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Objectives: Cigarette smoking has been recognized as a predisposing factor for
both osteoporosis (OP) and chronic obstructive pulmonary disease (COPD). This
study aimed to investigate the shared gene signatures affected by cigarette smoking
in OP and COPD through gene expression profiling.

Materials and methods: Microarray datasets (GSE11784, GSE13850, GSE10006,
and GSE103174) were obtained from Gene Expression Omnibus (GEO) and
analyzed for differentially expressed genes (DEGs) and weighted gene co-
expression network analysis (WGCNA). Least absolute shrinkage and selection
operator (LASSO) regression method and a random forest (RF) machine learning
algorithm were used to identify candidate biomarkers. The diagnostic value of the
method was assessed using logistic regression and receiver operating
characteristic (ROC) curve analysis. Finally, immune cell infiltration was
analyzed to identify dysregulated immune cells in cigarette smoking-induced
COPD.

Results: In the smoking-related OP and COPD datasets, 2858 and 280 DEGs were
identified, respectively. WGCNA revealed 982 genes strongly correlated with
smoking-related OP, of which 32 overlapped with the hub genes of COPD.
Gene Ontology (GO) enrichment analysis showed that the overlapping genes
were enriched in the immune system category. Using LASSO regression and RF
machine learning, six candidate genes were identified, and a logistic regression
model was constructed, which had high diagnostic values for both the training set
and external validation datasets. The area under the curves (AUCs) were 0.83 and
0.99, respectively. Immune cell infiltration analysis revealed dysregulation in several
immune cells, and six immune-associated genes were identified for smoking-
related OP and COPD, namely, mucosa-associated lymphoid tissue lymphoma
translocation protein 1 (MALT1), tissue-type plasminogen activator (PLAT), sodium
channel 1 subunit alpha (SCNN1A), sine oculis homeobox 3 (SIX3), sperm-associated
antigen 9 (SPAG9), and vacuolar protein sorting 35 (VPS35).

Conclusion: The findings suggest that immune cell infiltration profiles play a
significant role in the shared pathogenesis of smoking-related OP and COPD. The
results could provide valuable insights for developing novel therapeutic strategies
for managing these disorders, as well as shedding light on their pathogenesis.
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1 Introduction

Persistent airflow llimitation is a distincitve time-developing
symbol of COPD, a common preventable and treatable disease
(Lippi et al., 2022). It has been found that there is a causation
between enhanced chronic inflammatory and COPD, especially with
a plus of the effect of cigarette smoking (Brightling and Greening,
2019). COPD is regarded as a systemic disease that is accompanied
byseveral comorbid conditions, such as lung cancer, muscle wasting,
diabetes, atherosclerosis, orthostatic hypotension, and anxiety/
depression. (Romme et al., 2015; Sarkar et al., 2015). The clinical
management of these comorbidities is crucial owing to their high
correlation to the rates of hospitalization, mortality, and reduced
health-related quality of life are commonly observed in patients with
COPD (Frei et al., 2014).

Osteoporosis, a systemic bone disease, is considered as one of
the significant comorbidities associated with COPD (Kanis et al.,
2008). Recent epidemiological evidence suggests a high
prevalence of OP in individuals with COPD, despite the
absence of a clearly established causal or molecular link
between the two disorders (Graat-Verboom et al., 2009;
Lehouck et al., 2011; Regan and Jaramillo, 2012; Watanabe
et al., 2015). Retrospective chart reviews of 234 male patients
with OP from a single bone clinic revealed that COPD accounted
for the leading cause of secondary OP (Ryan et al., 2011).
Smoking, however, has been found to be a risk factor for both
OP and COPD, according to recent studies (Ward and Klesges,
2001; Kanis et al., 2005; Hikichi et al., 2019; Li et al., 2022).
Smoking has been shown to cause changes in the microstructure
of trabecular bones, as well as reduce the resistance of skeletal
muscles to mechanical stress and loading. (Brook et al., 2012).
Studies have provided evidence of a functional interplay between
bone and immune cells, particularly involving activated T cells
and Th17 cells (Kong et al., 1999; Sato et al., 2006; Chen et al.,
2016). Additionally, interleukin-17 A expression has been
demonstrated to increase in the airways of patients with
COPD and correlates with decreased lung function in these
patients (Di Stefano et al., 2009; Eustace et al., 2011). In light
of these findings, IL-17 A could serve as a common mechanism
linking smoking-related OP and COPD. (Xiong et al., 2020).

