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Objective: To investigate the potential association between Anoikis-related
genes, which are responsible for preventing abnormal cellular proliferation, and
rheumatoid arthritis (RA).

Methods: Datasets GSE89408, GSE198520, and GSE97165 were obtained from
the GEO with 282 RA patients and 28 healthy controls. We performed differential
analysis of all genes and HLA genes. We performed a protein-protein interaction
network analysis and identified hub genes based on STRING and cytoscape.
Consistent clustering was performed with subgrouping of the disease. SsGSEA
were used to calculate immune cell infiltration. Spearman’s correlation analysis
was employed to identify correlations. Enrichment scores of the GO and KEGG
were calculated with the ssGSEA algorithm. The WGCNA and the DGIdb database
were used to mine hub genes’ interactions with drugs.

Results: There were 26 differentially expressed Anoikis-related genes (FDR = 0.05,
log2FC = 1) and HLA genes exhibited differential expression (P < 0.05) between the
disease and control groups. Protein-protein interaction was observed among
differentially expressed genes, and the correlation between PIM2 and RAC2 was
found to be the highest; There were significant differences in the degree of
immune cell infiltration between most of the immune cell types in the disease
group and normal controls (P < 0.05). Anoikis-related genes were highly
correlated with HLA genes. Based on the expression of Anoikis-related genes,
RA patients were divided into two disease subtypes (cluster1 and cluster2). There
were 59 differentially expressed Anoikis-related genes found, which exhibited
significant differences in functional enrichment, immune cell infiltration degree,
and HLA gene expression (P < 0.05). Cluster2 had significantly higher levels in all
aspects than cluster1 did. The co-expression network analysis showed that
cluster1 had 51 hub differentially expressed genes and cluster2 had 72 hub
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differentially expressed genes. Among them, three hub genes of cluster1 were
interconnected with 187 drugs, and five hub genes of cluster2 were interconnected
with 57 drugs.

Conclusion:Our study identified a link between Anoikis-related genes and RA, and
two distinct subtypes of RA were determined based on Anoikis-related gene
expression. Notably, cluster2 may represent a more severe state of RA.

KEYWORDS

rheumatoid arthritis, anoikis-relatedmolecular clusters, anoikis, cell death, immunological
characterization

1 Introduction

Rheumatoid arthritis (RA) is a chronic autoimmune disease
that triggers inflammation in the joints, leading to potential long-
term joint damage and disability. Notably, RA can also extend
beyond the joints to affect vital organs such as the lungs, heart,
blood vessels, skin, and eyes. It is estimated that approximately
0.5% of the adult population worldwide are affected by RA, with a
higher incidence rate observed in women compared to men. While
individuals of all ages can be affected by this condition, the peak
age of onset is typically between 50 and 59 years (Smith and
Berman, 2022). The current therapeutic interventions for RA
consist of disease-modifying antirheumatic drugs (DMARDs),
nonsteroidal anti-inflammatory drugs (NSAIDs), and biologics.
While analgesics and NSAIDs can alleviate pain and stiffness
associated with RA, their efficacy is often limited, and NSAIDs
may involve the risk of gastrointestinal and cardiac toxicity (Zhao et al.,
2022a). Although DMARDs, which constitute the primary treatment
for RA, can be administered in combination, their multiple adverse
effects include hepatotoxicity, hematometabolic disorders, nausea, and
interstitial lung disease. Biological agents such as anti-tumor necrosis
factor (TNF)-α antibodies have demonstrated efficacy in treating RA;
however, their clinical use carries the risk of infusion and injection site
infections, and their efficacy may vary depending on the patient’s
individual needs (Zhao et al., 2022a). The introduction of these novel
therapies has improved the clinical management of RA patients (Zhao
et al., 2022a). Nevertheless, due to the complex and heterogeneous
nature of the pathogenesis of RA, a substantial portion of patients
exhibit an inadequate clinical response, highlighting the need for
targeted development of innovative therapeutics.

