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Objective: Preeclampsia (PE) is a serious condition in pregnant women and hence
an important topic in obstetrics. The current research aimed to recognize the
potential and significant immune-related diagnostic biomarkers for PE.

Methods: From the Gene Expression Omnibus (GEO) data sets, three public gene
expression profiles (GSE24129, GSE54618, and GSE60438) from the placental
samples of PE and normotensive pregnancy were downloaded. Differentially
expressed genes (DEGs) were selected and determined among 73 PE and
85 normotensive control pregnancy samples. The DEGs were used for Gene
Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), Disease
Ontology (DO) enrichment analysis, and Gene Set Enrichment Analysis (GSEA).
The candidate biomarkers were identified by the least absolute shrinkage and
selection operator (LASSO) and support vector machine recursive feature
elimination (SVM-RFE) analysis. The receiver operating characteristic curve
(ROC) was applied to evaluate diagnostic ability. For further confirmation, the
expression levels and diagnostic value of biomarkers in PE were verified in the
GSE75010 data set (80 PE and 77 controls) and validated by qRT-RCR, Western
blot, and immunohistochemistry (IHC). The CIBERSORT algorithm was used to
calculate the compositional patterns of 22 types of immune cells in PE.

Results: In total, 15 DEGs were recognized. The GO and KEGG analyses revealed
that the DEGs were enriched in the steroid metabolic process, receptor ligand
activity, GnRH secretion, and neuroactive ligand−receptor interaction. The
recognized DEGs were primarily implicated in cell-type benign neoplasm,
kidney failure, infertility, and PE. Gene sets related to hormone activity,
glycosylation, multicellular organism process, and response to BMP were
activated in PE. The LEP gene was distinguished as a diagnostic biomarker of
PE (AUC = 0.712) and further certified in the GSE75010 data set (AUC = 0.850). The
high expression of LEP was associated with PE in clinical samples. In addition, the
analysis of the immune microenvironment showed that gamma delta T cells,
memory B cells, M0 macrophages, and regulatory T cells were positively
correlated with LEP expression (P < 0.05).

Conclusion: LEP expression can be considered to be a diagnostic biomarker of PE
and can offer a novel perspective for future studies regarding the occurrence and
molecular mechanisms of PE.
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Introduction

Immune system dysregulation can influencematernal, postnatal, or
fetal immune progression. Preeclampsia (PE) is a common and unique
pregnancy-associated multisystem disorder with an immune basis in
humans and features placental malperfusion (Hu et al., 2019). PE is
defined as the onset of hypertension (>140/90 mmHg) and proteinuria
(>0.3 g/24 h) after 20 weeks of gestation (Armaly et al., 2018), which
affects 3%–5% of pregnancies worldwide and is a leading cause of
maternal mortality (Mol et al., 2016). An estimated 15% of preterm
births worldwide are attributable to PE (Mol et al., 2016). Because
effective treatments are lacking, the identification of novel early
diagnostic biomarkers and therapeutic targets is crucial for
improving adverse outcomes for the mother and fetus in PE (Maric-
Bilkan et al., 2019).

In the past few years, integrated microarray technology with the
bioinformatics analysis method could identify novel genes that might
serve as diagnostic and prognostic biomarkers in various diseases (Wu
et al., 2019; Zhao Y. et al., 2020; Sheng et al., 2020; Zhao et al., 2021).
For instance, four immune-related genes (CRH, PI3, CCL18, and
CCL2) were selected from the random forest model to construct a
nomogram to predict PE (Wang et al., 2020). Compared to preterm
controls, patients with early onset PE showed downregulated
expression levels of the placental mesoderm-specific transcript
(MEST) and necdin (NDN) genes (Deyssenroth et al., 2020).
Furthermore, an increasing number of studies have reported the
crucial role of immune cell infiltration in the occurrence and
development of various diseases (Zhao Y. et al., 2020; Ballot et al.,
2020; Deng et al., 2020; Deng et al., 2021). PE basically develops in two
stages: an abnormal maternal immune system response in early
pregnancy and a later maternal systemic inflammatory response
(Roberts and Hubel, 2009; Redman and Staff, 2015). The ratio of
circulating Th1 (T-helper type-1 lymphocytes)/Th2 (T-helper type-2
lymphocyte response) in PE is higher than it is in normal pregnant
subjects in their third trimester (Saito et al., 1999). Uterine natural
killer cells andmacrophages have been revealed to activatemultiorgan
endothelial cells, followed by clinical symptoms of PE (Nagamatsu
and Schust, 2010; Acar et al., 2011). To our knowledge, no study has
yet employed CIBERSORT to delve into infiltrating immune cells in
PE and further identify early diagnostic biomarkers for PE.

Therefore, the goal of this study was to discover the novel
diagnostic immune-related genes related to PE to identify
diagnostic markers for PE, based on machine-learning algorithms
and the logistic regression method. In this study, to our knowledge,
CIBERSORT has been applied for the first time to compute the
quotas of infiltrating immune cells among PE and normotensive
pregnancy (control) placental samples. Finally, the association
among recognized diagnostic markers and infiltrating immune
cells was explored to facilitate further research in this area.

Materials and methods

Downloading and processing of microarray
data

First, we obtained the matrix files of GSE24129, GSE54618,
GSE60438, and GSE75010 from the Gene Expression Omnibus

(GEO) database (https://www.ncbi.nlm.nih.gov/gds) (Table 1). On
the basis of their probe annotation files, the probes were mapped to
gene symbols in each data set. For multiple probes corresponding to the
same gene, the average expression value of the gene was calculated to
represent the gene expression level. After merging the three data sets
into a metadata cohort and removing the batch effect, the “SVA”
package of R software was applied (Leek et al., 2012). The background
correction and normalization of raw data were processed by the limma
package of R (http://www.bioconductor.org/), where genes with |log
fold change (FC)|>0.5 and adjusted p < 0.05 were defined as DEGs.
GSE75010 was used to determine and validate functions of significant
DEGs (Table 1).

Annotations of DEGs’ function and pathway

A total of 15 differentially expressed genes (DEGs) were
analyzed using the R language with the clusterProfiler,
org.Hs.eg.db, enrichplot, and ggplot2 packages via Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)
analyses. p < 0.05 was considered to denote significant enrichment.
The R package “clusterProfiler” and “DOSE” were applied to
conduct the Disease Ontology (DO) enrichment analyses on
DEGs. The Gene Set Enrichment Analysis (GSEA) was used to
analyze the association between the risk score and hallmarks. The
GSEA was applied to recognize the most important feature among
the PE and normotensive pregnancy groups. The
“c5.go.v7.4.symbols.gmt” was applied as the reference gene set
from the Molecular Signatures Database (MSigDB). The gene set
was considered to be significant at a p < 0.05.