The occurrence of OP in patients with COPD is
asymptomatic and is often undiagnosed until the occurrence
of bone fractures. Notably, fractures resulting from OP can
further impair the pulmonary function of patients with COPD.
Thus, the interdependence between COPD and OP gives rise to
a deleterious cycle that imposes a considerable burden on
affected individuals. As the occurrence of OP in patients
with COPD is immensely underrated, it is essential to
elucidate the pathogenesis of OP in COPD, and the early
diagnosis of patients with COPD who are at a high risk of
OP should be emphasized. The rapid progress in high-
throughput microarray technologies has enabled the
identification of putative novel biomarkers, genetic
variations, and biological pathways, thereby enhancing our

comprehension of the pathogenesis and therapeutic
intervention of various ailments (Li et al., 2021; Zhou Y
et al., 2022). WGCNA (Langfelder and Horvath, 2008; Abu-
Jamous and Clust, 2018; Zhou Z et al., 2022) and machine
learning techniques are gradually improving, and these
bioinformatics tools can be employed for providing great
prospects for identifying the potential molecular
mechanisms, biomarkers, and therapeutic targets for
smoking-related OP and COPD, as well as other complex
diseases. These technologies enable researchers to explore
large datasets and identify key molecular pathways and
biomarkers, leading to the discovery of new therapeutic
interventions and improved patient outcomes (Kumar et al.,
2021; Chen et al., 2022).

As far as we are aware, there have been few investigations
targeting the identification of immune-related biomarkers for
the diagnosis of smoking-related OP and COPD and there is a
scarcity of studies on the application of machine learning
approaches for the diagnosis of these diseases. Smoking-
related OP and COPD dataset was obtained from the GEO
database and used for the identification of candidate genes in
this study. In this study, we employed machine learning
algorithms to identify feature genes from candidate genes
and validated them using ROC curves. Our study identified
potential immune-related diagnostic biomarkers for smoking-
related OP in COPD patients, which could facilitate the early
diagnosis and personalized treatment of COPD. Our work not
only provides a approach for identifying potential biomarkers
for COPD but also highlights the value of machine learning
algorithms in identifying key genes for complex diseases. The
findings of this study have potential implications for improving
the clinical management and outcome of COPD patients, and
may also provide a framework for the development of similar
approaches for other complex diseases.

2 Materials and methods

2.1 Microarray data

The smoking-related OP and COPD datasets were retrieved
from the GEO database (https://www.ncbi.nlm.nih.gov/geo/)
(Edgar et al., 2002) for analyzing the gene expression data in
smoking-related OP and COPD. The search strategy employed
in this study is described hereafter. The gene expression profiles
generated by array analyses were initially retrieved from the
GEO database. The OP and COPD datasets, containing samples
obtained from blood and the small airway epithelium,
respectively, were retrieved from the GEO database. Datasets
containing samples of control groups and samples
corresponding to Homo sapiens were also retrieved from the
GEO database. The GSE11784 dataset (Tilley et al., 2011),
generated using the GPL570 [HG-U133_Plus_2] Affymetrix
Human Genome U133 Plus 2.0 Array platform, contained
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the expression data of 22 smokers with COPD and 63 healthy
subjects. The GSE13850 dataset, also generated using the
GPL96 [HG-U133 A] Affymetrix Human Genome U133 A
Array platform, contained the expression data of 10 smokers
with low bone mineral density (BMD) and 10 healthy subjects.
Two validation datasets were subsequently retrieved from the
GEO database; one dataset was extracted from the
GSE10006 dataset (Carolan et al., 1950), also generated using
the GPL570 array platform, and contained the expression data
of 54 smokers with COPD and 22 healthy subjects. The other
validation dataset was extracted from the GSE103174 dataset
and contained the gene expression data of 10 healthy subjects
and 23 smokers with COPD. The study did not require the