The term “Anoikis” was first introduced in 1990 (Frisch and
Francis, 1994). It is a crucial mechanism for preventing the
continued growth of developmentally abnormal cells or attachment
to inappropriate matrix when there is no interaction with the
extracellular matrix (Taddei et al., 2012). The loss of extracellular
matrix attachment disrupts integrin connections, leading to rapid
endothelial cell death (Meredith et al., 1993). Anoikis mainly occurs
through two pathways: intrinsic and extrinsic pathways. Intrinsic
pathway involves mitochondria as a critical organelle, and the key
events are mitochondrial permeabilization and regulation of Bcl-2
protein family. The extrinsic pathway involves cell surface death
receptor proteins, such as Fas or TNFR, which gradually forms a
death-inducing signaling complex and activate downstream caspase 8,
eventually leading to Anoikis (Gilmore, 2005). Tumor cells are
considered an essential condition in the tumor metastasis process
due to their insensitivity to Anoikis, which is called Anoikis

resistance. The current understanding suggests that the primary
mechanisms behind Anoikis resistance include alterations in
integrin expression patterns, excessive expression of extracellular
matrix, activation of survival signals induced by oxidative stress,
hypoxic microenvironments, and expression of key molecules such
as Twist, HGF/Met, EphA2 receptors, and TrkB (Taddei et al., 2012).

There are multiple types of cells in RA that collectively
contribute to the abnormal pathological features of RA. RA FLS
exhibit multiple tumor-like characteristics and survive and
proliferate excessively in tumor-like microenvironments. The
abnormal proliferation of RA FLS is partially attributed to the
inhibition of cell apoptosis (Bartok and Firestein, 2010; Bottini
and Firestein, 2013). RA FLS exhibits characteristics of invasive
growth and has been observed in experiments to not rely on wall
attachment for growth (Lafyatis et al., 1989). Studies have reported
that RA FLS increases its resistance to Anoikis and promotes
abnormal pathological characteristics through upregulation of
CTFG mediated by ADAM15/YAP1 (Janczi et al., 2023).
Additionally, the hypoxic microenvironment in RA joints is also
an important cause of Anoikis resistance in RA FLS (Taddei et al.,
2012; Zhao et al., 2022b). The relationship between other immune
cells in RA and Anoikis resistance remains unclear, therefore in this
article, we aim to provide theoretical references for the development
of clinical diagnosis and treatment plans by analyzing the potential
connection between Anoikis -related genes and RA.

2 Materials and methods

2.1 Data source and processing

The GSE89408, GSE198520, and GSE97165 datasets were
downloaded from the GEO database (GEO Accession viewer
(nih.gov)). The samples from GSE89408, GSE198520, and
GSE97165 are all derived from synovial biopsy tissue samples
obtained from individuals with or without RA. Raw counts data
from the downloaded datasets were converted into fpkm data and
log2 (fpkm+1) was applied, as shown in Table 1. For annotation, the
downloaded GEO dataset was annotated based on the GENCODE
(V38) gtf annotation file, and coding genes were extracted. Probe
IDs were converted to gene symbols, duplicates were removed, and
batch effect was removed before merging the data. Subsequent
analyses were based on the merged data. An anokis-related gene
set was selected from the MSigDB (V7.4) database (GSEA | MSigDB
(gsea-msigdb.org)). The complete analysis workflow is shown in
Supplementary Figure S1.
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2.2 Gene difference analysis

To identify differentially expressed genes between disease and
control groups, the expression profile data from the merged dataset
and the disease/control groupings were used. Differential analysis on
all genes was performed using the R package limma, and volcano
plots, and heat maps were generated for Anoikis-related genes.
Limma is based on a linear model and employs weighted least
squares to estimate differential gene expression. It corrects for
multiple testing issues using Bayesian methods. Genes were
considered downregulated if the false discovery rate (FDR) <
0.05 and log2FC < 1, and upregulated if the FDR <0.05 and
log2FC > 1. The R package RCircos was used to generate a
chromosome position diagram of differentially expressed
Anoikis-related genes to determine their positions on the
chromosome. The gene re-annotation file was downloaded from
GENCODE (https://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_
human/release_38/gencode.v38.annotation.gff3.gz), which provided
information for all differentially expressed genes. The String database
was used to construct a PPI network based on differentially expressed
Anoikis-related genes. Spearman correlation analysis was performed
on the differentially expressed Anoikis-related genes between two
scenarios: all samples and disease samples. Using Spearman’s
correlation analysis, we evaluated the correlation between
differentially expressed Anoikis-related genes across all and disease
samples. When p < 0.05 is obtained, a statistically significant
correlation between the two variables is recognized. Additionally,
we analyzed the differential expression of HLA genes between the
disease and control groups, along with the Spearman correlation
analysis between Anoikis-related genes and HLA genes.