Screening candidate biomarker for diagnosis

We predicted disease status via two machine-learning algorithms.
To increase the prediction accuracy, the least absolute shrinkage and
selection operator (LASSO)—a regression-based analysis method that
scrutinizes variable selection and regularization in PE models—was
used. The R package “glmnet” was applied to conduct LASSO
regression analysis on identification of valuable DEGs related to the
discrimination of PE and normotensive control. The support vector
machine (SVM) is an efficient and widely applied supervised machine-
learning algorithm for disease classification and regression tasks
(CORTES and Vapnik, 1995). Hence, conjugated LASSO and SVM-
RFE were used to screen the overlapping genes, which were further
verified in the GSE75010 data set.

Predictive value of diagnostic markers in PE

The mRNA expression data were obtained from 73 PE and
85 normotensive pregnancy samples from the GEO database, which
were used to generate the receiver operating characteristic (ROC)
curves to determine the predictive value of biomarkers. The area
under the ROC curve (AUC) was used to ascertain the diagnostic
capability of biomarkers in distinguishing PE earlier from
normotensive samples and was also verified by the
GSE75010 data set.
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Construction of PPI network

To build a PPI network, we employed “LEPTIN” in the “protein
name” module and “Homo sapiens” in the organism module to search
from the STRING website (https://string-db.org/). We set the key
parameters as follows: meaning of network edges (“confidence”), the
minimum required interaction score [“highest confidence (0.900)”],
and the maximum number of interactors to show (“no more than

10 interactors”) in the first shell. The STRING tool was used to perform
KEGG and GO molecular function analyses of LEP-related genes.

Evaluation of infiltrating immune level

From the gene expression profiles in PE, the CIBERSORT
(http://cibersort.stanford.edu/) algorithm was used to quantify the

TABLE 1 GEO database data of the preeclampsia mRNA expression profile.

Data set ID Platform Preeclampsia Normotensive control

Train group

GSE24129 GPL6244-17930 8 8

GSE54618 GPL10558-50081 5 12

GSE60438 GPL6884; GPL10558 60 65

Test group

GSE75010 GPL6244-17930 80 77

FIGURE 1
Analysis workflow of this study.
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FIGURE 2
Identification of DEGs. (A) Heatmap plots of 15 DEGs between preeclampsia tissue and normotensive control pregnancy samples from the GEO
database. Row name of heatmap is the gene name, and column name is the ID of samples which is not shown in the plot. Red to blue represent the
expression level from high to low in the heatmaps. (B) Volcano plots of 15 DEGs between preeclampsia tissue and normotensive control pregnancy
samples. Red dots in the volcano plots represent upregulation, green dots represent downregulation, and black dots represent genes without
differential expression.

FIGURE 3
Functional enrichment analyses to identify potential biological processes. (A) GO analysis. GO analysis divided DEGs into three functional groups:
molecular function (MF), biological processes (BP), and cell composition (CC). (B) KEGG analysis of DEGs. (C) Disease Ontology enrichment analysis of
DEGs between preeclampsia and normotensive control pregnancy samples. (D, E) Enrichment analyses between preeclampsia and normotensive control
pregnancy samples via Gene Set Enrichment Analysis. (F) Using the STRING tool to construct PPI networks exploring 15 DEGs binding protein
interactions.
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proportion of immune infiltration cells. We downloaded a gene
signature matrix with interpretation, known as the 22 kinds of
immune cells (LM22) with 1,000 permutations, from the webpage of
CIBERSORT to estimate the putative abundance of immune cells
(Newman et al., 2015). The R package “corrplot” was applied to
conduct the correlation and visualization of LM22. The R package
“vioplot” was used to visualize the differences in immune cells
between the PE and normotensive control groups. Pearson’s
correlation analysis was used to explore the screened diagnostic
biomarker relation to the levels of immune infiltration cells. The
chart technique with R package “ggplot2” was applied to visualize
the aforementioned result.

Patient and tissue samples

A total of 32 paraffin-embedded PE and 41 normotensive
specimens were diagnosed at the Second Affiliated Hospital of
Fujian Medical University (Fujian, China) from August 2017 to
September 2021. The research was approved by the Research Ethics
Committee of the Second Affiliated Hospital of Fujian Medical
University prior to the study.

Immunohistochemistry

IHC staining was performed as previously described (Chen et al.,
2016). The primary antibody was anti-leptin (Servicebio, Wuhan).
Leptin staining intensity ratios were scored as follows: negative = 0,
light yellow = 1, brownish yellow = 2, or tan = 3. The staining cells
were scored as follows: less than 1/3 = 1, between 1/3 and 2/3 = 2, or
more than 2/3 = 3. The final score for leptin expression was
calculated by multiplying the two scores. Slides were divided into
low- and high-expression groups, corresponding to scores
of <3 or ≥3, respectively. The histopathological diagnosis of the
patients was established by two pathologists specialized in obstetrics
and gynecology.

Quantitative real-time PCR

Total RNAwas extracted from placental tissue immediately after
normal labor and cesarean section utilizing TRIzol (TaKaRa, Japan),
and then, cDNA was prepared according to the protocol (TaKaRa,
Japan). The detailed procedure is presented in the Supplementary
Methods. GAPDH was used as an internal reference and the relative

FIGURE 4
Screening process of diagnostic biomarker candidates for preeclampsia diagnosis. (A) Tuning feature selection in the least absolute shrinkage and
selection operator model. (B) Plot of biomarker selection via support vector machine recursive feature elimination (SVM-RFE) algorithm. (C) Venn
diagram demonstrating seven diagnostic markers shared by the least absolute shrinkage and selection operator and SVM-RFE algorithms.
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mRNA expression of leptin was calculated by the 2−ΔΔCT method.
qRT-PCR for each sample was repeated in three independent
experiments. The primer sequences are shown below:

GAPDH

Forward: 5′-CATGTTCGTCATGGGTGTGAACCA-3′,
Reverse: 5′-AGTGATGGCATGGACTGTGGTCAT-3′.

LEPTIN

Forward: 5′-AACGTGATCCAAATATCCAACG-3′,
Reverse: 5′-AGCTCTTAGAGAAGGCCAGCA-3’.