approval of an ethics committee or informed consent as these
data are publicly available (Figure 1).

2.2 Data processing and analysis of
differential gene expression

The DEGs were identified using the limma package in R (version
4.1.1; http://cran.r-project.org/) (Ritchie et al., 2015), and
subsequently analyzed using different packages. The initial
normalization of the data was performed by applying the
normalizeBetweenArrays function from the limma package in R.
Subsequently, probe IDs were transformed into gene symbols. The

FIGURE 1
Flowchart depicting the study design. GSE, GEO series; DEGs, differentially expressed genes; OP, osteoporosis.
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lmFit and eBayes functions were used to calculate the adjusted
p-values and |log2 (fold change)| of the genes, respectively. DEGs
were identified based on the criteria of |log2 (fold change)| > 1.5 and
adjusted p-value < 0.05.

2.3 WGCNA and selection of module genes

TheWGCNA system biology strategy was used to investigate the
gene-gene correlations using the WGCNA package in R (version
4.1.1; http://cran.r-project.org/), (Langfelder and Horvath, 2008).
The gene expression profiles were subjected to Median Absolute
Deviation (MAD) calculation for each gene. The calculation steps
for MAD are as follows: first, calculate the median of the dataset, and
then take the median of the absolute deviation of each data point to
obtain the value of MAD. To eliminate the top 30% genes with the
smallest MAD, and to remove outlier genes and samples, the
goodSamplesGenes function in the WGCNA package of R was
utilized. Subsequently, a scale-free co-expression network was
constructed using the WGCNA package. Initially, Pearson’s
correlation matrices were established to examine all pairwise gene
relationships, with the average linkage approach. The correlation
strength between gene pairs was used to build a weighted adjacency
matrix through the following power function: A_mn = |C_mn|̂β;
where, C_mn represents the Pearson’s correlation between genes m
and n, A_mn represents the adjacency between genes m and n, and β
is a soft-thresholding parameter that emphasizes strong gene
correlations while downplaying weak ones. We set β to 4 and
converted the adjacency matrix to a topological overlap matrix
(TOM) that measured gene connectivity. A dissimilarity matrix
(1-TOM) was subsequently produced. To generate genemodules, we
used an average linkage hierarchical clustering method with the
TOM-based dissimilarity metric to group genes with similar
expression profiles. The dendrogram’s gene groupings were
subjected to an adjustment, setting the minimum size for each
cluster to 30 while the sensitivity was established at 4.
Subsequent to the clustering of modules, further analysis was
conducted by computing the dissimilarity of module eigengenes.
A cut-line was selected for merging the module dendrogram, and
some of the modules were merged. A cut-line of 0.2 was selected for
merging the modules and a total of 18 co-expression modules were
finally obtained. It is worth mentioning that the grey module
encompassed a cluster of genes that lacked any definitive
assignment to any module (Alderden et al., 2018).

2.4 Functional enrichment analysis

The Gene Ontology (GO) resource provides structured
computable data regarding the functions of genes and gene
products (Consortium, 2019). The GO resource is widely used
along with the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database for analyzing the functions of genes (Kanehisa
and Goto, 2000). In this study, functional enrichment analysis was
performed using the clusterProfiler package in R (Yu et al., 2012)
and the results were visualized with Sangerbox (Shen et al., 2022).
GO and KEGG analyses were performed for identifying the DEGs in
OP that overlapped with the most significant module genes of OP,

and the intersecting DEGs were defined as the OP set. The genes
associated with smoking-related OP that overlapped with the DEGs
in COPD were subjected to GO and KEGG enrichment analyses.
The intersecting DEGs were subsequently used for screening the
candidate genes.