2.3 Analysis of immune infiltration

We used ssGSEA to quantify immune cell infiltration. Immune
response gene set enrichment scores were calculated and analyzed for
differences between subgroups with immune response gene sets obtained
from the immport database (https://www.immport.org/shared/genelists),
consisting of 17 immune response gene sets. Additionally, we evaluated
the Spearman correlation between Anoikis-related genes and immune
response gene set enrichment scores.

2.4 Consistency clustering and disease
subtyping

We performed consensus clustering using the R package
ConsensusClusterPlus based on Anoikis-related differentially
expressed genes and disease sample data to identify molecular

subtypes based on the optimal clustering K value. The distance
metric used for clustering was km, and the clustering method was
euclidean; 1,000 repetitions were performed to ensure the stability of
the classification. We performed PCA clustering analysis on the
disease expression data to show the aggregation status between
different subgroups. Based on the subtypes, we analyzed the
expression differences of Anoikis-related genes between subtypes
and generated heat maps and box plots to visualize the differential
expression of Anoikis-related genes.

2.5 Functional enrichment differences

We calculated the enrichment scores of GO and KEGG
pathways using the ssGSEA algorithm from the R package
GSVA. We analyzed the enrichment differences of GO and
KEGG pathways among the groups and plotted heatmaps.

2.6 WGCNA analysis

WGCNA analysis was performed using the R package WGCNA.
First, a similaritymatrix was constructed based on the gene expression
data. The gene expression similaritymatrix was then transformed into
an adjacencymatrix, with β as the soft threshold, and the network type
was signed. The adjacency matrix was then transformed into a
topological overlap measure (TOM) matrix, which described the
degree of association between genes. The module membership
(MM), which measured the identity of a gene in a module, was
evaluated based on the Pearson correlation between the gene’s
expression profile across all samples and the expression profile of
the feature vector gene ME. Finally, gene significance (GS) was
calculated to measure the correlation between genes and external
information. We identified differentially expressed genes between
subtypes and intersected them with hub genes selected by
WGCNA to construct a PPI network. Hub gene enrichment in
different clusters through further GO and KEGG analysis, with a
significance threshold set at FDR <0.05 to determine statistically
significant enrichment results. Subsequently, we validated
differential gene expression across different clusters using RNA-seq
expression data from clinical synovial tissue samples recruited from
the Guanghua Hospital Precision Medicine Research Cohort,
including 9 RA patients and 15 osteoarthritis (OA) patients
(Zhang et al., 2022). Hub nodes in the PPI network were
identified using cytoscape, and gene degree was used to filter hub
genes. Genes with high degree of association were considered hub key
genes. We then used the DGIdb database v4.2.0 (https://www.dgidb.
org/) to query for drug interactions with these hub genes and
presented the interaction relationships using a Sankey diagram.

TABLE 1 Sample information.

Rheumatoid arthritis Normal Data processing Follow-up processing

GSE198520 92 0 Counts to fpkm log2 (fpkm+1)

GSE89408 152 28 Counts to fpkm log2 (fpkm+1)

GSE97165 38 0 Counts to fpkm log2 (fpkm+1)
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2.7 Statistical analysis

For differential significance analysis, Wilcoxon test was used for
comparisons between two groups unless otherwise specified, and
Kruskal–Wallis test was used for comparisons between more than
two groups. R version 4.1.2 was used for statistical analysis. In the
figures, ns indicates P > 0.05, * indicates P < 0.05, **P < 0.01, ***P <
0.001, and **** indicates P < 0.0001.

3 Results

3.1 Landscape of anoikis-related genes in the
disease

Based on the integrated expression data, differential analysis was
performed between disease and normal samples. The results showed
that 26 Anoikis-related genes were differentially expressed between
disease and normal samples (P < 0.05), with 20 upregulated and
6 downregulated genes (Figure 1D.E), and their chromosomal
locations were shown in Figure 1A. The protein interaction network
of differentially expressed Anoikis genes revealed that IL6, MMP3,
HIF1A, IKBKG, IL10, MCL1, JAK2, and others had a higher degree of
connectivity (Figure 1B). The results of the expression correlation

analysis among differentially expressed genes (disease samples, all
samples) showed that the correlations between PIM2 and RAC2
were the highest in all samples and disease samples (r = 0.84 and
0.83, P = 8.99 × 10−83 and 3.71 × 10−74, respectively) (Figure 1C).

