancer (TNBC) comprises ~10%–
15%. TNBC refers to the subtype of breast cancer where cells do not express
estrogen receptors, progesterone receptors, or human epidermal growth factor
receptors (ERs, PRs, and HERs). Tumors in TNBC have a diverse set of genetic
markers and prognostic indicators. We scanned the Cancer Cell Line Encyclopedia
(CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC) databases for potential
drugs using human breast cancer cell lines and drug sensitivity data. Three
different machine-learning approaches were used to evaluate the prediction of
six effective drugs against the TNBC cell lines. The top biomarkers were then
shortlisted on the basis of their involvement in breast cancer and further subjected
to testing for radion resistance using data from the Cleveland database. It was
observed that Panobinostat, PLX4720, Lapatinib, Nilotinib, Selumetinib, and
Tanespimycin were six effective drugs against the TNBC cell lines. We could
identify potential derivates that may be used against approved drugs. Only one
biomarker (SETD7) was sensitive to all six drugs on the shortlist, while two others
(SRARP and YIPF5) were sensitive to both radiation and drugs. Furthermore, we did
not find any radioresistance markers for the TNBC. The proposed biomarkers and
drug sensitivity analysis will provide potential candidates for future clinical
investigation.
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Introduction

Triple-negative breast cancer (TNBC) is an aggressive tumor that accounts for ~10%–
15% of all breast cancer (BC) subtypes and has a bad prognosis (Haffty et al., 2006; Dent
et al., 2007; Mittendorf et al., 2014; Sabatier et al., 2015; Luen et al., 2016; Denkert et al.,
2018). Pharmacogenomics predictions deal with genomic changes in our body due to
response to medications. It is a growing field of study that includes the development of drugs,
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repurposing, selection of patients for clinical studies, and
recommendations for individualized therapy. It demonstrates
how the body processes and metabolizes various medications
(Barretina et al., 2012; Seashore-Ludlow et al., 2015; Haverty
et al., 2016; Iorio et al., 2016). To build predictive models, we
can use pharmacological response data and molecular data from
a variety of cell lines from these databases. However, there are
restrictions in determining medication response (Papillon-
Cavanagh et al., 2013; Jang et al., 2014). Noise in the data along
with the presence of more characteristics than sample size
(i.e., predictors/variables), insufficient characterization of the
omics data, and the lack of dynamic nature of molecular data are
the overall factors that render drug response prediction more
difficult (Kalamara et al., 2018). Another significant issue is that
we can not rely on the pharmacogenomic correlations generated
from drug response. Several studies have found that inconsistencies
in utilized experimental techniques and processing of data resulted
in reported inconsistency (Haibe-Kains et al., 2013; Consortium
CCLEConsortium GoDSiC, 2015; Bouhaddou et al., 2016; Geeleher
et al., 2016; Safikhani et al., 2016; Mehmood et al., 2023).

In simpler terms, drug sensitivity can be defined as the amount
of activity achieved on a target (in this case, cell lines). It is measured
using various methods including area above the curve (AAC) and
IC50 values, whereas drug resistance refers to the resistance of a
target to a drug or specific compounds, which may be triggered by
mutations or overdosing. This is correlated to biomarkers, which are
entities that play a critical role in tumor survival. Radiotherapy is the
most effective cancer treatment (Baumann et al., 2016). For quick
and efficient results, along with chemotherapy, radiation is also
considered. Radiation’s physical accuracy has been improved by
recent technological advances, yielding higher cure rates and
lowering toxicity (Baumann et al., 2016).

Numerous methods and approaches have been developed to
solve the drug response prediction problem, including normalized
regression techniques (i.e., least absolute shrinkage and selection
operator (LASSO), elastic net, and ridge regression) (Geeleher et al.,
2014; Falgreen et al., 2015; Fang et al., 2015; Aben et al., 2016),
support vector machines (SVM) (Dong et al., 2015), random forest,
neural networks, deep learning (Menden et al., 2013; Ding et al.,
2018), and logical models (Ammad-Ud-Din et al., 2014; Ammad-
Ud-Din et al., 2016). [Ali and Aittokallio (2019)] provide a review
with wider detail. There has yet to be reported a comprehensive
study of procedures of model training which is based on data from
large cell line screenings as well as radiation data. In this study, we
aimed to fill these gaps, in turn improving the accuracy of drug
response prediction and discovering new biomarkers for sensitivity
pertaining to drugs as well as radiation. Predictive performance was
assessed by tenfold cross-validation and sampling of five models
trained by various machine learning methods, i.e., elastic net (Heiss
et al., 2021), LASSO (Huang et al., 2020), ridge (Arashi et al., 2021),
random forest (Schonlau and Zou, 2020), and support vector
machine (Pisner and Schnyer, 2020).

First, the sensitivity data for the drugs and cell lines data were
retrieved from the two datasets [Cancer Cell Line Encyclopedia
(CCLE) and Genomics of Drug Sensitivity in Cancer (GDSC)] and
drug activity was examined using the IC50 and the area above the
curve (AAC) graphs by us. This was done for the 16 shortlisted drugs
considered in this study. Then we used the multivariate machine

learning models to predict the accuracy of drug sensitivity on the
cancer cell lines and shortlisted the best-performing drugs. We
manually searched for potential biomarkers after shortlisting
biomarkers from molecular data. Furthermore, for the radiation
sensitivity data, the Cleveland database was used because we wanted
to find biomarker signatures that were sensitive to both
chemotherapy and radiation. Identifying signatures associated
with radiosensitivity or radioresistance was possible with the
RadioGx package.