2.5 Application of machine learning
algorithms

The least absolute shrinkage and selection operator (LASSO)
regression method is widely used for selecting and regularizing
variables for increasing the predictive accuracy and
comprehensibility of statistical models (Yang et al., 2018). The
random forest (RF) method provides an effective approach for
predicting continuous variables and obtaining reliable forecasts
owing to its higher accuracy, sensitivity, specificity, and no limits
on variable conditions (Ellis et al., 2014). LASSO regression and RF
analyses were performed in this study using the glmnet (Zhang et al.,
2019) and randomForest packages, respectively, in R. The genes that
were identified by both LASSO and RF were selected as predictor
genes for constructing the logistic regression models.

2.6 Construction and validation of logistic
regression model

A logistic regression model was constructed based on the
identified predictor genes using the glmnet package in R
(Friedman et al., 2010). The GSE10006 and
GSE103174 validation datasets were used for evaluating the
accuracy of the model based on the receiver operating
characteristic (ROC) curve and the area under the curve (AUC).
The results were visualized using the pROC package in R (Robin
et al., 2011), and AUCs >0.8 were regarded as ideal.

3 Results

3.1 Identification of DEGs

Using the limma package in R, a total of 2,858 DEGs were
detected in the COPD dataset. Of these, 2,596 genes were found to be
upregulated while 262 were downregulated (Figure 2A, B).
Additionally, a total of 280 DEGs were identified in the OP
dataset, of which 109 and 171 genes were upregulated and
downregulated, respectively (Figure 3A, B).

3.2 WGCNA and identification of key
modules

The soft threshold power was set at a value of 4, and the scale-
free topological index was established at 0.85. The resultant gene tree
and corresponding module colors were generated and visually
represented using distinct color schemes (Figure 3C, E), in
18 gene modules. The correlation between smoking-related OP
and the gene modules is depicted in Figure 3D. The turquoise
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module, which comprised 982 genes, exhibited the highest
correlation with OP (correlation coefficient = −0.98, p = 2.4 e-13)
and this module was regarded as the pivotal module for the
subsequent analyses. The correlation between module
membership and gene significance in the turquoise module was
determined for elucidating the association between the genes and
smoking-related OP. The findings revealed a significant positive
correlation between module membership and gene significance (r =
0.97, p < 0.0001) as depicted in Figure 3F. The findings showed a
significant correlation between the genes within the turquoise
module and smoking-related OP.

3.3 Functional enrichment analysis of DEGs
associated with smoking-related OP

To evaluate the GSE13850 dataset’s reliability in providing
insights into the pathogenesis of smoking-related osteoporosis,
functional enrichment analysis was conducted on the DEGs that
intersected with the genes found within the turquoise module. By
intersecting the 280 DEGs with the 982 genes in the turquoise
module, a total of 208 genes were identified as shared genes
(Figure 4A). The results of GO enrichment analysis revealed that
the 208 intersecting genes were primarily enriched in the
nucleoplasm term in the cellular component (CC) category of
GO; the transcription factor binding, signaling receptor binding,
and beta receptor binding terms in the molecular function (MF)
category; and the regulation of cell communication and signaling

term in the biological process (BP) category (Figure 4C–E). The
results of KEGG pathway analysis revealed that the 208 intersecting
genes were primarily enriched in the MAPK signaling pathway and
B cell receptor signaling pathway terms (Figure 4B). Altogether, the
results of enrichment analyses revealed that the 208 genes of OP
were primarily related to inflammatory responses, which indicated
that the dataset selected herein could provide reliable insights and
was therefore used for further analyses.

