
Structural modeling of antibody
variable regions using deep
learning—progress and
perspectives on drug discovery

Igor Jaszczyszyn1,2†, Weronika Bielska1,3†, Tomasz Gawlowski1,
Pawel Dudzic1, Tadeusz Satława1, Jarosław Kończak1,
Wiktoria Wilman1, Bartosz Janusz1, Sonia Wróbel1,
Dawid Chomicz1, Jacob D. Galson4, Jinwoo Leem4,
Sebastian Kelm5 and Konrad Krawczyk1*
1NaturalAntibody, Kraków, Poland, 2Medical University of Warsaw, Warsaw, Poland, 3Medical University of
Lodz, Lodz, Poland, 4Alchemab Therapeutics Ltd., London, United Kingdom, 5UCB, Slough,
United Kingdom

AlphaFold2 has hallmarked a generational improvement in protein structure
prediction. In particular, advances in antibody structure prediction have
provided a highly translatable impact on drug discovery. Though
AlphaFold2 laid the groundwork for all proteins, antibody-specific applications
require adjustments tailored to thesemolecules, which has resulted in a handful of
deep learning antibody structure predictors. Herein, we review the recent
advances in antibody structure prediction and relate them to their role in
advancing biologics discovery.
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1 Introduction

Antibodies are the largest class of biotherapeutics, with more than 100 approved
molecules (Kaplon et al., 2023). The antibody drug market is rapidly growing, and it is
predicted to reach approximately $300 billion by 2025 (Lu et al., 2020). As a result, there is
much interest in streamlining antibody discovery methods by tapping into recent
computational advances in deep learning.

One of the most striking computational advances has taken place in structure prediction,
with the development of tools such as AlphaFold2 (Jumper et al., 2021). For antibodies, the
determination of the proper antibody structure is key to many downstream drug discovery
tasks, such as developability annotation (Raybould et al., 2019) or antibody–antigen docking
(Krawczyk et al., 2014; Schneider et al., 2021). Though AlphaFold2 works well for general
proteins, it falls short on the specific case of antibodies (Ruffolo et al., 2022a; Abanades et al.,
2022b; Cohen et al., 2022), prompting the development of antibody-specific modeling
protocols.

In this review, we describe the methods which contribute to the improvement of
computational structure modeling for antibodies and provide context to the role they
play in designing antibody-based therapeutics.
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2 Antibody structure in the context of
3D modeling

Antibody structure prediction is primarily focused on the
variable domains of the heavy chain (Vh) and the light chain (Vl)
(Figure 1A). Each domain is relatively small, comprising
~110 residues each. There are two major hurdles within the
overall antibody structure prediction problem: determining the
relative orientation of the two domains (Figure 1B) and
predicting the complementarity-determining region (CDR)
loop structures. The two domains can be juxtaposed
differently, which affects the overall shape of the antibody
binding site. For this reason, orientating the multimer of the
heavy and light chains is crucial (Dunbar et al., 2013; Bujotzek
et al., 2015).

The CDR prediction problem can be further subdivided into
classifying the “canonical” CDRs (CDR-L1, CDR-L2, CDR-L3,
CDRH1, and CDR-H2) or modeling the CDR-H3. The canonical
CDRs have reasonably conserved folds (Nowak et al., 2016; Kelow
et al., 2022) (Figure 1C). The latter problem is arguably the most
difficult and critical, as the CDR-H3 is the most variable (Figure 1D),
and also plays themajor role in binding (Marks andDeane, 2017; Regep
et al., 2017; Ruffolo et al., 2020; Abanades et al., 2022a).

There is a diversity of methods to approach any of these sub-
problems individually, or predicting the entire multimeric gamut of
variable domains. However, attention is often focused around CDR-
H3 prediction accuracy given its central role in binding and
function. Compilation of the available antibody structure
prediction methods that leverage recent advances in machine
learning are listed in Table 1.

3 Current machine learning methods
tackling antibody structure prediction

3.1 What data fuel the models?

Antibody-based deep learning methods require antibody
structures for training and validation which are typically
downloaded from the Protein Data Bank (PDB). At the time of
writing, there were approximately 7,000 redundant antibody
structures. Although this sample of the antibody sequence space
represents a small subset of all possible antibody molecules (>1015),
it can still be used to model most naturally occurring antibodies
(Krawczyk et al., 2018).