Materials and methods

We curated a collection of cancer cell line screens from two
different data sources for this study: Genomics of Drug Sensitivity in
Cancer (GDSC) and Cancer Cell Line Encyclopedia (CCLE) (Yang
et al., 2012; Wang et al., 2022). Each dataset contains a panel of
cancer cell lines that have been drug-tested, and CCLE includes
detailed genetic characterization of a large panel of human cancer
cell lines. GDSC also contains information on the drug sensitivity of
cancer cells and the molecular markers of drug response. Both
datasets have some overlap in both cells and drugs. Our literature
survey (Chavez et al., 2010; Gupta et al., 2016) defined 16 drugs and
10 cell lines on the basis of FDA approval to use for this study. To
incorporate information on radiation sensitivity in this study, we
also used the Cleveland1.0 (Boeckman et al., 2005) database. The
overall workflow is given in Figure 1.

Examining and extracting data of interest

We used two packages, PharmacoGx (Mahmoud and Haibe-
Kains, 2020) and RadioGx (Trendowski et al., 2021), to analyze the
datasets and extract the drug sensitivity data for each cell line.
PharmacoGx package has been used for drug sensitivity while
RadioGX has been used for radiosensitivity and radioresistance.
All of the information in PharmacoGx is provided as R objects,
containing both pharmacological and molecular information from
each study for analysis. The RadioGx program provides a
standardized data format for storing the results of radiogenomic
experiments. The relationship between various cancer cell lines is
investigated, as well as their response to various dosages and types of
ionizing radiation. The object structure of both packages is strikingly
similar. So, a joint interface is available for accessing the considerable
data contained in these objects. The PSet and RSet store three types
of data in general: metadata/annotations, molecular data, and
treatment response data.

Modeling the sensitivity data

The drug dose-response curve function can be used to plot
drug dose-response data from PharmacoSet objects (Ma et al.,
2020). In each dataset, it helps in plotting the drug dose-response
curves for the combination of drugs against specific cell lines which
further allows direct comparisons of data between the two datasets
when a list of PharmacoSets, a name for drug against cell line is
given.

Frontiers in Molecular Biosciences frontiersin.org02

Kaushik and Zhao 10.3389/fmolb.2023.1215204

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1215204


Drug sensitivity prediction

In pharmacogenomic studies, cancer cell lines were also
tested for their dose-dependent response by increasing
concentrations of various compounds from which IC50 values
(Thorarensen et al., 2021), the area above the curve (AAC)
(Govindaraj et al., 2020), and viability at 1 µM were computed.
The IC50 of an inhibitor is the specific concentration for which
the response is one-half the original response. The AAC is a more
robust metric that is normalized against dose range and is defined
as the area above the dose-response curve for the tested drug
concentrations.

Consistency of CCLE and GDSC datasets

We examined the consistency of the GDSC and CCLE
databases and discovered that the names of the cells and drugs
utilized in the datasets were not identical. However, we used
PharmacoGx to overcome these disparities and conducted a
comparison analysis between the two datasets. The hgu133a
platform was used to profile GDSC, whereas the more
comprehensive hgu133plus2 platform was used to profile CCLE.
While the hgu133a platform is essentially a subset of the
hgu133plus2 platform in this case, Ensemble Gene IDs
summarise the expression information in PharmacoSet objects,
making it possible to compare datasets from different platforms.

The downloadPSet utility was used to import the datasets
from storage for testing consistency between them. To obtain the
common intersect among the datasets, the intersectPSet was used.
We created a breakdown of the gene expression and drug
sensitivity metrics for both datasets, leaving one gene
expression pattern and one sensitivity profile per cell line
within each dataset. The Pearson correlation coefficient was
then used to compare the gene expression and susceptibility
metric between the datasets.

Reliability assessment via robust
concordance index (rCI)

We used the robust Concordance Index (rCI) to examine the
concordance of multiple pharmacogenomic data sets (rCI)
(Salisu et al., 2020; Smirnov et al., 2021). The robust
concordance index (rCI) is used in cell line-based drug
screening to estimate the probability that two randomly-
chosen cell lines are ranked identically and that there is no
repetition across biological replicates based on their response
to drugs. We observed that noise in drug screening can be taken
into account, and that responsive ranking of cell lines with
similar AAC values may contain errors; however, the rCI only
calculates cell line pairings with a drug sensitivity discrepancy
greater than the threshold value.

Machine learning-based validation

Ridge, elastic net, RF, LASSO, and SVM are some of the
commonly used multivariate machine learning algorithms
employed in our study. Multiple metrics have been used to
evaluate the performance, including the Pearson correlation
coefficient, concordance index, and robust concordance index.

Ridge method
L2 regularization is used in ridge regression, which introduces

the given penalty element to the OLS equation.

+λ∑p

j�0w
0
j (i)

The L2 term is directly proportional to the square of the
coefficients’magnitude. If lambda (λ) is 0, the formula is the basic
OLS, but if it is bigger than zero, a restriction is added to the
coefficients. This restriction leads to reduced coefficients (also
known as shrinkage), which tend to zero as lambda increases.

FIGURE 1
The methodological pipeline of the current study.
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Reduced coefficients result in a reduced variance and, as a result,
a smaller error value. As a result, while ridge regression reduces
the intricacy of a model, it does not lower the number of
variables; rather, it reduces the influence of those variables.