Western blotting

Total protein was extracted from each 50 mg placenta sample
using RIPA lysis buffer (CW Biotechnology, Beijing China) with
protease (Solarbio, China), DNA enzyme inhibitor (Solarbio,
China), and phosphatase inhibitors (CW Biotechnology, Beijing
China). Western blotting was performed as described previously
(Guo et al., 2016). The following antibodies were utilized: anti-leptin
(Servicebio, China) and anti-GAPDH (Cell Signaling Technology,
United States). The secondary antibody was anti-rabbit IgG (Cell
Signaling Technology, United States). Gray values were measured
with ImageJ.

Statistical analysis

We used the R software (v.4.1.1) for all statistical analyses. The
Mann–Whitney U test was used to compare the PE and
normotensive control groups. The LASSO regression analysis,

SVM algorithm, ROC curve analysis, Pearson’s correlation, and
unpaired t-test were used as described above. p < 0.05 was
considered to indicate statistically significant differences for all
analyses.

Results

Study procedure

The analysis procedure used in the study is shown in Figure 1.
We downloaded the transcriptome RNA-seq data from the GEO
database. We identified DEGs between PE and normotensive
control groups. We conducted GO, KEGG, DO, and GSEA
analyses on DEGs. Conjugated LASSO and SVM-RFE were
used to screen the overlapping candidate genes; the ROC
curve was applied to determine the predictive value of the
biomarkers, which were further validated in the
GSE75010 data set. The CIBERSORT algorithm was used to
calculate the compositional patterns of LM22 in PE.
Correlation analysis was performed among the diagnostic
markers and infiltrating immune cells.

Identification of DEGs in PE

This study involved three data sets from the GEO database
(GSE24129, GSE54618, and GSE60438) and included a total of
73 PE and 85 normotensive control pregnancy samples. We
obtained a total of 15 DEGs when comparing PE and
normotensive controls (Figures 2A, B). Of these genes, four were
remarkably downregulated and 11 were markedly upregulated
(Figure 2B).

FIGURE 5
Validation of the expression of diagnostic biomarkers in the GSE75010 data set. (A) CGB5, (B) FCN1, (C) LEP, (D) LTB, (E) NAPSB, (F) PDK4, and (G)
SPP1.
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Functional enrichment and correlation
analysis

The results from the GO analysis showed that the DEGs
were closely related to hormone-related GO terms, such as

hormone activity, steroid metabolic process, and positive
regulation of hormone secretion, and to receptor
ligand–related GO terms, particularly receptor ligand
activity, signaling receptor activator activity, and peptide
hormone receptor binding (P < 0.05, Figure 3A). In addition,

FIGURE 6
Receiver operating characteristic (ROC) curve of the diagnostic effectiveness of the six diagnosticmarkers. (A) ROC curve ofCGB5, LEP, LTB,NAPSB,
PDK4, and SPP1 after fitting to one variable in themetadata cohort; (B)ROC curve ofCGB5, LEP, LTB,NAPSB, PDK4, and SPP1 after fitting to one variable in
the GSE75010 data set. (C) Significantly high LEP expression was observed in PE tissues when compared with normotension specimens (PE = 32;
normotension = 41). Representative images (×40 and ×200) of IHC staining for LEP in 32 PE and 41 normotensive patients (high expression vs. low
expression). (D) qRT-PCR of LEP expression in PE placental tissue when compared with normotension specimens. (E)WB analysis of LEP expression in PE
placental tissue when compared with normotension specimens. Scale bars are shown. *p < 0.05. p-values were calculated by chi-square tests.
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KEGG analysis showed enrichment of the GnRH secretion,
neuroactive ligand–receptor interaction, cAMP signaling
pathway, and cytokine–cytokine receptor interaction (P <
0.05, Figure 3B). The analysis of DO enrichment showed that
DEGs were mostly related to cell-type benign neoplasm,
infertility, PE, and kidney failure (Figure 3C). The GSEA
results revealed that the enriched functions mainly enrolled
activation of immune response, adaptive immune response, and
cell chemotaxis in control (Figure 3D, Supplementary Table S1);
and glycosylation, multicellular organism process, and
hormone activity in PE (Figure 3E, Supplementary Table S2).
These results conclusively show that immune response and
hormone secretion have vital roles in PE. A PPI network
with 15 DEGs was obtained. The STRING tool identified five
binding proteins. LEP, LHB, PDK4, SP1, and KRT19 are shown
in Figure 3F.

Recognition and validation of diagnostic
biomarkers

We applied the LASSO and SVM-RFE algorithm to selective
potential biomarkers. The seven DEGs were identified as diagnostic
biomarkers using LASSO regression for PE (Figure 4A). The five
DEGs were verified by applying the SVM-RFE (Figure 4B). Between
the two algorithms, the seven overlapping candidate genes (LEP,
PDK4, SPP1, NAPSB, CGB5, LTB, and FCN1) were ultimately
screened (Figure 4C). Additionally, to produce more reliable and
accurate DEGs, verification of the seven DEGs’ expression levels was
conducted using the GSE75010 data set. The CGB5, LEP, LTB, and
NAPSB expression levels in PE samples were remarkably higher
than in that of the normotensive group (Figures 5A, C–E; p < 0.05).
The PDK4 and SPP1 expression levels in PE tissue were significantly
lower than those in the normotensive group (Figures 5F, G; p <
0.05). However, the FCN1 expression showed no significant
difference between the two groups (Figure 5B). Hence, we next
explored the potential value of the diagnostic model combination of
the six identified DEGs by applying a logistic regression algorithm.

Effectiveness of featured diagnostic
biomarkers in PE

Both LEP (AUC = 0.712) and PDK4 (AUC = 0.718) showed a
good diagnostic value for the early diagnosis of PE (Figure 6A).
Furthermore, a forceful discerning capacity was verified in the
GSE75010 data set with an AUC of 0.850 in LEP (Figure 6B),
showing that the LEP gene had a higher diagnostic capacity. We
assessed the expression of LEP across PE and normotensive tissues
via immunohistochemistry and found that high expression of LEP
was associated with PE (Figure 6C; p < 0.05). For further clinical
validation, we assessed the expression of LEP using qRT-PCR and
revealed that high expression of LEP was associated with PE
(Figure 6D; p < 0.05). We performed Western blotting to assess
that LEP is upregulated in PE and found that high expression of LEP
was associated with PE (Figure 6E; p < 0.05). The aforementioned
results indicate that the LEP gene had a higher diagnostic capacity.