Databases such as AbDb (Ferdous and Martin, 2018) and
SAbDab (Dunbar et al., 2014) curate such antibody-specific
information. Most of the antibody structure prediction tools use
these two resources that facilitate the creation of training, validation,
and test datasets.

3.2 How is the antibody model quality
assessed?

In the original AlphaFold2 work and CASP competition in
general, the structural accuracy is calculated using GDT_TS
(Kryshtafovych et al., 2021). This score is a measure of structural
alignment between the model and native structure that is capable of
indicating fold similarities. All antibodies are already of the same
fold and one needs to account for differences in single loops (e.g.,
CDR-H3), where the RMSD is more suitable.

FIGURE 1
Specifics of the antibody structure in the context of modeling. (A) Variable region in the context of the entire antibody structure. The antibody
binding site is located in the variable region composed of the variable heavy (Vh) and variable light (Vl) polypeptide chains associated with the constant
portions (HC/LC). (B) Heavy/light chain orientation. The orientation of the Vh and Vl is not constant, and differing angles can affect the shape of the
binding site. (C) Canonical structures of CDRs. Most of the binding residues (the paratope) are found in the complementarity-determining regions
(CDRs). There are three CDRs on each of the heavy and light chains. All the CDRs except the CDR-H3 cluster into a set of “canonical shapes” depending on
residues in key positions. (D) Heterogeneity of CDR-H3. CDR-H3 is not only the most variable of the regions but also usually the most important for
antigen binding.
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TABLE 1 Compilation of the available antibody structure prediction methods that leverage recent advances inmachine learning. For eachmethod, we describe the
general goal (e.g., CDR prediction or whole variable region prediction), the accuracy of the most difficult region, the CDR-H3, its code/server availability, and the
source paper. Please note that the CDR-H3 root mean square deviations (RMSDs) are not directly comparable as they could have been obtained from a different
test set and are sometimes calculated in a different fashion, e.g., based on Cα or main chain heavy atom positions. As a baseline and reference point, we also
include the AlphaFold2 predictions since many methods report values with respect to that method.

Method Problem
addressed

Model
characteristic

CDR-H3 prediction
accuracy

Corresponding
AlphaFold2 accuracy

Availability Source

DeepH3 CDR
prediction

Residual neural network 2.2 Å backbone atoms are used N/a https://github.com/
Graylab/deepH3-
distances-orientations

Ruffolo et al.
(2020)

Quaternion and
Euler angle
combined
method

CDR
prediction

Graph neural network SAbDab benchmark: 2.29 Å N/a N/a Son et al.
(2022)

ABlooper CDR
prediction

Graph neural network
based

RosettaAntibody benchmark:
2.49 Å; SAbDab latest
structures: 2.72 Å. Backbone
atoms were used

RosettaAntibody benchmark:
2.87 Å

https://github.com/
oxpig/ABlooper

Abanades
et al. (2022a)

DeepSCAb Antibody side
chain
prediction

Residual neural network Not applicable (side chain
prediction)

N/a https://github.com/
Graylab/DeepSCAb

Akpinaroglu
et al. (2022)

NanoNet Heavy chain
prediction

Residual network RosettaAntibody benchmark:
2.38 Å; Nanobodies: 3.16 Å.
Backbone atoms were used

Nanobodies: 2.88 Å https://github.com/
dina-lab3D/NanoNet

Cohen et al.
(2022)

AbodyBuilder2 Variable region
prediction

Based on
AlphaFold2 structural
module

AbodyBuilder2 benchmark:
2.81 Å. Backbone atoms were
used

AbodyBuilder2 benchmark:
2.90 Å

https://github.com/
oxpig/
ImmuneBuilder

Abanades
et al. (2022b)

EquiFold Variable region
prediction

SE(3)-equivariant neural
network

IgFold benchmark: 2.86 Å (only
N, Cα, C, and O RMSD)

IgFold benchmark: 3.02 Å https://github.com/
Genentech/equifold

Lee et al.
(2022)

tfold-Ab Variable region
prediction

Based on AlphaFold2,
using language models in
the place of Evoformer

IgFold benchmark: 2.74 Å;
SAbDab-22H1-Ab benchmark:
3.03 Å. Backbone atoms were
used

IgFold benchmark: 3.02 Å;
SAbDab-22H1-Ab
benchmark: 3.18 Å

https://
drug.ai.tencent.com/
en

Wu et al.
(2022)

xTrimoABfold Variable region
prediction

Based on AlphaFold2,
using language models in
place of Evoformer

1.25 Å (Cα only) 1.47 Å N/a Wang et al.
(2022)