LASSO method
The L1 penalty term is used in lasso regression, which refers to the

least absolute shrinkage and selection operator. The penalty for L2 is
equivalent to the absolute amount of the coefficients’ magnitude:

+λ∑p

j�0 wj

∣∣∣∣ ∣∣∣∣ (ii)

A lambda value of zero, like ridge regression, spits out the
fundamental OLS equation; however, with the right lambda
value, lasso regression can push several coefficients to zero.
The greater lambda is, the more characteristics are reduced to
zero. This can completely exclude some characteristics and leave
us with a selection of predictors that can assist reduce the multi-
collinearity and complexity of the model. Predictors that haven’t
shrunk to zero are crucial, therefore L1 regularization permits for
selecting features (sparse selection).

Elastic net method
The elastic net is a third regularly used regression model that

contains penalties both from L1 and L2 regularization:

∑n
i�1 yi − xJi ß̂( )2

2n
+ λ 1 − α

2
∑m

J�1ß̂
2
j + α∑m

J�1
∣∣∣∣ß̂j

∣∣∣∣⎞⎠⎛⎝ (iii)

Elastic net allows us to tweak the alpha parameter in addition
to specifying and picking a lambda value, where ? = 0 refers to the
ridge and ? = 1 to lasso. Simply expressed, if alpha is set to 0, the
penalty function reduces to an L1 (ridge) term, and if alpha is set
to 1, the penalty function lowers to the L2 (lasso) term. As a
result, we may improve the elastic net by selecting an alpha value
between zero and 1. For sparse selection, this effectively shrinks
certain coefficients and sets others to 0. Finally, in each category,
SVM and random forests are effective strategies (Sirsat et al.,
2020).

Random forest algorithm
The RF method is an ensemble approach that employs a large

number of classification and regression trees (CART) (Breiman
et al., 2017). The bootstrapped samples and aggregated model
outputs are used to train these trees. Bagging avoids the models
from overfitting and ensures that it generalizes effectively. Each
tree adjusts the judgment of its child nodes to maximize the
quantity of freshly obtained information as it grows. The Gini
impurity, which is the same as the Gini index, may be used to
express it and is computed as follows:

Gini Impurity � 1 −∑ pj 1 − pj( ) (iv)

where pj is the probability of an element being categorized into a
specific class (Sarica et al., 2017). Each tree develops in such a way
that the Gini impurity is minimized. Each tree is given a dataset
that is jumbled at random and grows uniquely. These trees yield
real-world effects, and the voted-for class is mostly chosen.

Support vector machine
The support vector machine technique can be used for both

linear and non-linear data for classification as well as regression
problems. Each data point is first projected onto an n-dimensional
subspace, with n being the variety of attributes. The hyperplane that
divides the data into two groups is then found, with the minimal
proximity for both categories maximized and categorization
mistakes reduced (Joachims, 1999).

We considered the GDSC data as input which contains RNA
data. There was no need to split the data into training and testing
because we wanted to use different databases for training and testing.
The intersect function was used to interest the GDSC and CCLE
data. To efficiently select potential features, we used the RStudio
package maximum relevance minimum redundancy (mRMR)
(Radovic et al., 2017). Keeping the 5-fold cross-validation,
sampling (10), and features at 100 as the threshold, we ran the
models using the dplyr (Silge and Robinson, 2016), caret (Kuhn,
2015), and randomForest (RColorBrewer and Liaw, 2018) packages
in RStudio (Allaire, 2012). The performance was assessed using the
Pearson correlation coefficient and concordance index.

Similarity search using machine learning

Data retrieval for shortlisted targets, pre-processing of the
bioactivity compounds, labeling of active compounds with the
rule of five (Lipinski), descriptors calculation, and clustering of
the molecules based on their fingerprint similarity were done for the
three shortlisted compounds (detailed data presented in
Supplementary Information).

1. Similarities search for Tanespimycin: First, we did data
preparation or data labeling where we added a column for
activity with a pIC50 of >= 6.0, and we found the number of
active compounds was 210 while the number of inactive
compounds was 198. Molecule encoding was done using the
MACCS Method and we applied three classical machine learning
approaches to classify our molecules namely, SVM, RF, and
ANN, and the performance of the models where we fitted
classical machine learning models on a train-test split of the
data was observed. Splitting the data was reused for the two other
classical models. We used test (x) and train (x) for the respective
fingerprint splitting and test (y) and train (y) for the respective
label splits, where the training data size was 326 and the test data
size was 82.

2. Similarities search for Selumetinib: First, we did data preparation
or data labeling where we added a column for activity with a
pIC50 of >= 6.0, and we found the number of active compounds
was 93 while the number of inactive compounds was 51.
Molecule encoding was done using the MACCS Method and
we applied three classical machine learning approaches to classify
our molecules namely, SVM, RF, and ANN, and the performance
of the models where we fit classical machine learning models on a
train-test split of the data was observed. Splitting the data was
reused for the two other classical models. We used test (x) and
train (x) for the respective fingerprint splitting and test (y) and
train (y) for the respective label splits, where the training data size
was 115 and the test data size was 29.
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3. Similarities search for Lapatinib: First, we did data preparation or
data labeling where we added a column for activity with a
pIC50 of >= 6.0, and we found the number of active
compounds was 735 while the number of inactive compounds
was 542. Molecule encoding was done using the MACCSMethod
and we applied three classical machine learning approaches to
classify our molecules namely, SVM, RF, and ANN, and the
performance of models where we fit classical machine learning
models on a train-test split of the data was observed. Splitting the
data was reused for the two other classical models. We used test
(x) and train (x) for the respective fingerprint splitting and test
(y) and train (y) for the respective label splits, where the training
data size was 1,021 and the test data size was 256.

Biomarker discovery

Drug sensitivity signatures
To search for drug sensitivity biomarkers, we obtained RNA

molecular profiling data from the GDSC and CCLE databases. The
PharmacoGx package’s functions were used for the generation of
signatures of molecular features which correlate with individual
reactions to particular compounds.