3.2 Anoikis-related genes are involved in
disease immune regulation

To further explore the correlation with immune status, we quantified
different immune cell subtypes using ssGSEA based on the integrated
data and compared the differences in infiltration levels between groups
using the rank-sum test. The box plots of the infiltration scores of
different immune cells between disease and normal samples showed that
most of the immune cells, such as activated B cell, activated CD4+T cell,
activated CD8+T cell, and activated dendritic cell, were significantly
different between disease and normal groups (P < 0.05) (Figure 2A).

We also analyzed the correlation between Anoikis-related
differentially expressed genes and immune-infiltrating cells. The two
points with the highest positive and negative correlations were selected.
Notably, significant positive correlation was observed between BIRC3
and activated CD4+T cell (r = 0.91, P = 1.25 × 10−120), while significant
negative correlation was observed between TSC2 and Eosinophil
(r = −0.56, P = 7.95 × 10−27) (Figure 2B). Furthermore, we analyzed

FIGURE 1
The differential expression of Anoikis-related genes. (A) The chromosomal locations of the differentially expressed Anoikis-related genes. (B) The
protein-protein interaction network among the differentially expressed Anoikis-related genes. (C) The Spearman correlation between the differentially
expressed Anoikis-related genes in all and disease samples (the lower-left panel shows the correlation heatmap for disease samples, and the upper-right
panel shows the correlation heatmap for all samples). (D) The volcano plot of differentially expressed Anoikis-related genes. (E) The heatmap of
differentially expressed Anoikis-related genes.
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the correlation between Anoikis-related gene expression andHLA gene.
Interestingly, most of the HLA genes were differentially expressed
between the disease and normal groups (P < 0.05). Among them,
CD74 and NOTCH3 were the genes with highest positive and negative
correlations with HLA-DRB1/DMB, respectively (r = 0.82, P = 8.44 ×
10−78 and r = −0.40, P = 4.91 × 10−13) (Supplementary Figure S2).

3.3 The expression of anoikis-related genes
stratifies the disease into biologically distinct
subtypes

This stratification can be used to reflect similar disease states and
help implement personalized treatments. Based on the Anoikis-related
differentially expressed genes (26 genes) between RA and normal
groups, consistent clustering was performed on the integrated

rheumatoid arthritis dataset to identify sample subgroups with
similar expression patterns and molecular subtypes based on the
optimal clustering K. Here, we identified the 2 subtypes with the
most gradual decrease in CDF as the optimal clustering number
(Figures 3A–D). Differential analysis was performed on the Anoikis-
related genes between subtypes, and 59 differentially expressed Anoikis-
related genes (P < 0.05) were identified. Heatmaps and boxplots were
used to visualize the differentially expressed Anoikis-related genes
between subgroups. (Figures 3E,F).

3.4 There were functional enrichment
differences between different subgroups

Based on the subgrouping, we calculated the enrichment scores
of GO and KEGG pathways between different subgroups, analyzed

FIGURE 2
The immune-related analysis of Anoikis-related genes. (A) The differences in immune-infiltrating cells between disease and normal samples. (B) The
Spearman correlation between the differentially expressed Anoikis-related genes and immune cell infiltration scores, displaying the scatter plots of their
maximum positive and negative correlations, as well as the boxplots of the immune cells and genes with positive and negative correlations that differ
between disease and normal samples.
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the enrichment score differences of GO and KEGG pathways
between subgroups, and visualized them in heatmaps. Many
pathways of GO and KEGG showed significant differences in
enrichment scores between subgroups (P < 0.05). The top 30 GO
processes were mainly related to the proliferation, adhesion, and
differentiation reactions of lymphocyte T cells, B cells, and immune
cells. The top 30 KEGG pathways also included autoimmune
diseases, multiple immune cell receptor pathways, cell apoptosis,
and cell adhesion. The enrichment scores of these GO and KEGG
pathways in Cluster 2 were significantly higher than those in Cluster
1 (P < 0.05) (Figure 4; Figure 5).