FIGURE 7
Using the STRING tool to construct PPI networks exploring
leptin-binding protein interactions.

TABLE 2 Leptin GO molecular function (STRING tools).

Term ID Term description Genes p-value

GO:0005102 Signaling receptor binding 9 1.66E-05

GO:0005179 Hormone activity 5 1.66E-05

GO:0001664 G protein–coupled receptor binding 5 0.00037

GO:0051427 Hormone receptor binding 4 0.0023

GO:0005515 Protein binding 11 0.0052

GO:0019903 Protein phosphatase binding 3 0.026

GO:0051428 Peptide hormone receptor binding 2 0.026

GO:0098772 Molecular function regulator 8 0.026

GO:0001103 RNA polymerase II repressing transcription factor binding 2 0.0471
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Building PPI network

A PPI network with 14 nodes was obtained. The STRING
database analysis identified 10 highest leptin-binding proteins. As
shown in Figure 7, GCG, IAPP, LEPR, GHRL, STAT3, PPARG,
SOCS3, NPY, JAK2, and PTPN1 were predicted to have the most
powerful interactions with leptin. And then we performed the GO
molecular function and KEGG analyses of the proteins predicted via
the STRING tool. The GO_MF analysis showed significant
differences in the relevance of the signaling receptor binding and
hormone activity (Table 2). KEGG analysis showed significant
differences in association with the adipocytokine and JAK-STAT
signaling pathways (Table 3). The KEGG analysis revealed that
STAT3, SOCS3, LEPR, JAK2, and NPY were associated with leptin in
the adipocytokine signaling pathway, and STAT3, SOCS3, LEPR, and
JAK2 were associated with leptin in the JAK-STAT signaling
pathway, suggesting that leptin may interact with these proteins
to activate both adipocytokine and JAK/STAT signaling in PE.

LEP is associated with percentage of
immune cells

To further verify the relationship between the LEP gene and
immune cell infiltration, we first applied the CIBERSORT algorithm
to determine the proportions of the 22 types of infiltrating immune
cells in the PE and control samples (Figures 8A, B; Supplementary
Table S3). Next, the component of immune cells in PE vs.
normotensive group was explored. The ratio of monocytes in PE
was significantly lower than that in the normotensive control (P <
0.001). However, the ratio of CD4+ resting memory T cells (p = 0.015)
in PE was significantly higher than that in normotensive controls

(Figure 8C). Furthermore, we studied the relationship between the
LEP gene and infiltrating immune cells. LEP was positively correlated
with gamma delta T cells (r = 0.237, p < 0.05), M0 macrophages (r =
0.224, p < 0.05), memory B cells (r = 0.192, p < 0.05), and regulatory
T cells (r = 0.181, p < 0.05), while being negatively correlated with
resting CD4 memory T cells (r = −0.208, p < 0.05), M0 macrophages
(r = −0.205, p < 0.05), and activated NK cells (r = −0.200, p < 0.05)
(Figure 8D). The impact of the LEP gene was supported by these
results regarding immune activity.

Discussion

PE is a hypertensive disorder specific to pregnancy and is one
of the main causes of maternal and fetal mortality and morbidity
worldwide. PE is accompanied by fetal growth restriction,
preterm birth, and other severe complications that result in
large economic and mental health costs to the affected
households’ families and society. It is well known that
maternal immune tolerance plays a key role in the
pathogenesis of PE, and the infiltration of placental immune
cells is closely associated with spiral artery remodeling. Poor
remodeling of the spiral arteries can induce placental ischemia
and hypoxia, further contributing to the development and
progression of PE (Zarate et al., 2014). A growing number of
studies have investigated the role of infiltrating immune cells as a
new bioinformatic method to scrutinize the diagnosis and
prognosis of various diseases such as breast cancer (Yao et al.,
2021), gastric cancer (Xiang et al., 2020), and osteosarcoma (Chi
Zhang et al., 2020), as well as acute myocardial infarction (Zhao
E. et al., 2020). Consequently, several studies have vigorously
sought novel molecular biomarkers and explored immune cell

TABLE 3 Leptin KEGG pathway (STRING tools).

Term ID Term description Genes p-value

hsa04920 Adipocytokine signaling pathway 6 3.94E-10

hsa04080 Neuroactive ligand–receptor interaction 6 1.77E-06

hsa04630 JAK-STAT signaling pathway 5 1.99E-06

hsa04935 Growth hormone synthesis, secretion, and action 4 3.85E-05

hsa04917 Prolactin signaling pathway 3 0.00052

hsa04931 Insulin resistance 3 0.0015

hsa04152 AMPK signaling pathway 3 0.0018

hsa04932 Non-alcoholic fatty liver disease 3 0.003

hsa04024 cAMP signaling pathway 3 0.0071

hsa01521 EGFR tyrosine kinase inhibitor resistance 2 0.0298

hsa05235 PD-L1 expression and PD-1 checkpoint pathway in cancer 2 0.0342

hsa04659 Th17 cell differentiation 2 0.0386

hsa04933 AGE-RAGE signaling pathway in diabetic complications 2 0.0386

hsa05145 Toxoplasmosis 2 0.0386

hsa04380 Osteoclast differentiation 2 0.0472
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infiltration in PE, which could improve the poor outcomes of PE
patients in the clinic. Recently, circular RNAs and mRNA have
been investigated as potential biomarkers in pregnancy,
especially with respect to their molecular mechanisms (Triche
et al., 2014; Huang et al., 2018; Kang et al., 2021), therapeutic
targets (Deng et al., 2019), and subclassification (Leavey et al.,
2015) in PE. However, there are very few studies on the immune
cell infiltration association with DEGs in PE. Hence, we focused
on the identification of significant diagnostic DEGs for PE and
identified the role of infiltrating immune cells in PE.