Radiation sensitivity signatures
The ability to determine gene signatures for a cell line from a

radiosensitivity experiment is what makes the RadioGx package
truly useful (Cleveland database). Cell lines of interest can be chosen
by any researcher, and a molecular signature that correlates to
specific molecular features along with a given sensitivity profile
can be computed. The identification of signatures associated with
radiosensitivity or radioresistance can be performed thereafter.

Associating sensitivity signatures between radiation and
drug response

For in vitro model systems, RadioGx allows one to compute the
correlation signatures of molecular features with the response to
treatment A natural question is how the signature for gamma
radiation will compare to the signatures for the six shortlisted
drugs on three biomarkers. This can be used to generate
hypotheses for combination therapies or to learn more about the
mechanism of drugs in the body.

Drug-biomarker association
The association between molecular features and response to a

given drug is modeled using a linear regression model adjusted for
tissue source:

Y � β0 + βiGi + βtT + βbBY � β0 + βiGi + βtT + βbB (v)
Where YY stands for the drug sensitivity variable; GiGi, TT,

and BB denote the expression of the gene, tissue source, and the
experimental batch respectively and the regression coefficients are
shown by and ββs. Aside from the fact that there is a link between
drug sensitivity and tissue source, we measure the intensity of the
gene-drug interaction by βiβi. The variables YY and GG are
adjusted to compute the standardized coefficient (standard
deviation = 1). To compute the validity and evaluate the
significance of the gene-drug interaction, βiβi (two-sided t-test)

is used. The false discovery rate (FDR) technique is then used to fix
p-values for multiple testing. With biomarker discoveries across
pharmacogenomic research from CCLE and GDSC data, we can
predict the significance of the link between medications and
associated reported biomarkers.

Results

Cell lines datasets

We have considered two types of cell lines data which include
the drug sensitivity and the radiation sensitivity from the respective
databases. RNA, RNA-Seq, copy number variation (CNV),
mutational, and drug response data are examples of this data
type. The details of the datasets are given in Table 1, while the
triple-negative breast cancer cell lines taken from the literature
survey (Chavez et al., 2010; Gupta et al., 2016) are given in Table 2.

Pharmacological profiles and drug-dose
response

In pharmacogenomic studies, cells were also evaluated for their
reaction to increasing doses of various substances in
pharmacogenomic research, and the minimum inhibitory
concentration and AAC were calculated as a result (Figure 2).
These pharmacological assessments are accessible using the
PharmacoGx for all PSets.

To plot the drug-dose analysis results included in PharmacoSet
objects, the drug dose response curve function was used. The AAC
curves for all of the shortlisted drugs on 10 cell lines are included in
the supporting documentation (Supplementary Figure S1).

The AAC calculation of the chosen drugs is summarized in
Supplementary Figure S2 where all the cell lines show significant
sensitivity towards the drugs. There is a clear difference between the
CCLE and GDSC drug concentrations as CCLE has a maximum
concentration of 10 uM while GDSC is restricted to 1 uM in 98% of
the cases. The CCLE and GDSC curves show approximately 100%
viability on a drug concentration of only 0.01 uM which proves its
sensitivity towards the drugs. Among the shortlisted drugs, we
observed that Panobinostat showed significant AAC values
ranging from 0.37 to 0.64. Tanespimycin also had significant
performance, ranging from 0.19 to 0.51, except for one cell line
which shows a lower value of 0.6. The rest of the drugs had standard
sensitivity for all the cell lines except Nilotinib which has the least
performance ranging from 0.1 to 0.09.

Next, we calculated the IC50 of the above drugs based on the
available data to examine how well drugs can inhibit the cancer cell
lines (Supplementary Figure S3). For an IC50 summary of the drugs
and cancer cell lines, refer to Supplementary Figure S3.We could not
plot the IC50 for all six drugs because some of these drugs have not
been tested experimentally and thus no data is available for them.

Here we only calculated the IC50 for Nilotinib, PLX4720,
Sulemetinib, and Tanespimycin. These drugs demonstrated
promising inhibitory activity against cancer cell lines with values
ranging from 27 to 477 nM. Among them, Tanespimycin showed
the best IC50 values which is consistent with the AAC performance.
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In the AAC evaluation, we marked Panobinostat and Tanespimycin
and here we again chose Tanespimycin due to good inhibitory
performance while no data is available for Panobinostat to compare
the performance of both the drugs in terms of IC50 values.

Since the data were taken from two databases, we calculated the
concordance index to examine the predictions made by the
algorithm. The six drugs shortlisted by us were consistent among
both databases (Figure 3). Within them, Tanespimycin showed a
high concordance index among the top six drugs.

Machine learning-based validation

A huge amount of drug sensitivity and drug compound data are
available for cancer cell lines as a result of screening technologies.
Computational techniques to analyze such data benefit anticancer
therapeutics through the identification of molecular genomics
determinants of drug sensitivity and the development of novel
drugs for oncological targets. For drug sensitivity prediction, we
used five machine-learning approaches: ridge, LASSO, elastic net,
RF, and SVM. The GDSC database was used for training, while the
CCLE database was used for testing.