3.5 The subtypes had different immune
characteristics

Based on the integrated rheumatoid arthritis data, ssGSEA was
used to quantify different immune cell subtypes, and the differences
in infiltration levels between subgroups were compared using the
rank-sum test. The boxplots of infiltration scores of different
immune cells between subgroups showed that most of the
immune infiltrations, such as activated B cell, activated
CD4+T cell, activated CD8 +T cell, and activated dendritic cell,
were significantly different between subgroups (P < 0.05), and the

FIGURE 3
The subtyping of disease samples based on Anoikis-related genes. (A) Heatmap of the consistency clustering results matrix. (B) Cumulative
distribution function (CDF) plot of the consistency clustering results. (C) Delta area plot of the consistency clustering results. (D) PCA clustering results of
the subtyping. (E) Heatmap of differentially expressed Anoikis-related genes among the subtypes. (F) Boxplot of differentially expressed Anoikis-related
genes among the subtypes.
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immune cell infiltrations in Cluster 2 were significantly higher than
those in Cluster 1 (P < 0.05) (Figure 6A). We also compared the
immune response gene sets between subgroups and found that most
immune response gene sets, such as antigen processing and
presentation, antimicrobials, and BCR signaling pathway, were
significantly different between subgroups, and the immune
response gene sets in Cluster 2 were significantly higher than
those in Cluster 1 (P < 0.05) (Figure 6). In addition, we
compared the expression of HLA genes between subgroups and
found that 19 HLA genes were significantly different between
subgroups, with the expression of HLA genes in Cluster 2 being
significantly higher than that in Cluster 1 (P < 0.05) (Figure 6).

3.6 Identification of key molecules based on
co-expression network analysis

Based on the subgrouping, the R package limma was used to
calculate the differentially expressed genes between subgroups, and
1,295 differentially expressed genes were identified (FDR <0.05 and |
log2FC|>0.585). Based on the merged data of rheumatoid arthritis,
the R packageWGCNAwas used to construct a weight co-expression

network. First, the data was filtered with themethod set to “ward.D2”.
Studies have shown that the co-expression network complies with the
scale-free network, where the logarithm of the number of nodes with
a connectivity of k (log(k)) is negatively correlated with the logarithm
of the probability of the node appearing (log (P(k))) and the
correlation coefficient is greater than 0.85. To ensure that the
network is a scale-free network, the optimal β = 10 was selected
(Figure 7). Next, the expression matrix was transformed into an
adjacency matrix and then into a topological matrix. Based on TOM,
the average-linkage hierarchical clustering method was used to
cluster genes and the standard of mixed dynamic tree cut was set,
with each gene module having a minimum number of 30 genes. After
determining the gene modules using the dynamic tree cut method,
the eigengenes for eachmodule were calculated and themodules were
subjected to cluster analysis with a height set to 0.25. Modules that
were close in distance were merged into new modules. The Pearson
correlation coefficient between the ME of each module and the
sample phenotype features was calculated, with a higher value
indicating greater importance. In Figure 7E, rows represent the
eigengenes of each module, columns represent the sample
phenotype features, with red indicating positive correlation and
blue indicating negative correlation. The higher the color

FIGURE 4
Differential enrichment of GO pathways among subtypes Perform a Gene Ontology (GO) enrichment analysis on differentially expressed genes
among subtypes.
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intensity, the higher the correlation. Based on cluster1, the magenta
module with the highest positive correlation was selected, and based
on cluster2, the red module with the highest positive correlation was
selected. Using module membership (MM) > 0.6 and gene
significance (GS) > 0.5, 72 and 200 core genes were respectively
screened from the two modules (Figures 7F–G). These genes were
intersected with the differentially expressed genes between the
subtypes mentioned above, resulting in 51 hub cluster1 differential
genes and 172 hub cluster2 differential genes (Figure 7).