3.4 Enrichment analyses of intersecting
DEGs in COPD and OP

In order to demonstrate whether smokers with low BMD harbor
genes that may be related to the pathogenesis of smoking-related
COPD, a total of 32 genes were identified as the intersection of DEGs
between COPD and OP, and visualized using a Venn diagram
(Figure 5A). The results of KEGG enrichment analysis
(Figure 5B) revealed that the 32 intersecting genes were primarily
enriched in the MAPK signaling pathway, B cell receptor signaling
pathway, HIF-1 signaling pathway, toxoplasmosis, apelin signaling
pathway, oxytocin signaling pathway, and cGMP-PKG signaling
pathway. The results of GO enrichment analysis (Figure 5C)
revealed that the 32 intersecting genes were enriched in the
biosynthetic process and regulation of signaling terms in the BP
category, mast cell granule and apical part of cell terms in the CC
category, and signaling receptor binding and channel activity terms
in the MF category.

FIGURE 2
Heatmap and volcano plot of the DEGs in the COPD dataset. (A) The rows depict the DEGs, and the columns represent the respective COPD cases or
control samples. The upregulated and downregulated DEGs are depicted in red and blue, respectively. (B) The upregulated and downregulated DEGs are
depicted in red and green, respectively.
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3.5 Identification of candidate genes by
machine learning algorithms

The identification of candidate genes was performed by
conducting logistic regression analysis with the aid of LASSO
and RF machine learning algorithms. A total of 13 candidate
biomarkers were identified using the LASSO regression
algorithm (Figure 6A, B), and the genes were ranked using the
RF algorithm by calculating the importance of each gene
(Figure 6C,D). The 14 genes predicted using the RF algorithm
and the 13 candidate genes identified using the LASSO algorithm
were overlapped, and the intersecting genes were visualized using

a Venn diagram (Figure 6E). A total of six intersecting genes,
namely, MALT1, PLAT, SCNN1A, SIX3, SPAG9, and VPS35,
were identified for final validation.

3.6 Construction of logistic regression
model and analysis of ROC curve

A logistic regression model was constructed based on the six
candidate genes, namely, MALT1, PLAT, SCNN1A, SIX3, SPAG9,
and VPS35, using a logistic regression algorithm. The results
demonstrated that the predictive model constructed using these

FIGURE 3
Identification of DEGs and genes associated with smoking-related OP by WGCNA. (A) The rows depict the DEGs, and the columns represent the
respective smoking-related OP cases or control samples. The upregulated and downregulated DEGs are depicted in red and blue, respectively. (B) The
upregulated and downregulated DEGs are depicted by red and green triangles, respectively. (C) The gene co-expression modules are represented in
different colors in the gene tree. (D) Heatmap depicting the association between gene modules and OP. The turquoise module was significantly
correlated with OP. The numbers on the left and right depict the correlation coefficients and p-values, respectively. (E)Heatmap depicting the adjacency
of the eigengenes. (F) Plot depicting the correlation between module membership and gene significance of the DEGs in the turquoise module. OP,
osteoporosis metabolic syndrome.
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six genes had superior diagnostic performance, with an AUC of
0.99 with the training set (Figure 7A). The results of ROC curve
analysis revealed that the model achieved reliable prediction results
with the GSE10006 and GSE103174 external datasets (Figure 7B, C),
with AUCs of 0.93 and 0.83, respectively, and the findings were
consistent with the results obtained using the training set. The
findings revealed that the six candidate genes might serve as
potential biomarkers of COPD and smoking-related OP;
however, further experimental studies are necessary for validating
these findings.