In the case of Lapatinib (Figure 4), we observed that the elastic
net, SVM, and ridge methods had an accuracy of 82%, which is
better than LASSO (81%) but lower than RF which had the highest
accuracy of 84%. In the case of Nilotinib (Figure 5), the least
accuracy was observed for elastic net (80%) while the LASSO
gains the highest accuracy of 87%. The RF was 82% accurate
while the SVM and Ridge both have an accuracy of 86%. For the
drug Panobinostat, (Supplementary Figure S4), the three models
(ridge, LASSO, and SVM) showed a higher accuracy of 78%while RF
and ElasticNet had an accuracy of 76% and 77% respectively. The
highest accuracy in the case of PLX-4720 (Supplementary Figure S5)
was observed using the RF which equaled 87%. Ridge was 86%
accurate while LASSO, Elastic Net, and SVM had an accuracy of
86%, 83%, and 86% respectively. Similarly, Selumetinib also gained a
higher accuracy from three methods (ridge, LASSO, and SVM) while
elastic net and RF had an accuracy of 83% (Figure 6). One of the top
drugs Tanespimycin (Figure 7) had the highest accuracy on two
different methods (LASSO and elastic net) which equaled 83%. The
lowest accuracy was observed in the case of RF (81%) while ridge and
SVM had accuracies of 82%. As the validation was performed on
CCLE data, a clear difference in validation accuracies was observed.

In contrast to the remaining compounds, Lapatinib had a
validation accuracy of 67% across all five methods. Just like
Lapatinib, 67% accuracy was observed for Panobinostat on all
five models. The accuracy in the case of elastic net and LASSO
was 57%, ridge performed the least with an accuracy of 56%, RF
gained an accuracy of 85% while SVM had a higher accuracy of 86%

for Nilotinib. All the models gave the same accuracy of 57% and 64%
for PLX47-20 and Sulumetinib. Tanespimycin had an accuracy
of 65%.

To summarize, only Nilotinib had different validation accuracies
on different models while all the other drugs had the same validation
accuracy on all five models. But Nilotinib was also observed to have a
higher accuracy of 86%.

Similarity search using machine learning

Data retrieval for shortlisted targets, pre-processing and labeling
of the bioactivity compounds, fingerprint descriptors calculation,
and clustering of the molecules based on their fingerprint similarity
were done for all three shortlisted molecules (detailed data presented
in Figure 8 and Supplementary Information).

1. Similarities search for Tanespimycin: The random forest
classifier was applied where the set model parameter for
random forest estimators was 100, and the number of trees to
grow criterion (entropy) and number cost function were
optimized for a split. We observed that the sensitivity for RF
was 0.79, the specificity for RF was 0.82, and the AUC for RF was
0.89. The support vector classifier was applied where the set
model parameters for the SVM kernel were rbf, C value of 1,
gamma value of 0.1, and the probability was True. We observed
that the sensitivity for SVMwas 0.79, the specificity was 0.90, and
the AUC for SVM was 0.88. A neural network classifier was
applied where the set model parameters for ANN hidden layer
sizes were 5 and 3, and the random state was seed We observed
that the sensitivity for ANNwas 0.74, the specificity was 0.82, and
the AUC for ANN was 0.89, as shown in Figure 9A; Table 3. We
performed cross-validation experiments with the three different
models (RF, SVM, and ANN). We examined the cross-validation
performance of the compounds encoded using the Morgan
fingerprint and not the MACCS keys so we used the Morgan
fingerprint with a radius of 3 and found similar results where, for
RF, the mean was 0.83, the mean sensitivity was 0.84, the mean
specificity was 0.81, and the mean AUC was 0.90. Furthermore,
for SVM, the mean accuracy was 0.86, the mean sensitivity was
0.83, the mean specificity was 0.88, and the mean AUC was 0.90.
Finally, for ANN, the mean accuracy was 0.86, the mean
sensitivity was 0.85, the mean specificity was 0.87, and the
mean AUC was 0.91.

2. Similarities search for Selumetinib: The random forest
classifier was applied where the set model parameter for
random forest estimators was 100, and the number of trees
to grow criterion (entropy) and number cost function were
optimized for a split. We observed that the sensitivity for RF

TABLE 1 Data collected from multiple platforms. In case of radiation data, only gamma radiation is used.

Dataset Data type Platform Samples

GDSC [GDSC_2020 (v2-8.2)] RNA, RNA-Seq, CNV, Mutation, Drug response IC50 1,084 cell lines × 215,780 drugs sensitivity

CCLE (CCLE_2015) RNA, RNA-Seq, CNV, Mutation, Drug response IC50 1,094 cell lines × 11,670 drugs sensitivity

Cleveland (2017) RNA, RNA-Seq, CNV, Mutation γ 540 cell lines × 1 radiation
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was 0.88, the specificity for RF was 0.54, and the AUC for RF
was 0.74. The support vector classifier was applied where the
set model parameters for the SVM kernel were rbf, C value of
1, gamma value of 0.1, and the probability was True. We

observed that the sensitivity for SVM was 0.94, the specificity
was 0.46, and the AUC was 0.75. The neural network classifier
was applied where the set model parameters for ANN hidden
layer sizes were 5 and 3, and the random state was SEED. We

TABLE 2 Human triple negative breast cancer cell lines features and drugs detail.