To our knowledge, this is the first study to fully utilize multiple
GEO data sets for knowledge mining by a machine-learning
approach in PE and remarkedly identify diagnostic biomarkers
related to infiltrating immune cells. In all, 15 DEGs were
identified between the PE and normotensive control groups. The
analysis of the 15 DEGs’ disease enrichment was mostly related to
cell-type benign neoplasm, infertility, PE, and kidney failure. The
results of the GSEA showed that the enriched GO terms generally
involved immune response and hormone activity such as the
glycosylation and transmembrane receptor protein serine
threonine kinase signaling pathway. A successful pregnancy
mandatorily requires well-balanced hormone levels and
appropriate immune responses. These results are in line with our

findings, generally involving glycosylation and hormone and
immune responses, collectively and mutually participating in the
diagnosis and pathogenesis of PE. The trophoblasts and endothelial
cells can produce asymmetrically glycosylated IgG and react with the
Fc portion of human immunoglobulin molecules and certain
leukocytes in the cytoplasm and cell membrane. The study
indicated that the Fab fragment of glycosylated IgG may act as
the key component in placental immune evasion (Gu et al., 2015).
PE is characterized by lower levels of serum hyperglycosylated hCG
(hCG-H) at 8–13 weeks’ gestation (Keikkala et al., 2013). However,
in the second trimester of pregnancy, low urine hCG-H appeared to
predict subsequent PE (Bahado-Singh et al., 2002) but not in the
serum samples (Keikkala et al., 2014). Hence, bioinformatics
methods were applied to identify the novel diagnostic biomarkers
of PE related to immune cell infiltration that may contribute to its
early diagnosis and further therapy.

We identified a diagnostic biomarker based on combining two
machine-learning algorithms and further using diagnostic ability
analysis, and further verified these in the GSE75010 data set. Leptin
protein is encoded by the LEP gene in humans, which is located on
chromosome 7q31. This hormone is significantly associated with
adiposity in humans (Havel et al., 1996). Additionally, leptin may
play a part in the female reproductive system (DarrellBrann et al.,

FIGURE 8
Distribution and visualization of immune cell infiltration and correlation analysis. (A) Barplot showing the proportion of 22 immune cell subtypes
between preeclampsia tissue and normotensive control pregnancy samples. (B) Heatmap showing the correlation matrix of all 22 immune cell subtype
compositions. Both horizontal and vertical axes demonstrate immune cell subtypes. Immune cell subtype compositions (higher, lower, and same
correlation levels are displayed in red, blue, and white, respectively), and Pearson coefficient was used for the significance test. (C) Violin plot shows
the ratio differentiation of 22 kinds of immune cells between preeclampsia tissue and normotensive control pregnancy samples, and Wilcoxon rank sum
was used for the significance test. (D) Correlation between LEP and infiltrating immune cells in preeclampsia.
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2002). Leptin participates in the interplay of metabolism,
inflammation, and immune system disorders (Abella et al., 2017).
LEP gene mutation decreases leptin concentration and increases
type 2 diabetes mellitus and obesity (Qadir and Ahmed, 2017).
Higher circulating leptin and the AA genotype of −2548 G/A
polymorphism of the LEP gene may be associated with PE/
pregnancy-induced hypertension (Sugathadasa et al., 2010). LEP
gene hypomethylation in the placenta and elevated leptin
concentration in maternal blood were observed in early onset PE
(Hogg et al., 2013; Xiang et al., 2013). Hence, based on these results,
we believe that LEP may play an important role in the occurrence
and development of PE.

We applied the CIBERSORT method to evaluate the types of
infiltrating immune cells in PE and normotensive controls. We
detected a decreased infiltration of monocytes, and increased
infiltration of CD4+ resting memory T cells was potentially
correlated with the occurrence and development of PE.
Additionally, we found that the LEP gene was related to gamma
delta T cells, M0 macrophages, memory B cells, regulatory T cells,
CD4 memory resting T cells, M0 macrophages, and activated NK
cells. The first pathogenic step of PE is an abnormal immune
response to the placenta against the maternal immune system; this
is followed by the subsequent appearance of a systemic
inflammatory response enrolling the endothelium (Veenstra van
Nieuwenhoven et al., 2003). Thus far, previous studies have mainly
focused on some immune cells such as T cells (Salmon et al., 2011),
natural killer (NK) cells (Borzychowski et al., 2005; Acar et al.,
2011), and macrophages (Hayashi et al., 2004; Nagamatsu and
Schust, 2010) in PE. Furthermore, low-dose aspirin (LDA) is the
most researched and utilized drug to prevent PE. Aspirin has anti-
inflammatory, anti-oxidant, and immuno-modulatory functions
(Parkinson, 2006; Nascimento-Silva et al., 2007). Our findings
together with the evidence mentioned earlier have shown that the
LEP gene associated with several types of immune cell infiltration
plays an important role in PE and should be the focus of future
experimental work.

Our study has some limitations. First, important and
integrated clinical material was not obtained from the
retrospective study, such as complications, birth outcomes,
and past medical history. Second, the number of cases in the
GSE24129 and GSE54618 data sets was low. Additionally, the
reproducibility and function of the LEP gene and related immune
cell infiltration in PE should be further validated by prospective
studies with larger sample sizes.

Conclusion

Based on the GEO database, we analyzed the immune
characteristics of PE and identified that the LEP gene acts as a
novel diagnostic biomarker of PE. The abnormal expression of
immune-related genes may change the immune response by
facilitating the infiltration of immune cells, which could
influence the early identification, occurrence, and development
of PE.

Data availability statement

The original contributions presented in the study are included in
the article/Supplementary Material; further inquiries can be directed
to the corresponding authors.

Ethics statement

The studies involving human participants were reviewed and
approved by the Research Ethics Committee of the Second Affiliated
Hospital of Fujian Medical University. The patients/participants
provided their written informed consent to participate in this study.

Author contributions

All authors listed havemade a substantial, direct, and intellectual
contribution to the work and approved it for publication.

Funding

This work was supported by the Fujian Provincial Health
Technology Project (No. 2019-1-15), Science and Technology
Bureau of Quanzhou (2020NO31s).