IgFold Variable region
prediction

Graph transformer using
language model
AntiBERTy

IgFold benchmark: 2.99 Å
(backbone heavy atoms)

IgFold benchmark: 3.02Å https://github.com/
Graylab/IgFold

Ruffolo et al.
(2022a)

AbFold Variable region
prediction

Based on AlphaFold2 AbFold benchmark: 3.04 Å,
(backbone heavy atoms)

AbFold benchmark: 3.14 Å
(backbone heavy atoms)

N/a Peng et al.
(2023)

AbBERT-
HMPN

Sequence and
structure
generation

Deep graph neural
network employing
language models with
generative capabilities

2.38 Å backbone atoms were
used

N/a N/a Gao et al.
(2022)

RefineGNN CDR
prediction and
design

Graph neural network
with generative
capabilities

2.50 Å (Cα only) N/a https://github.com/
wengong-jin/
RefineGNN

Jin et al.
(2021)

AbDockGen CDR-H3
prediction,
design, and
antigen
docking

Graph neural network-
based with generative
capabilities

Not applicable (docking scores
reported)

N/a https://github.com/
wengong-jin/
abdockgen

Jin et al.
(2022)

DiffAb Antibody
sequence and
the structure
design

Diffusion method Test set of 19 complexes: 3.246
Å (Cα only)

N/a https://github.com/
luost26/diffab

Luo et al.
(2022)

DeepAb Variable region
prediction

Residual neural network RosettaAntibody benchmark:
2.33 Å; therapeutics: 2.52 Å.
Backbone heavy atoms were
used

N/a https://github.com/
RosettaCommons/
DeepAb

Ruffolo et al.
(2022b)
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Methods that attempt the modeling of the entire variable region
report the entire chain RMSD, further dividing it into the individual
CDR RMSDs. Nevertheless, here, the gains in structure prediction
accuracy are typically small as such predictions are already of very
good quality, excluding the CDR-H3.

Since the CDR-H3 is the most difficult to predict, it is the
benchmark point of reference for accuracy across different models.
Methods typically report the RMSD of the prediction versus the
native structure. RMSD can be calculated using two different
approaches. Typically, RMSD is calculated based on the
backbone atoms (N, C, CA, and O) or C-alpha (Cα) carbons
only, with the latter always being lower. RMSD can also be
calculated after aligning the entire variable region or only after
aligning the CDR-H3 atoms. The latter method leads to a slightly
lower reported RMSD, as it causes bias in the structural alignment
for a better fit.

3.3 What methods and techniques are used
for modeling individual antibody loops and
individual chains?

Due to the importance of the CDR-H3 loop, many methods
focus exclusively on modeling this region. For instance, DeepH3 and
ABlooper were designed for CDR-H3 loop prediction, rather than
addressing the entire variable region. DeepH3 is based on a residual
network architecture that receives one-hot encoding of the sequence
to be predicted as input. In terms of residual network size, it is much
smaller than RaptorX (Källberg et al., 2012) on which it is based (6
1D + 60 2D) with only 3 1D + 25 2D blocks. It operates by predicting
discretized inter-residue distances (assigning distances into equally
spaced intervals) and orientation angles which are employed for full
structure reconstruction by RosettaAntibody. In contrast, ABlooper
is based on equivariant graph neural networks [E(G)NNs], which
are equivariant to translations and rotations in 3D space (Satorras
et al., 2021). ABlooper allows for coordinate uncertainty estimation
by calculating the agreement between five independently trained
neural network models. The chief advantage of ABlooper is speed, as
it can produce hundreds of structures within seconds as opposed to
previously available homology modeling methods that required
around a minute.

Beyond CDR-H3-focused predictions, one needs to
contextualize this loop to the rest of the heavy chain. One of the
early machine learning models that could perform whole chain
predictions is NanoNet. Originally designed as a predictor of single-
chain antibodies (Deszyński et al., 2022), it can also predict heavy
chains of canonical antibodies. Similar to DeepH3, it is a residual
neural network (ResNet) that relies on one-dimensional
convolutions to map sequence elements to three-dimensional
coordinates. Unlike DeepH3, which operates on invariant features
(residue distances and orientation angles), NanoNet operates on a
single frame of reference by aligning all PDB heavy chains to a single
reference structure. Owing to this, the predictions of the NanoNet
are 3D coordinates, not requiring further translation into the
structure as is the case with invariant features. In the context of
the entire heavy chain prediction, authors report 2.38 Å accuracy for
CDR-H3 (solutions in the region of 1 Å can be considered near-
native). Similar to ABlooper, NanoNet is rapid, allowing for

predicting thousands of structures in a matter of seconds.
However, the predicted structures are often of bad physical
quality [e.g., atomic clashes, D-amino acids, etc. (Fernández-
Quintero et al., 2023)], requiring refinement.