TNBC
cell
lines

Origin Pathology Grade Age Ethnicity Molecular
classification

P53 BRCA1 PI3KA
pathway

Other
features

Drugs

CAL-85-1 PE AC NA 45 NA Basal B NA Wt PTEN
protein not
expression

Cells described
as luminal in
some reports but
this classification
is not based on
global gene
expression

Panobinostat,
PD-0325901,
Selumetinib,
Tanespimycin

BT-549 PE IDC NA 72 Caucasian Basal B Mut Wt PTEN
homo
deletion

NA Lapatinib,
Nilotinib,
Paclitaxel,
Panobinostat,
PLX4720,
Saracatinib,
Sorafenib,
Tanespimycin

BT-20 PE IDC NA 74 Caucasian Basal A Mut WT PI3CA
mutation

Amplified EGFR Panobinostat,
Tanespimycin

HCC1187 PE IDC 3 41 Caucasian Basal A Mut WT NA Paired normal
cell line derived
from blood
leukocytes
established

Paclitaxel,
Panobinostat

HCC1395 PE IDC 3 43 Caucasian Basal B Mut Homo
Mut

NA Paired normal
cell lines derived
from blood
leukocytes and
breast stroma
established

Panobinostat,
PD-0325901,
Tanespimycin

HCC1806 PE ASq 2 60 Black NA Mut Wt NA Paired normal
cell line derived
from blood
leukocytes
established

Nilotinib,
Panobinostat,
Tanespimycin

MDA-
MB-157

PE IMC NA 44 Black Basal B Mut Wt Wt Panobinostat

MDA-
MB-435

PE IDC NA 31 Caucasian Basal B Mut Wt Wt The original cell
line was derived
from a patient
with breast
cancer but recent
array based
analysis have
questioned
whether some of
the current
clones have been
contaminated
with a melanoma
cell line

Crizotinib,
Nilotinib,
Paclitaxel,
Palbociclib,
Panobinostat,
PD-0325901,
PLX4720,
Selumetinib,
Sorafenib,
Tanespimycin

MDA-
MB-436

PE IDC NA 43 Caucasian Basal B Mut Homo
Mut

Wt Panobinostat,
Tanespimycin

MDA-
MB-468

PE AC NA 51 Black Basal A Mut Wt PTEN
homo
deletion

Amplified EGFR Panobinostat,
Tanespimycin

Frontiers in Molecular Biosciences frontiersin.org07

Kaushik and Zhao 10.3389/fmolb.2023.1215204

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1215204


observed that the sensitivity for ANN was 0.88, the specificity
was 0.54 and the AUC was 0.75, as shown in Figure 9B;
Table 3. We performed cross-validation experiments with
the three different models (RF, SVM, and ANN). We
examined the cross-validation performance of the
compounds encoded using the Morgan fingerprint and not

the MACCS keys so we used the Morgan fingerprint with a
radius of 3 and found similar results where, for RF, the mean
accuracy was 0.76, the mean sensitivity was 0.83, the mean
specificity was 0.68 and the mean AUC was 0.83. Furthermore,
for SVM, the mean accuracy was 0.78, the mean sensitivity was
0.88, the mean specificity was 0.64, and the mean AUC was
0.83. Finally, for ANN, the mean accuracy was 0.78, the mean
sensitivity was 0.86, the mean specificity was 0.67, and the
mean AUC was 0.83.

3. Similarities search for Lapatinib: The random forest classifier
was applied where the set model parameter for random forest
estimators was 100, and the number of trees to grow criterion
(entropy) and number cost function were optimized for a split.
We observed that the sensitivity for RF was 0.93, the specificity
was 0.81, and the AUC was 0.92. The support vector classifier
was applied where the set model parameters for the SVM
kernel were rbf, C value of 1, gamma value of 0.1, and the
probability was True. We observed that the sensitivity for
SVM was 0.93, the specificity was 0.73, and the AUC was 0.90.
The neural network classifier was applied where the set model
parameters for the ANN hidden layer sizes were 5 and 3, and
the random state was SEED. We observed that the sensitivity
for ANN was 0.91, the specificity was 0.73, and the AUC was
0.89, as shown in Figure 9C; Table 3. We performed cross-
validation experiments with all three different models (RF,
SVM, and ANN). We examined the cross-validation
performance of the compounds encoded using the Morgan
fingerprint and not the MACCS keys so we used the Morgan
fingerprint with a radius of 3 and found similar results where,
for RF, the mean accuracy was 0.85, the mean sensitivity was
0.92, the mean specificity was 0.76, and the mean AUC was
0.92,. Furthermore, for SVM, the mean accuracy was 0.86, the
mean sensitivity was 0.93, the mean specificity was 0.75, and
the mean AUC was 0.91. Finally, for ANN, the mean accuracy
was 0.82, the mean sensitivity was 0.89, the mean specificity
was 0.73, and the mean AUC was 0.89.

FIGURE 2
(A) Pharmacological profiles using the
SummarizeSensitivityProfiles function to investigate the distributions
of AAC values within CCLE dataset and (B) Pharmacological profiles
using the SummarizeSensitivityProfiles function to investigate
the distributions of AAC values within GDSC dataset.

FIGURE 3
Consistency assessment between the two databases was improved by the concordance index.
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Drugs-sensitive biomarkers identification

A biomarker is a naturally occurring entity with a specific
pathological or physiological process that can be identified for

therapeutic purposes. Here we inspected the association between
the drugs and the screened biomarkers within two databases:
CCLE and GDSC. We discovered that SETD7, a
methyltransferase that catalyzes the monomethylation of

FIGURE 4
Predictions and validations using the five machine learning methods for Lapatinib. The blue dots represent predictions while red refers to the
validations.

FIGURE 5
Predictions and validations using the five machine learning methods for Nilotinib. The blue dots represent predictions while red refers to the
validations.

FIGURE 6
Predictions and validations using the five machine learning methods for Selumetinib. The blue dots represent predictions while red refers to the
validations.
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lysine 4 on histone H3 is susceptible to all six medicines
described in this study (Supplementary Figure S28) and a
complete list of the drug-sensitive biomarkers is shown in

Table 4. Several studies have revealed the role of SETD7 in
post-translational modifications of non-histone proteins.
However, the predictive relevance of SETD7 (Huang et al.,

FIGURE 7
Predictions and validations using the five machine learning methods for Tanespimycin. The blue dots represent predictions while red refers to the
validations.