Acknowledgments

The authors acknowledge the GEO database for providing the
available data on PE.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors and
do not necessarily represent those of their affiliated organizations, or
those of the publisher, editors, and reviewers. Any product that may be
evaluated in this article, or claim that may be made by its manufacturer,
is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fmolb.2023.1209144/
full#supplementary-material

Frontiers in Molecular Biosciences frontiersin.org11

Chen et al. 10.3389/fmolb.2023.1209144

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1209144/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1209144/full#supplementary-material
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1209144


References

Abella, V., Scotece, M., Conde, J., Pino, J., Gonzalez-Gay, M. A., Gomez-Reino,
J. J., et al. (2017). Leptin in the interplay of inflammation, metabolism and immune
system disorders. Nat. Rev. Rheumatol. 13, 100–109. doi:10.1038/nrrheum.
2016.209

Acar, N., Ustunel, I., and Demir, R. (2011). Uterine natural killer (uNK) cells and their
missions during pregnancy: A review. Acta histochem. 113, 82–91. doi:10.1016/j.acthis.
2009.12.001

Armaly, Z., Jadaon, J. E., Jabbour, A., and Abassi, Z. A. (2018). Preeclampsia: Novel
mechanisms and potential therapeutic approaches. Front. Physiology 9, 973. doi:10.
3389/fphys.2018.00973

Bahado-Singh, A. U. O. R. O., Kingston, J. M., Shahabi, S., Hsu, C. D., and Cole, L.
(2002). The role of hyperglycosylated hCG in trophoblast invasion and the prediction of
subsequent pre-eclampsia. Prenat. Diagn. 22, 478–481. doi:10.1002/pd.329

Ballot, E., Ladoire, S., Routy, B., Truntzer, C., and Ghiringhelli, F. (2020).
Tumor infiltrating lymphocytes signature as a new pan-cancer predictive
biomarker of anti PD-1/PD-L1 efficacy. Cancers (Basel) 12, 2418. doi:10.3390/
cancers12092418

Borzychowski, A. M., Croy, B. A., Chan, W. L., Redman, C. W., and Sargent, I. L.
(2005). Changes in systemic type 1 and type 2 immunity in normal pregnancy and pre-
eclampsia may be mediated by natural killer cells. Eur. J. Immunol. 35, 3054–3063.
doi:10.1002/eji.200425929

Chen, H., Wang, J., Yang, H., Chen, D., and Li, P. (2016). Association between
FOXM1 and hedgehog signaling pathway in human cervical carcinoma by tissue
microarray analysis. Oncol. Lett. 12, 2664–2673. doi:10.3892/ol.2016.4932

Chi Zhang, J.-H. Z., Lin, Z-H., Lv, H-Y., Ye, Z-M., Chen, Y-P., Zhang, X-Y., et al.
(2020). Profiles of immune cell infiltration and immune-related genes in the tumor
microenvironment of osteosarcoma. AGING 12, 3486–3501. doi:10.18632/aging.
102824

Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. Leaming 20,
273–297. doi:10.1007/bf00994018

DarrellBrann, M. F. W. W., Dhandapani, K. M., Buchanan, C. D., Mahesh, V. B., and
Buchanan, C. D. (2002). Leptin and reproduction. Steroids 67, 95–104. doi:10.1016/
s0039-128x(01)00138-6

Deng, N., Lei, D., Huang, J., Yang, Z., Fan, C., and Wang, S. (2019). Circular RNA
expression profiling identifies hsa_circ_0011460 as a novel molecule in severe
preeclampsia. Pregnancy Hypertens. 17, 216–225. doi:10.1016/j.preghy.2019.06.009

Deng, Y. J., Ren, E. H., Yuan, W. H., Zhang, G. Z., Wu, Z. L., and Xie, Q. Q.
(2020). GRB10 and E2F3 as diagnostic markers of osteoarthritis and their
correlation with immune infiltration. Diagn. (Basel) 10, 171. doi:10.3390/
diagnostics10030171

Deng, Z., Zheng, Y., Cai, P., and Zheng, Z. (2021). The role of B and T lymphocyte
attenuator in respiratory system diseases. Front. Immunol. 12, 635623. doi:10.3389/
fimmu.2021.635623

Deyssenroth, M. A., Li, Q., Escudero, C., Myatt, L., Chen, J., and Roberts, J. M. (2020).
Differences in placental imprinted gene expression across preeclamptic and non-
preeclamptic pregnancies. Genes (Basel) 11, 1146. doi:10.3390/genes11101146

Gu, J., Lei, Y., Huang, Y., Zhao, Y., Li, J., Huang, T., et al. (2015). Fab fragment
glycosylated IgG may play a central role in placental immune evasion.Hum. Reprod. 30,
380–391. doi:10.1093/humrep/deu323

Guo, W., You, X., Xu, D., Zhang, Y., Wang, Z., Man, K., et al. (2016).
PAQR3 enhances Twist1 degradation to suppress epithelial-mesenchymal transition
and metastasis of gastric cancer cells. Carcinogenesis 37, 397–407. doi:10.1093/carcin/
bgw013

Havel, P. J., Kasim-Karakas, S., Mueller, W., Johnson, P. R., Gingerich, R. L., and
Stern, J. S. (1996). Relationship of plasma leptin to plasma insulin and adiposity in
normal weight and overweight women: Effects of dietary fat content and sustained
weight loss. J. Clin. Endocrinol. Metab. 81, 4406–4413. doi:10.1210/jcem.81.12.
8954050

Hayashi, M., Hamada, Y., and Ohkura, T. (2004). Elevation of granulocyte-
macrophage colony-stimulating factor in the placenta and blood in preeclampsia.
Am. J. Obstet. Gynecol. 190, 456–461. doi:10.1016/j.ajog.2003.07.032

Hogg, K., Blair, J. D., von Dadelszen, P., and Robinson, W. P. (2013).
Hypomethylation of the LEP gene in placenta and elevated maternal leptin
concentration in early onset pre-eclampsia. Mol. Cell Endocrinol. 367, 64–73. doi:10.
1016/j.mce.2012.12.018

Hu, M., Eviston, D., Hsu, P., Marino, E., Chidgey, A., Santner-Nanan, B., et al. (2019).
Decreased maternal serum acetate and impaired fetal thymic and regulatory T cell
development in preeclampsia. Nat. Commun. 10, 3031. doi:10.1038/s41467-019-
10703-1

Huang, X., Anderle, P., Hostettler, L., Baumann, M. U., Surbek, D. V., Ontsouka, E. C.,
et al. (2018). Identification of placental nutrient transporters associated with
intrauterine growth restriction and pre-eclampsia. BMC Genomics 19, 173. doi:10.
1186/s12864-018-4518-z

Kang, Q., Li, W., Xiao, J., Yu, N., Fan, L., Sha, M., et al. (2021). Identification of
potential crucial genes associated with early-onset preeclampsia via bioinformatic
analysis. Pregnancy Hypertens. 24, 27–36. doi:10.1016/j.preghy.2021.02.007

Keikkala, E., Ranta, J. K., Vuorela, P., Leinonen, R., Laivuori, H., Vaisanen, S., et al.
(2014). Serum hyperglycosylated human chorionic gonadotrophin at 14-17 weeks of
gestation does not predict preeclampsia. Prenat. Diagn 34, 699–705. doi:10.1002/pd.
4335