3.7 Analysis of immune cell infiltration

As the DEGs in COPD and OP were enriched in immune
regulation terms, the investigation of immune cell infiltration
may offer a more comprehensive understanding of the
mechanisms involved in regulating immune responses in
COPD. The proportions of 22 types of immune cells identified
in the GSE11784 dataset were graphically represented by a bar
plot (Figure 8A). The findings revealed that patients with
smoking-related COPD had a higher population of regulatory
T cells (Tregs) and monocytes, but a lower proportion of
M2 macrophages (Figure 8B). By analyzing the correlation
among the 22 different types of immune cells (Figure 8C), it

was observed that the fraction of plasma cells exhibited a positive
correlation with the fraction of resting NK cells (r = 0.76), while
the fraction of resting dendritic cells was positively correlated
with the neutrophil fraction (r = 0.64). The fraction of
M1 macrophages was negatively correlated to the fraction of
resting mast cells (r = −0.52) and follicular helper T cells
(r = −0.61), but positively correlated to the fraction of
memory-activated CD4 T cells (r = 0.64).

4 Discussion

There has been a growing public consciousness regarding the
detrimental impact of cigarette smoke exposure. Despite
significant advancements in regulating tobacco usage, cigarette
smoking remains a formidable global public health concern, with
no clear end in sight. (Petzold et al., 2009; Alberg et al., 2014).
Smoking-induced genetic alterations influence the secretion of
hormones and bone metabolism in the elderly population, which
regulate the pathogenesis of OP (Yoon et al., 2012; Marom-
Haham and Shulman, 2016). Cigarette smoking is widely
acknowledged as a major contributing factor to the
development of COPD, with estimates suggesting that
approximately 20%–25% of smokers eventually develop this
condition (Løkke et al., 2006). Despite numerous studies on

FIGURE 4
Enrichment analyses of the intersecting genes in smoking-related OP. (A) Venn diagram depicting the 208 genes identified from the intersection of
280 DEGs and 982 genes in the turquoise module. (B) KEGG pathway analysis of the 208 intersecting genes. The different colors represent the different
significantly enriched pathways and related enriched genes. (C–E) GO analysis of the intersecting genes that were enriched in different terms in the BP,
CC, and MF categories. The x-axis represents the ratio of genes that were enriched in the different GO terms and the y-axis represents the different
GO terms. The diameters of the circles correspond to the number of genes, and the colors represent the p-values.
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COPD in the past few decades, the mechanisms underlying the
pathogenesis of COPD remains poorly understood. The precise
effect of cigarette smoking on the pathogenesis of smoking-
related OP and COPD, and further investigation is warranted
to elucidate the potential correlation between these disorders. A
growing body of evidence suggests that cigarette smoking-
induced airway inflammation is linked to dysregulated
immune cell infiltration in patients diagnosed with COPD
(Cruz et al., 2019; Bu et al., 2020). It is worth noting that
smoking has the potential to elicit detrimental alterations in
the immune system, leading to diseases that stem from aberrant
regulation of immune cells (Wang et al., 2021; Luan and Si, 2022).
Therefore, the identification of effective and novel diagnostic
biomarkers of smoking-related OP and COPD within immune
cell components represents a promising domain of investigation,
with potential implications for early intervention and improved
clinical outcomes.

So far, however, no study has investigated the combined
effects of smoking-related OP and COPD. There are no
studies on the application of machine learning methods or the
construction of logistic regression models for predicting the
shared gene signatures of smoking-related OP and COPD. The

present study performed integrated bioinformatics analyses and
applied machine learning algorithms for identifying potential
biomarkers and evaluating the diagnostic value of smoking-
related OP in patients with COPD. Notably, the study
identified six immune-associated candidate diagnostic genes,
namely, MALT1, PLAT, SCNN1A, SIX3, SPAG9, and VPS35,
that could serve as biomarkers of OP in patients with COPD.