FIGURE 8
(A) Enrichment plots where the pIC50 (log p-value) cutoff was used to discriminate between active and inactive molecules (cutoff was 6.3) and find
the enrichment for MACCS and Morgan fingerprints for Tanespimycin. (B) Enrichment plots to discriminate between active and inactive molecules for
Selumetinib. (C) Enrichment plots to discriminate between active and inactive molecules for Lapatinib.

FIGURE 9
(A) The performance of three different models (RF, SVM, and ANN) for Tanespimycin. (B) The performance of three different models (RF, SVM, and
ANN) for Selumetinib. (C) The performance of three different models (RF, SVM, and ANN) for Lapatinib.
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2017; Duan et al., 2018) in breast cancer and its ability to
modulate intrinsic redox homeostasis has never been studied.
SETD7 aided tumor cell growth and inhibited apoptosis, as well

as sensitively maintaining redox equilibrium by controlling
GSH/GSSG and ROS levels.

SETD7 was found to be a positive activator of the KEAP1-NRF2
pathway in further research. SETD7 is an antioxidant enzyme
transcriptional activator. In MCF7 and MDA-MB cells, the
downregulation of SETD7 downregulates antioxidant enzymes
and caused a redox imbalance. SETD7 is a breast cancer
prognostic marker and a new antioxidant promoter in the face of
oxidative stress. Knockdown of SETD7 inhibited cancer cell
proliferation, induced G1/S cell cycle arrest, and increased
apoptosis. Along with SETD7, we chose two other biomarkers
known as SRARP and YIPF5 (Suárez-Arroyo et al., 2016; Naderi,
2020) (Supplementary Figures S29, S30; Table 4). SRARP, which is
found on chromosome 1p36, has recently been discovered as a new
corepressor of the androgen receptor (AR). In breast cancer cell
lines, primary breast tumors, and metastatic breast cancer, SRARP

TABLE 3 Performance of all three models (RF, SVM, and ANN).

Models Accuracy
(mean)

Sensitivity
(mean)

Specificity
(mean)

AUC
(mean)

Accuracy
(SD)

Sensitivity
(SD)

Specificity
(SD)

AUC
(SD)

RF
(Tanespimycin)

0.83 0.84 0.81 0.90 0.00 0.01 0.01 0.00

SVM
(Tanespimycin)

0.86 0.83 0.88 0.90 0.00 0.02 0.02 0.01

ANN
(Tanespimycin)

0.86 0.85 0.87 0.91 0.03 0.05 0.02 0.00

RF (Selumetinib) 0.76 0.83 0.68 0.83 0.08 0.01 0.18 0.06

SVM
(Selumetinib)

0.78 0.88 0.64 0.83 0.07 0.07 0.20 0.07

ANN
(Selumetinib)

0.78 0.86 0.67 0.83 0.06 0.04 0.20 0.04

RF (Lapatinib) 0.85 0.92 0.76 0.92 0.01 0.01 0.02 0.01

SVM (Lapatinib) 0.86 0.93 0.75 0.91 0.01 0.01 0.03 0.01

ANN (Lapatinib) 0.82 0.89 0.73 0.89 0.01 0.03 0.02 0.00

TABLE 4 Extracting the drug sensitivity signatures from “rna” summarized experiment data.

ENSG00000145391 Lapatinib Nilotinib Panobinostat PLX-4720 Sulemetinib Tanespimycin

Estimate p-value 0.0443271136618988 0.0472448997625699 0.0412742045399219 0.0416579832978096 0.041129074405051 0.046394679732344

ENSG00000183888 Lapatinib Nilotinib Panobinostat PLX-4720 Sulemetinib Tanespimycin

Estimate p-value −0.0188669660473501 0.0295980295254738 0.0587346546951706 0.035697820369925 0.0314155970023244 0.0341852186416538

ENSG00000145817 Lapatinib Nilotinib Panobinostat PLX-4720 Sulemetinib Tanespimycin

Estimate p-value −0.0213867098786672 −0.223987174989867 0.045941414728702 0.0371605978309142 0.0326688348245422 0.0354858757422661

TABLE 5 Extracting the radiation sensitivity signatures (SRARP & YIPF5) from the Cleveland database.

Ensemble Gene Estimate se n tstat fstat p-value df fdr

ENSG00000183888 SRARP 0.2589937 0.0510493 517 5.073401 25.73940 6.0e-07 493 0.0001125

ENSG00000145817 YIPF5 0.2521606 0.0474171 517 5.317924 28.28031 2.0e-07 493 0.0000497

TABLE 6 Comparing sensitivity signatures between radiation and drug
response.

Drugs Radiation score p-value

Lapatinib 0.579293195 0.009950249

Nilotinib −0.324758293 0.009950249

Panobinostat −0.491200093 0.009950249

PLX4720 −0.196630872 0.009950249

Selumetinib 0.571017489 0.009950249

Tanespimycin 0.293541670 0.009950249
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has been shown to be highly co-expressed with AR (Naderi, 2020).
SRARP also has a fairly advanced countenance in breast tumors that
are estrogen receptor-positive (ER+), lower grade, and lobular
histology (Su et al., 2012; Naderi, 2018). Furthermore, functional
investigations in breast cancer cells revealed an interaction between
AR and SRARP (Naderi, 2018). Meanwhile, AR activation reduces
SRARP transcription directly, and SRARP, in turn, engages with AR
as a corepressor and inhibits AR-mediated production of prolactin-
induced protein (PIP) and androgen response element reporter
activity (Naderi, 2018). Furthermore, SRARP’s corepressor
activity causes a decrease in AR binding to the PIP promoter
(Naderi, 2018).