To further elucidate biological functions of hub genes within
distinct clusters, we use GO and KEGG enrichment analyses. The
enrichment results revealed that cluster 1 was primarily associated
with cellular components such as the basal cortex, collagen-
containing extracellular matrix, cell leading edge, and basal part
of the cell (FDR < 0.05). Additionally, it showed significant
involvement in signaling pathways like the Hippo signaling
pathway across multiple species (FDR < 0.05). Cluster
2 exhibited significant enrichment in biological processes,
including lymphocyte differentiation, mononuclear cell
differentiation, and T cell differentiation (FDR < 0.05). In terms
of cellular components, it was associated with the immunological
synapse, plasma membrane signaling receptor complex, and

phagocytic vesicle (FDR < 0.05). Moreover, molecular functions
related to cytokine receptor activity, cytokine binding, and immune
receptor activity were enriched (FDR < 0.05). Cluster 2 also
demonstrated significant involvement in signaling pathways such
as Th17 cell differentiation, Natural killer cell-mediated cytotoxicity,
and the TNF signaling pathway (FDR < 0.05) (Supplementary Figure
S3). We further validated 42 differential genes from 51 hub cluster
1 and 153 differential genes from 172 hub cluster 2, showing
significant differential expression (FDR <0.05) in synovial tissues
of both RA and OA (Table 2) (Supplementary Table S1).

3.7 Potential treatment strategies

We constructed PPI networks for the 51 cluster1 hub differential
genes and the 172 cluster2 hub differential genes, respectively
(Figure 8). Cytoscape was used to identify hub nodes (key genes
selected by degree for each cluster) in the PPI networks, which were
then used for gene-drug interactions. The top 6 genes with the
highest degree (top 4 genes with degree of 2–5) were selected as key
genes for gene-drug interactions in cluster1. Next, we mined gene-
drug interaction relationships based on the DGIdb database v4.2.0

FIGURE 5
Differential enrichment of KEGG pathways among subtypes Perform a KEGG pathway enrichment analysis on differentially expressed genes among
subtypes.
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(https://www.dgidb.org/), displaying unique gene-drug interactions
with 3 genes and 187 drugs, and a Sankey diagram was drawn to
illustrate the interactions (Figure 9). Similarly, the top 6 genes with

the highest degree (top 6 genes with degree of 43–63) were selected
as key genes for gene-drug interactions in cluster2. Gene-drug
interaction relationships were mined based on the DGIdb

FIGURE 6
The distinct immune features among subtypes. (A) The differences in immune cell infiltration scores (ssGSEA algorithm) among subgroups. (B) The
differences in enrichment scores (ssGSEA algorithm) of immune response gene sets among subgroups. (C) The differential expression of HLA genes
among subgroups.
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FIGURE 7
The hub gene selection using WGCNA. (A) The molecular functions of differentially expressed genes among subtypes according to GO enrichment
analysis. (B) The hierarchical clustering tree of WGCNA training samples. (C) The different soft thresholds and the corresponding scale-free fitting indices
(scale-free R2) where the x-axis represents the different soft thresholds and the y-axis represents the corresponding scale-free fitting indices. (D) Gene
hierarchical clustering dendrogram and modules constructed by WGCNA, where the gray nodes in the color bar indicate genes not assigned to any
module, and the remaining colors represent the built modules. (E) Heatmap showing the module-trait correlation. (F) The magenta module with the
highest positive correlation in cluster 1. (G) The red module with the highest positive correlation in cluster 2.
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database v4.2.0 (https://www.dgidb.org/), displaying unique gene-
drug interactions with 5 genes and 57 drugs, and a Sankey diagram
was drawn to illustrate the interactions (Figure 10).

4 Discussion

Rheumatoid arthritis (RA) is a self-immune disease that
seriously endangers the physical and mental health of patients,
and can involve multiple systems in the body and have various
complications. The existing first-line therapies are not sufficient to
achieve clinical cure for all patients, and some patients may
experience adverse reactions due to the complexity of the
pathogenesis. Therefore, a thorough understanding and research
on the pathogenic mechanisms of RA is of great significance for the
development of clinical strategies for RA. Anoikis, as an important
mechanism of cell death, may play a role in RA throughmechanisms
that promote cell death, particularly in cases where fibroblast-like
synoviocytes (FLS) exhibit resistance to anoikis, which may lead to
RA disease progression.