The MALT1 protein exhibits expression and functional
activity within osteoclasts, and is stimulated by receptor
activator of NF-κB ligand (RANKL) in preosteoclasts. Previous
investigations have demonstrated that individuals with combined
immunodeficiency attributed to MALT1 deficiency present with
diminished bone mineral density, leading to the occurrence of
several low-impact fractures. Monajemi et al. demonstrated that
Malt1 deficient mice develop an OP phenotype that is
characterized by increased osteoclastogenesis in vivo, and is
primarily caused by the inflammation of osteoclasts
(Monajemi et al., 2019). Furthermore, MALT1 is of
paramount importance in regulating innate and adaptive
immune signaling by adjusting the activation threshold of
immune cells. In a murine model of autoimmune arthritis, it
was previously reported that the deletion of MALT1 in T cells

FIGURE 5
Enrichment analysis of the genes identified from the intersection of DEGs in COPD and smoking-related OP. (A) The Venn diagram depicts the
32 genes that were identified from the intersection of the DEGs in COPD and OP. (B) Results of KEGG pathway analysis of the 32 intersecting genes. The
different significantly enriched pathways and related enriched genes are depicted in different colors. (C) Results of GO enrichment analysis of the
intersecting genes. The x-axis represents the ratio of genes enriched in the different GO terms and y-axis represents the different GO terms. The
diameters of the circles correspond to the number of genes, and the colors represent the p-values.
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resulted in the development of spontaneous OP, which was
concomitant with changes in the frequency of dysfunctional
Treg cells (Gilis et al., 2019). The CARMA1-BCL10-MALT1
(CBM) complex is known to contribute to the pathogenesis
and progression of allergic inflammation and diseases,

including COPD (DeVore and Khurana Hershey, 2022). PLAT
has been identified as an immune checkpoint gene that exerts a
critical influence on the prognosis of various cancers, such as
breast cancer and hepatocellular carcinoma, by modulating the
levels of immune molecules and regulating the infiltration of

FIGURE 6
Application of machine learning algorithms for screening candidate diagnostic biomarkers in smokers with COPD and low BMD. (A, B) Screening of
biomarkers using the LASSOmodel. The number of genes (n= 13) corresponding to the lowest point of the curvewasmost suitable. (C, D) The error in the
COPD group, as identified by the RF algorithm; the control group and genes are ranked based on the importance score. (E) Venn diagram depicting the six
candidate diagnostic genes identified using the LASSO and RF machine learning algorithms.

FIGURE 7
Validation of the key genes involved in crosstalk using the independent external datasets. Analysis of the ROC curve of the key genes involved in
crosstalk using the (A) GSE11784, (B) GSE10006, and (C) GSE103174 datasets.
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immune cells in the tumor microenvironment (Wang et al., 2021;
Hu et al., 2022). Using gene network analysis, a prior study
identified PLAT as a SARS-CoV-2 target and elucidated its
potential involvement in COVID-19’s inflammatory response,
metabolism of reactive oxygen species, and immune response.
(Saik and Klimontov, 2022). Wan et al. conducted a large-scale
genome-wide analysis of two COPD cohorts and obtained DNA
methylation data for 27,578 CpG sites in 14,475 genes. The study
revealed that the systemic use of steroids is associated with
differential site-specific methylation of several hub genes,
including SCNN1A, which partakes in various biological
processes, including cellular ion homeostasis and the
activation of leukocytes and lymphocytes (Wan et al., 2012). A
separate investigation has provided evidence that SCNN1A is
associated with unfavorable clinical outcomes in individuals
afflicted with ovarian cancer, and exerts an impact on the
immune cell infiltration patterns within the tumor
microenvironment (Lou et al., 2022). A previous study
reported that the SIX3 homeodomain transcription factor was
dysregulated in a TNF-α-stimulated inflammatory model of
epithelial cells, and SIX3 was found to affect cellular apoptosis
and motility under inflammatory conditions (Korthagen et al.,