Drugs and radiation-sensitive biomarkers
identification

Radiogenomics is designed similarly to pharmacogenomics. The
only difference is in the method of cell treatment. The only available
clinical database which holds in vitro radiogenomics data is the
Cleveland database. This dataset contains only gamma radiations.
We used the SummarizeSensitivityProfiles function to retrieve
radiation for a cell line summary of a sensitivity experiment. This
yields a framework (matrix) with rows addressing the radiation type
and columns addressing cell lines, representing values that sum up
the viability measurements. Sensitivity measures can be specified
using the sensitivity measure function.

TheYIPF5 (which stands for Yip1 domain familymember 5) plays
arole intransportbetweentheendoplasmicreticulumandGolgi.YIPF5
is a prognostic marker in head, neck, liver, and breast cancers.

SETD7 was not observed to be sensitive to gamma radiation
while the other two biomarkers (SRARP and YIPF5) were highly
sensitive to the radiation (Table 5). The radiosensitive signatures
SRARP and YIPF5 are taken from the Cleveland database.

In addition, we plotted the correlation coefficient of the
shortlisted biomarkers with all of the proposed drugs, with the
Pearson correlation coefficient threshold set at | 0.7|. Drug
correlation coefficients greater than the threshold were
considered to have a strong correlation with biomarkers. The
correlation coefficients for SETD7, SRARP, and YIPF5 are given
in Supplementary Figures S6–S8 respectively. A positive
correlation suggested that cells responding to Lapatinib,
Selumetinib, and Tanespimycin treatment differ from those
responding to radiation. The negative correlation between the
radiation response signature and drug response (Nilotinib,

Panobinostat, and PLX4720) suggests that these drugs could
be used as a radiosensitizing agent in conjunction with
ionizing radiation to improve treatment efficacy. The
signatures’ negative correlation can be interpreted to predict
that radiation and drugs (Nilotinib, Panobinostat, and
PLX4720) would target different cell populations in a tumor.
The radiation score and p-values of all the shortlisted drugs are
given in Table 6.

Drugs and radiation-resistance biomarkers
identification

Radioresistance always has been a key roadblock in the
advancement of radiation treatment. The contents of liberated
extracellular vesicles vary as a result of radiotherapy. Exosomes
generated from irradiation cells have been demonstrated to impact
host cell proliferation, motility, cell cycle arrest, and death,
according to studies. Exosomes appear to have a key role in
radioresistance, according to the data. The radioresistant
signatures from the Cleveland database were also extracted but
no radioresistant signatures were found for breast cancer (Table 7).

Conclusion

Chemotherapy is the most frequent systemic treatment for
triple-negative breast cancer (TNBC) patients in the early stages as
well in the late stages of the progression of the disease. TNBC
patients have a poor prognosis, as a result, a considerable effort has
been made so that we can find responsive molecular targets to treat
these malignancies. Although the accessibility of data has been
increased due to the high throughput sensitivity of drug testing,
effective drug response still remains a challenge. Understanding
the interaction between a cell line and a specific drug will
eventually allow for tailored treatment for specific cancer
patients (Zhao et al., 2015). These results demonstrate the
transcriptional effects of derivatives (screened against approved
drugs) across a pool of cell lines and highlight the utility of such
information for identifying a drug’s cellular effects and mechanism
of action.

In this study, we predicted drug sensitivity on breast cancer cell
lines, out of which three main biomarkers were shortlisted by
evaluating their response to the drugs and exposure to radiation.
In our case of predicting drug sensitivity, the highest accuracy was

TABLE 7 Listing the radio-resistant signatures data from Cleveland database. There is no radio-resistant biomarker being observed for breast cancer.

Ensemble Gene Estimate se n tstat fstat p-value df fdr

ENSG00000189007 ADAT2 −0.2668198 0.0473300 517 −5.637440 31.78073 0 493 2.23e-05

ENSG00000004487 KDM1A −0.2681836 0.0436481 517 −6.144227 37.75152 0 493 3.80e-06

ENSG00000160208 RRP1B −0.2715109 0.0434827 517 −6.244118 38.98902 0 493 3.80e-06

ENSG00000113356 POLR3G −0.2785138 0.0454217 517 −6.131739 37.59823 0 493 3.80e-06

ENSG00000148835 TAF5 −0.2852464 0.0433393 517 −6.581702 43.31880 0 493 7.00e-07

ENSG00000129351 ILF3 −0.2929693 0.0426313 517 −6.872171 47.22673 0 493 3.00e-07
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found for PLX-4720 drugs using a random forest approach. Three
main biomarkers, SETD7, SRARP, and YIPF5, were identified.
SETD7 was not radiosensitive, while SRARP and YIPF5 showed
sensitivity to all the drugs and gamma radiations from the
Cleveland database. Additionally, no radioresistant biomarkers
were found for TNBC. The main limitation was the accuracy
limit, which is insignificant because of the low availability of
data. Accuracy can be further improved when more data
become available. Here we are specifically focusing on the
TNBC data only. In future studies, we can improve model
performance by considering more data and including single-cell
data for drug and biomarker screening.

In our study, we attempted to provide a solid groundwork for
machine learning-driven prediction of drug sensitivity for TNBC,
which has not been reported previously at this level, and the
shortlisted markers could be potential therapeutic targets. Future
research will likely focus on computational and experimental
molecular modeling of shortlisted drugs and biomarkers. This
understanding will bring the era of personalized cancer medicine
closer to reality.
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