Keikkala, E., Vuorela, P., Laivuori, H., Romppanen, J., Heinonen, S., and Stenman, U.
H. (2013). First trimester hyperglycosylated human chorionic gonadotrophin in serum -
a marker of early-onset preeclampsia. Placenta 34, 1059–1065. doi:10.1016/j.placenta.
2013.08.006

Leavey, K., Bainbridge, S. A., and Cox, B. J. (2015). Large scale aggregate microarray
analysis reveals three distinct molecular subclasses of human preeclampsia. PLoS One
10, e0116508. doi:10.1371/journal.pone.0116508

Leek, J. T., Johnson, W. E., Parker, H. S., Jaffe, A. E., and Storey, J. D. (2012). The sva
package for removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics 28, 882–883. doi:10.1093/bioinformatics/bts034

Maric-Bilkan, C., Abrahams, V. M., Arteaga, S. S., Bourjeily, G., Conrad, K. P., Catov,
J. M., et al. (2019). Research recommendations from the national institutes of health
workshop on predicting, preventing, and treating preeclampsia. Hypertension 73,
757–766. doi:10.1161/hypertensionaha.118.11644

Mol, B. W. J., Roberts, C. T., Thangaratinam, S., Magee, L. A., de Groot, C. J. M., and
Hofmeyr, G. J. (2016). Pre-eclampsia. Lancet 387, 999–1011. doi:10.1016/s0140-
6736(15)00070-7

Nagamatsu, T., and Schust, D. J. (2010). The contribution of macrophages to normal
and pathological pregnancies. Am. J. Reprod. Immunol. 63, 460–471. doi:10.1111/j.
1600-0897.2010.00813.x

Nascimento-Silva, V., Arruda, M. A., Barja-Fidalgo, C., and Fierro, I. M. (2007).
Aspirin-triggered lipoxin A4 blocks reactive oxygen species generation in endothelial
cells: A novel antioxidative mechanism. Thromb. Haemost. 97, 88–98. doi:10.1160/th06-
06-0315

Newman, A. M., Liu, C. L., Green, M. R., Gentles, A. J., Feng, W., Xu, Y., et al. (2015).
Robust enumeration of cell subsets from tissue expression profiles. Nat. Methods 12,
453–457. doi:10.1038/nmeth.3337

Parkinson, J. F. (2006). Lipoxin and synthetic lipoxin analogs: An overview of
AntiInflammatory functions and new concepts in immunomodulation. Inflamm.
Allergy - Drug Targets 5, 91–106. doi:10.2174/187152806776383125

Qadir, M. I., and Ahmed, Z. (2017). Lep expression and its role in obesity and type-2
diabetes. Crit. Rev. Eukar Gene 27, 47–51. doi:10.1615/CritRevEukaryotGeneExpr.
2017019386

Redman, C. W., and Staff, A. C. (2015). Preeclampsia, biomarkers,
syncytiotrophoblast stress, and placental capacity. Am. J. Obstet. Gynecol. 213, S9.e1,
S9–S11. doi:10.1016/j.ajog.2015.08.003

Roberts, J. M., and Hubel, C. A. (2009). The two stage model of preeclampsia:
Variations on the theme. Placenta 30, S32–S37. doi:10.1016/j.placenta.2008.11.009

Saito, M. S. S., Sasaki, Y., Tanebe, K., Tsuda, H., and Michimata, T. (1999).
Quantitative analysis of peripheral blood Th0, Th1, Th2 and the Th1:Th2 cell ratio
during normal human pregnancy and preeclampsia. Clin. Exp. Immunol. 117, 550–555.
doi:10.1046/j.1365-2249.1999.00997.x

Salmon, J. E., Heuser, C., Triebwasser, M., Liszewski, M. K., Kavanagh, D.,
Roumenina, L., et al. (2011). Mutations in complement regulatory proteins
predispose to preeclampsia: A genetic analysis of the PROMISSE cohort. PLoS Med.
8, e1001013. doi:10.1371/journal.pmed.1001013

Sheng, X., Fan, T., and Jin, X. (2020). Identification of key genes involved in acute
myocardial infarction by comparative transcriptome analysis. Biomed. Res. Int. 2020,
1470867. doi:10.1155/2020/1470867

Sugathadasa, B. H., Tennekoon, K. H., Karunanayake, E. H., Kumarasiri, J. M., and
Wijesundere, A. P. (2010). Association of -2548 G/A polymorphism in the leptin gene
with preeclampsia/pregnancy-induced hypertension. Hypertens. Pregnancy 29,
366–374. doi:10.3109/10641950903214617

Triche, E. W., Uzun, A., DeWan, A. T., Kurihara, I., Liu, J., Occhiogrosso, R., et al.
(2014). Bioinformatic approach to the genetics of preeclampsia.Obstetrics Gynecol. 123,
1155–1161. doi:10.1097/aog.0000000000000293

Veenstra van Nieuwenhoven, A. L., Heineman, M. J., and Faas, M. M. (2003). The
immunology of successful pregnancy. Hum. Reprod. Update 9, 347–357. doi:10.1093/
humupd/dmg026

Wang, Y., Li, Z., Song, G., and Wang, J. (2020). Potential of immune-related genes as
biomarkers for diagnosis and subtype classification of preeclampsia. Front. Genet. 11,
579709. doi:10.3389/fgene.2020.579709

Wu, J., Zhao, Y., Zhang, J., Wu, Q., and Wang, W. (2019). Development and
validation of an immune-related gene pairs signature in colorectal cancer.
Oncoimmunology 8, 1596715. doi:10.1080/2162402X.2019.1596715