2015). Additionally, Zheng et al. revealed the critical role of
SIX3 loss-of-function in breast cancer progression,
tumorigenesis, and metastasis. (Zheng et al., 2018). SPAG9 is
a newly identified member of cancer/testis antigens and has been
found to induce a specific immune response in several patients
with cancer. SPAG9 promotes the growth and metastasis of
epithelial cells by regulating the c-Jun N-terminal kinase
(JNK) and mitogen-activated protein kinase (MAPK) signaling
pathways (Pan et al., 2018). The MAPK signaling pathway is a
crucial mediator in the pathogenesis of OP and COPD, and has
been reported to regulate the activity of osteoblasts and
osteoclasts (Malakoti et al., 2022) and modulate airway
inflammation and remodeling (Mei et al., 2022). Xia et al.
reported that VPS35 partakes in regulating the trafficking,
signaling, and functions of receptor activator of nuclear factor
kappaB ligand (RANK) (Xia et al., 2013). The loss function of
VPS35 alters the RANKL-induced distribution of RANK,
enhances the sensitivity of RANKL, sustains RANKL signaling,
and induces the formation of hyper-resorptive osteoclasts.
Another study demonstrated that VPS35 can be potentially
applied for the diagnosis OP and the VPS35 gene was found
to play a potential role in the pathogenesis of OP (Xia et al., 2017).

FIGURE 8
Comparison of immune cell infiltration in the COPD and control samples. (A) The proportions of 22 types of immune cells in the different samples
were visualized using a bar plot. (B) Comparison of the proportions of 22 types of immune cells between the COPD and control groups. (C) Correlation
among the compositions of the 22 types of immune cells. *p < 0.05, **p < 0.01, ***p < 0.001. The horizontal and vertical axes depict the immune cell
subtypes.
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Immunological and inflammatory modulation has been
observed throughout all stages of COPD as reported in previous
studies. The present study revealed an elevated frequency of Treg
cells and monocytes and a reduced frequency of M2 macrophages in
COPD patients, in agreement with previous investigations.
Comprehending the underlying mechanisms that underlie
inflammatory signaling can furnish valuable insights towards the
development of diagnostic methodologies (Chen et al., 2022) and
facilitate the identification of innovative therapeutic agents for
COPD related to smoking.

The present study has certain limitations with are described
hereafter. Firstly, the other related genes could not be identified
in this study owing to the limited number of studies on the
genetic variations induced by smoking, and the fact that only the
GSE13850 dataset of GEO contained data regarding smoking-
related OP. Secondly, as only a limited number of clinical samples
could be included in our study, the findings obtained herein need
to be confirmed using a larger cohort. Thirdly, although the six
identified genes were primarily involved in regulating the
inflammatory and immune pathways, further in-depth
molecular biology experiments and prospective clinical trial
cohorts need to be designed for validating the mechanism of
action of these candidate genes.

Based on the results of this study, there are several future
directions that can be explored. Firstly, further validation of the
identified feature genes or exploration of other feature genes can
be conducted in larger sample sizes to improve the accuracy and
reliability of the results. Additionally, functional analysis can be
performed on these feature genes to better understand their
biological roles in COPD and smoking-related OP.
Furthermore, biological experiments can be used to explore
the mechanisms of action of these identified feature genes and
further investigate the effectiveness and safety of targeting these
genes for the treatment of these diseases. In summary, this study
provides valuable insights into potential biomarkers and
therapeutic targets for COPD and smoking-related OP.
Further research and development in these areas may lead to
progress in the diagnosis, treatment, and management of these
diseases.

5 Conclusion

The present study systematically identified six candidate
diagnostic genes, namely, MALT1, PLAT, SCNN1A, SIX3,
SPAG9, and VPS35, which were the shared gene signatures of
smoking-related OP and COPD, through a combined approach
of integrated bioinformatics analyses and machine learning
algorithms. The findings revealed that the association between
smoking-related OP and COPD and the influence of cigarette
smoking on the pathogenesis of these two diseases could be
closely related to the infiltration of immune cells. The
aforementioned genes and immune cells hold promise as
potential targets for immunotherapeutic intervention in
individuals afflicted with smoking-related OP and COPD.
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