3.4 What architectures and techniques are
currently used to predict the entire antibody
variable region structure?

Prediction of the entire variable region requires modeling and
multimeric assembly of both heavy and light chains. Herein,
DeepAb is a network that predicts discretized residue distances
and orientation angle bins that are then passed for structure
realization using Rosetta. The chief innovation of DeepAb is the
usage of a language model as an input to the network. Employing
embedding (internal efficient representations of input antibody
sequences) for prediction offers an opportunity for the network
to perform prediction on more efficient features extracted by the
language model. Furthermore, the network employs attention
mechanisms that allow tracking of which residues contribute to
each other’s predictive signal.

Residual neural networks provide limited ways to abstract
invariant three-dimensional information. Representing the entire
variable region structure as a graph (as was the case with ABlooper)
offers a solution to this problem. For instance, one can encode amino
acids as nodes (using features such as amino acid and position) and
draw edges between nodes/residues in proximity (e.g., within 8 Å
heavy atom distance). Graph neural networks (GNNs) have
increasingly gained popularity; this is hallmarked by ABlooper,
IgFold, and EquiFold. The authors of EquiFold employed a
coarse-grained representation for nodes to demonstrate its power
within the framework of a SE (3) (special Euclidean (3) group
ensuring rotation and translation equivariance) equivariant
network. Ensuring geometric equivariance helps the network in
learning features that can be rotated and translated. A more abstract
representation using quaternions and Euler angles to encode the
amino acids as invariant representations and as an extension of
RefineGNN residues has been shown to achieve CDR-H3
predictions in the region of 2.5 Å. IgFold is another GNN-based
method that also employs embeddings from AntiBERTy, which is
trained on 500-m antibody sequences to supplement its prediction
of the entire variable region.

Three key components have contributed to the success of
AlphaFold2: the Evoformer, invariant point attention (IPA), and
recycling. First, AlphaFold2 infers spatial constraints between amino
acids by extracting evolutionary information embedded within
multiple sequence alignments (MSAs) using its Evoformer
module. In parallel, this information is fed into a structural
module that leverages IPA to predict coordinates. IPA is a novel
attention mechanism designed to be invariant to rotations and
translations by aligning the feature vectors based on the
geometric relationship between the residues without changing
their 3D positions. It has been shown that it improves the
accuracy of protein structure prediction by enabling the network
to better capture the complex spatial relationships between residues
in a protein. Finally, the whole workflow is repeated or “recycled”
three times to refine the prediction.
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While AlphaFold2 was designed for predicting any arbitrary
protein sequence, its main components have influenced the
design of antibody-specific tools. There are variations in the
implementation of each of the aforementioned three
components. For example, IgFold uses separated weights for
each IPA layer and gradient propagation through rotations.
xTrimoFoldAb and tfold-Ab use language model embeddings
to replace the Evoformer, before applying the learned constraints
into the structural module. Other methods, such as
ABodyBuilder2, demonstrated that one can use only the
structural module without resorting to antibody-specific
embeddings or modified Evoformers. The antibody-focused
methods are more accurate than AlphaFold2, but these
improvements are limited. One major advantage of antibody-
specific methods is their efficient running time. For instance,
ABodyBuilder2 achieves predictions in a matter of seconds,
compared to tens of minutes for AlphaFold2. AlphaFold2’s
running time is comparatively long because of the MSA search
step, which is unnecessary for antibody-specific methods.

The loss function drives the training of a model as it penalizes
wrong predictions and rewards better ones. It is extremely
important as one of the chief innovations of AlphaFold2 was
the introduction of the frame aligned point error (FAPE) loss.
This component exposes the model to information related to
physicochemical constraints, such as proper chemical bond
distances and angles, as well as penalizing atom clashes and
other structural violations, and is also used in some of the
antibody-specific models. However, because of the skewed
difficulty in structure prediction, applying the same loss to
each antibody region is not an ideal approach. For instance,
xTrimoABFold employs focal loss focused on CDRs that are
more difficult to predict. On the other hand,
ABodyBuilder2 treats framework and CDR regions differently,
clamping framework regions at a FAPE loss of 30 Å and the
CDRs’ FAPE loss at 10 Å.