Frontiers in Molecular Biosciences frontiersin.org12

Chen et al. 10.3389/fmolb.2023.1209144

https://doi.org/10.1038/nrrheum.2016.209
https://doi.org/10.1038/nrrheum.2016.209
https://doi.org/10.1016/j.acthis.2009.12.001
https://doi.org/10.1016/j.acthis.2009.12.001
https://doi.org/10.3389/fphys.2018.00973
https://doi.org/10.3389/fphys.2018.00973
https://doi.org/10.1002/pd.329
https://doi.org/10.3390/cancers12092418
https://doi.org/10.3390/cancers12092418
https://doi.org/10.1002/eji.200425929
https://doi.org/10.3892/ol.2016.4932
https://doi.org/10.18632/aging.102824
https://doi.org/10.18632/aging.102824
https://doi.org/10.1007/bf00994018
https://doi.org/10.1016/s0039-128x(01)00138-6
https://doi.org/10.1016/s0039-128x(01)00138-6
https://doi.org/10.1016/j.preghy.2019.06.009
https://doi.org/10.3390/diagnostics10030171
https://doi.org/10.3390/diagnostics10030171
https://doi.org/10.3389/fimmu.2021.635623
https://doi.org/10.3389/fimmu.2021.635623
https://doi.org/10.3390/genes11101146
https://doi.org/10.1093/humrep/deu323
https://doi.org/10.1093/carcin/bgw013
https://doi.org/10.1093/carcin/bgw013
https://doi.org/10.1210/jcem.81.12.8954050
https://doi.org/10.1210/jcem.81.12.8954050
https://doi.org/10.1016/j.ajog.2003.07.032
https://doi.org/10.1016/j.mce.2012.12.018
https://doi.org/10.1016/j.mce.2012.12.018
https://doi.org/10.1038/s41467-019-10703-1
https://doi.org/10.1038/s41467-019-10703-1
https://doi.org/10.1186/s12864-018-4518-z
https://doi.org/10.1186/s12864-018-4518-z
https://doi.org/10.1016/j.preghy.2021.02.007
https://doi.org/10.1002/pd.4335
https://doi.org/10.1002/pd.4335
https://doi.org/10.1016/j.placenta.2013.08.006
https://doi.org/10.1016/j.placenta.2013.08.006
https://doi.org/10.1371/journal.pone.0116508
https://doi.org/10.1093/bioinformatics/bts034
https://doi.org/10.1161/hypertensionaha.118.11644
https://doi.org/10.1016/s0140-6736(15)00070-7
https://doi.org/10.1016/s0140-6736(15)00070-7
https://doi.org/10.1111/j.1600-0897.2010.00813.x
https://doi.org/10.1111/j.1600-0897.2010.00813.x
https://doi.org/10.1160/th06-06-0315
https://doi.org/10.1160/th06-06-0315
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.2174/187152806776383125
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019386
https://doi.org/10.1615/CritRevEukaryotGeneExpr.2017019386
https://doi.org/10.1016/j.ajog.2015.08.003
https://doi.org/10.1016/j.placenta.2008.11.009
https://doi.org/10.1046/j.1365-2249.1999.00997.x
https://doi.org/10.1371/journal.pmed.1001013
https://doi.org/10.1155/2020/1470867
https://doi.org/10.3109/10641950903214617
https://doi.org/10.1097/aog.0000000000000293
https://doi.org/10.1093/humupd/dmg026
https://doi.org/10.1093/humupd/dmg026
https://doi.org/10.3389/fgene.2020.579709
https://doi.org/10.1080/2162402X.2019.1596715
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1209144


Xiang, A., Lin, X., Xu, L., Chen, H., Guo, J., and Zhou, F. (2020). PCOLCE is potent
prognostic biomarker and associates with immune infiltration in gastric cancer. Front.
Mol. Biosci. 7, 544895. doi:10.3389/fmolb.2020.544895

Xiang, Y., Cheng, Y., Li, X., Li, Q., Xu, J., Zhang, J., et al. (2013). Up-regulated
expression and aberrant DNA methylation of LEP and SH3PXD2A in pre-eclampsia.
PLoS One 8, e59753. doi:10.1371/journal.pone.0059753

Yao, S., Cheng, T. D., Elkhanany, A., Yan, L., Omilian, A., Abrams, S. I., et al. (2021).
Breast tumor microenvironment in black women: A distinct signature of CD8+ T-cell
exhaustion. J. Natl. Cancer Inst. 113, 1036–1043. doi:10.1093/jnci/djaa215

Zarate, A., Saucedo, R., Valencia, J., Manuel, L., and Hernandez, M. (2014). Early
disturbed placental ischemia and hypoxia creates immune alteration and vascular

disorder causing preeclampsia. Arch. Med. Res. 45, 519–524. doi:10.1016/j.arcmed.2014.
10.003

Zhao, E., Xie, H., and Zhang, Y. (2020b). Predicting diagnostic gene biomarkers
associated with immune infiltration in patients with acute myocardial infarction. Front.
Cardiovasc Med. 7, 586871. doi:10.3389/fcvm.2020.586871

Zhao, E., Zhou, C., and Chen, S. (2021). A signature of 14 immune-related gene pairs
predicts overall survival in gastric cancer. Clin. Transl. Oncol. 23, 265–274. doi:10.1007/
s12094-020-02414-7

Zhao, Y., Zhang, X., Du, N., Sun, H., Chen, L., Bao, H., et al. (2020a). Immune
checkpoint molecules on T cell subsets of pregnancies with preeclampsia and gestational
diabetes mellitus. J. Reprod. Immunol. 142, 103208. doi:10.1016/j.jri.2020.103208

Frontiers in Molecular Biosciences frontiersin.org13

Chen et al. 10.3389/fmolb.2023.1209144

https://doi.org/10.3389/fmolb.2020.544895
https://doi.org/10.1371/journal.pone.0059753
https://doi.org/10.1093/jnci/djaa215
https://doi.org/10.1016/j.arcmed.2014.10.003
https://doi.org/10.1016/j.arcmed.2014.10.003
https://doi.org/10.3389/fcvm.2020.586871
https://doi.org/10.1007/s12094-020-02414-7
https://doi.org/10.1007/s12094-020-02414-7
https://doi.org/10.1016/j.jri.2020.103208
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1209144

	Association of the LEP gene with immune infiltration as a diagnostic biomarker in preeclampsia
	Introduction
	Materials and methods
	Downloading and processing of microarray data
	Annotations of DEGs’ function and pathway
	Screening candidate biomarker for diagnosis
	Predictive value of diagnostic markers in PE
	Construction of PPI network
	Evaluation of infiltrating immune level
	Patient and tissue samples
	Immunohistochemistry
	Quantitative real-time PCR
	Western blotting
	Statistical analysis

	Results
	Study procedure
	Identification of DEGs in PE
	Functional enrichment and correlation analysis
	Recognition and validation of diagnostic biomarkers
	Effectiveness of featured diagnostic biomarkers in PE
	Building PPI network
	LEP is associated with percentage of immune cells

	Discussion
	Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Publisher’s note
	Supplementary material
	References