3.5 How do networks approach fine-
structural details beyond the backbone?

Despite the progress in predictions, a seemingly trivial
problem faced by the networks is the physical plausibility of
the produced models (Fernández-Quintero et al., 2022). It was
observed in AlphaFold2 that the structure module can produce
predictions violating physical constraints, such as atomic
clashes. This is not only a problem of AlphaFold2-based
methods, and methods such as NanoNet and EquiFold are
also afflicted. Methods such as ABodyBuilder2 and IgFold
employed OpenMM and Rosetta, respectively, to reduce the
number of physical clashes in the model produced by a
neural network. The number of non-physical distances can
also be reduced by introducing various physical
constraints at the training time (Eguchi et al., 2022;
Kończak et al., 2022).

Although structure prediction is typically evaluated on its
ability to recapitulate the backbone, the determination of the side
chains is important for fine-grained modeling of molecular
function, such as binding affinity. Methods such as

ABodyBuilder2 and IgFold produce the backbone structures
annotated with side chains. Other methods such as EquiFold
use a novel coarse-graining scheme where atoms are mapped to
coarse-grained “superatom” prior to structural modeling and
then reverse-mapped to the individual atoms once the
backbone is constructed (Akpinaroglu et al., 2022). Other
methods such as NanoNet only produce the backbone. Side
chains are typically added by algorithms such as SCWRL
(Krivov et al., 2009) or PEARS (Leem et al., 2018), but
recently an antibody-specific side chain prediction mechanism
using convolutional neural networks has been
introduced—DeepSCAb (Akpinaroglu et al., 2022). Altogether,
fast and accurate prediction of all-atommodels is key to using the
antibody structures for practical drug discovery purposes.

4 Drug discovery perspective of
antibody structure prediction

Antibodies are a well-established drug format, with the structure
as a key component in aiding their discovery and development,
paving ground for real-world applications of 3D modeling.

Antibody structures provide rich information that can be used to
improve various prediction features, such as molecular recognition
(Oh et al., 2021), liability detection (Irudayanathan et al., 2022), or
developability screening (Jain et al., 2023). These models can
complement wet-lab antibody discovery methods, such as
immunization or phage display, to ultimately improve the
selection of binders. For instance, the identification of antigen-
specific antibodies was typically tackled using clonotype/sequence
clustering methods. Machine learning has shown alternative ways to
group these molecules such as by embeddings from variational
autoencoders (VAEs) (Friedensohn et al., 2020), predicting
paratope residues (Richardson et al., 2021), or clustering
structures (Robinson et al., 2021). In particular, structural
clustering can provide a highly translational interpretation of
antibody binding. The methods described in this Review are
highly scalable, making it possible to group thousands of structures.

The optimization of biologics is the process of improving an
existing molecule, which already displays a variety of desirable
properties, with regard to a set of physicochemical properties.
Structural features can be employed to guide the optimization
process. A trivial example would be to focus existing liability
removal (e.g., deamidation) protocols on only surface-exposed
residues, which can be identified based on a reasonably accurate
three-dimensional model (Irudayanathan et al., 2022). Structural
features can be indicative of successful therapeutics (Raybould et al.,
2019; Ahmed et al., 2021), with some differences in the calculated
results based on the underlying modeling method (Jain et al., 2023).
In some cases, such as antibody–antigen docking, good quality
models are needed to reach the results achieved by docking
crystal structures (Schneider et al., 2021).

The most ambitious use of antibody structure prediction is for
the de novo antibody design, where the goal is to computationally
define an antibody sequence that can bind to a given target epitope.
One approach to the de novo design that relies on structural
predictions is “virtual screening,” a methodology that has been
practiced in small molecule drug discovery for decades but has
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only been recently applied to antibodies. This can involve the
modeling of and selection from millions of antibody molecules,
which are then funneled into a molecular docking approach
(Schneider et al., 2021; Jin et al., 2022) or alternative binding site
design methods (Rangel et al., 2022). The quality of the models is a
key consideration as subtle changes in Vh/Vl arrangement,
backbone, or side chain orientation can affect the quality of the
predictions (Fernández-Quintero et al., 2022). In addition, any such
efforts hinge on linking the antibody structural predictions to
paratope–epitope interaction prediction. In this context, “zero-
shot” predictions require the models to propose sequences
binding a specific epitope without observing it, or any close
variants of it, in the training/test sets.

Another approach to the de novo design is using generative
methods. Herein, the latent space of the input (e.g., antibody
sequences) is learned, providing a way to sample novel
elements. Producing novel sequences based on transformer
models has already been shown in general proteins (Rives
et al., 2021) as well as in the antibody world (Melnyk et al.,
2021; Saka et al., 2021; Shin et al., 2021; Shuai et al., 2021).
Autoregressive methods such as IgLM (Shuai et al., 2021) offer
a way to generate new binder sequences based on millions of
sequences from natural repertoires. Such generation can also
be biased toward sequences with certain biophysical properties
by GANs (Amimeur et al., 2020). Most such methods, however,
are currently sequence-driven but not structure-driven.

Structure holds the potential to provide more information
than sequence alone (Kovaltsuk et al., 2017). Encoding the
structural space, in the form of torsional angles using VAEs,
has shown potential in generating novel 3D shapes (Eguchi et al.,
2022). Leveraging structural information for generating
paratopes to specific antigens should produce better results
than using sequence alone (Jin et al., 2022). Higher quality
structural models have the potential to inform better
structure-generation methods, leading to more accurate
emulation of molecular space than sequence alone.
Embeddings generated by the inverse-folding of general
proteins have already shown potential to be useful for B-cell
epitope prediction (Hsu et al., 2022; Høie et al., 2023).

In the context of structure-conditioned generative methods,
RefineGNN, AbDockGen, AbBERT-HMPN, and DiffAb go a step
further than the modeling methods described in this review. They
also provide a “compatibility” score for the structure and designed
sequence. RefineGNN, AbDockGen, and AbBERT-HMPN are
based on the iterative refinement of latent representations from
graph neural networks, whereas DiffAb samples via a denoising
diffusion model. The integration of structure prediction and
sequence design is the next intuitive step superseding structure
prediction, which holds the promise to enhance antibody-based
drug discovery.

5 Conclusion

Advances in protein structure prediction have practical
application in the discovery of new antibody drugs.

In general, accuracy increasing with respect to the pioneer in
ML-based accurate structure prediction, AlphaFold2, is noticeable,

but stay within an order of magnitude. Predictions of the CDR-H3
structure in particular appear to be “stuck” in the 2–3 Å heavy atom
backbone RMSD interval. Difficulty in the prediction of CDR-H3
conformation could stem from the loops’ flexibility (Wong et al.,
2011; Fernández-Quintero et al., 2018; Jeliazkov et al., 2018) as well
as the possible influence of the Vh/Vl orientation (Marze et al., 2016;
Boucher et al., 2023). With only several thousand antibody
structures at hand (Dunbar et al., 2014), it is challenging to study
any flexibility or allosteric effects, but perhaps with a larger number
of better quality cryo-EM structures we will increase the volume of
structural information available. Efforts in improving antibody
structure prediction might take the flexibility into account by
scoring the CDR-H3 conformational ensemble rather than single
“best structure” produced.

The main advantage of the antibody-specific methods with
respect to AlphaFold2 is the speed. The antibody sequence
space in a single individual [~109–1011 (Briney et al., 2019)]
easily surpasses the human proteome (~20 k). The speed of
antibody modeling methods is of utmost importance, as it
directly translates to the mapping of the available antibody
sequence space (Kovaltsuk et al., 2018; Olsen et al., 2022),
antibody virtual screening (Schneider et al., 2021; Rangel
et al., 2022), and the development of novel generative models
(Eguchi et al., 2022).

Given the number of currently available antibody-specific
structure predictions, it might be suitable to take stock of the
state of the field and devote efforts into benchmarking the
different methods as was the case with the two rounds of the
Antibody Modeling Assessment competition (Almagro et al.,
2011; Almagro et al., 2014). In the field of antibody discovery
specifically, we could use the tools not only to test by a single
measure of RMSD but also to assess how useful the structural
predictions are for therapeutically minded tasks, such as lead
optimization, docking, epitope, or paratope prediction.

Altogether the accuracy, speed, and accessibility of the
current antibody modeling methods make it possible to apply
structural information to various aspects of biologics discovery
pipelines today. An incremental improvement to existing
discovery approaches using structure-guided computational
methods appears entirely feasible, while the field continues to
move ever forward toward the “holy grail” of the true de novo
antibody design.
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