Firstly, we analyzed the differential expression of anoikis-
associated genes between disease and normal samples and

conducted protein interaction analysis, revealing that IL6, MMP3,
HIF1A, IKBKG, IL10, MCL1, JAK2, and other genes may interact
with each other. The IL-6/JAK2/STAT3/VEGF pathway is also a key
pathway for promoting FLS proliferation and angiogenesis in RA
(Cheng et al., 2020), where IL-6 can promote MMP3 secretion
leading to bone destruction (Takeuchi et al., 2021). Several biologics
have been used for the treatment of IL6-related autoimmune
diseases, such as Tocilizumab, Siltuximab, and Sarilumab. These
medications are biologic agents that target the IL6 signaling pathway
and have been clinically used for treating various autoimmune
diseases associated with IL6, including rheumatoid arthritis,
systemic sclerosis, giant cell arteritis, and juvenile idiopathic
arthritis. They work by blocking the IL6 signaling pathway
through targeting the IL-6 receptor or binding directly to IL-6,
thus inhibiting inflammation and immune reaction to alleviate
disease symptoms and control disease progression. HIF1A has
also been reported to be associated with angiogenesis and
inflammation in RA (Brouwer et al., 2009), where TNF can
induce glucose metabolism transition of FLS through GLUT1 and
HIF1A (Koedderitzsch et al., 2021). IKBKG andMCL1 belong to the
crucial part of pro-survival pathway proteins, which may contribute
to the resistance of FLS to anoikis-apoptosis and promote
proliferation (Jiao et al., 2018). Additionally, we found that RAC2
and PIM2 had the highest correlation in disease samples and all
samples. RAC2 is significantly upregulated in the inducible nitric
oxide synthase (iNOS) regulated NO production process in RA
synovium (Dey et al., 2016); whereas, our previous unpublished
results showed that overexpression of PIM2 may promote
inflammation by promoting synovial proliferation. The high
correlation between RAC2 and PIM2 may be reflected in the
synergistic regulation of FLS proliferation. The differential
expression of these genes may represent a pattern of regulating
FLS proliferation, inflammation, and bone destruction.

FIGURE 8
Hub differential gene nodes in the PPI network. (A) Hub differential genes in cluster 1. (B) Hub differential genes in cluster 2. (The colors gradually
change from red to yellow, indicating the changes in degree from large to small, where red is the largest, and yellow is the smallest.).

TABLE 2 The information on hub key genes and their interacting drugs.

Cluster1 Cluster2

Number of hub genes 72 200

Number of hub differential genes 51 172

Key drug interaction genes 6 6

Number of genes detected by DGIDB 3 5

Number of drug interactions 187 57
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In order to further explore the correlation between these genes
and immunity, we conducted immune infiltration analysis, and
found that most immune cells, including activated B cell,
activated CD4+T cell, activated CD8+T cell, and activated
dendritic cell, showed significant differences between disease and
normal groups. As a type of autoimmune disease, RA involves

various immune cells infiltrating in the local joint
microenvironment, which together promote the progression of
RA (Zhao et al., 2021; Zhao et al., 2022c). We further analyzed
the correlation between Anoikis-related differentially expressed
genes and immune infiltration cells, among which the correlation
between BIRC3 and TSC2 with activated CD4+T cell and Eosinophil

FIGURE 9
Interactions between cluster 1 hub differential genes and drugs.
Utilize hub genes identified by Cluster 1 and perform an analysis of the
interaction between the hub genes and drugs based on a drug
database, followed by displaying the results.

FIGURE 10
Interactions between cluster 2 hub differential genes and drugs.
Utilize hub genes identified by Cluster 2 and perform an analysis of the
interaction between the hub genes and drugs based on a drug
database, followed by displaying the results.
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was the highest positive or negative correlation relationship. BIRC3 is
a survival-promoting protein and a downstream target of ATF6a. It
significantly increases in the RA synovium and CIA animal model,
and its positive expression correlation with activated CD4+ T cells may
imply that BIRC3 positively promotes the survival of autoimmune
T cells (Ge et al., 2022). Although Eosinophil is considered to induce
inflammation in asthma, it may have a suppressive effect on
inflammation in RA by increasing the differentiation of anti-
inflammatory macrophages (Chen et al., 2016; Andreev et al.,
2021). The relationship between TSC2 and Eosinophil and RA has
not been studied in detail. TSC2 mainly participates in the mTOR-
mediated cellular autophagy pathway, and further studies are needed
to investigate the relationship among them (Miao et al., 2019).

The estimated heritability of RApatients is 40%–60%, ofwhich 10%–
40% is contributed by HLA genes. HLA genes exhibits high variability,
both in terms of the classical locus ofHLA class I and class II genes. These
genes translate proteins that process antigen peptides andpresent them to
other cells of the immune system.HLA class I genesmainly includeHLA-
A, HLA-B, and HLA-C, while HLA class II genes mainly include HLA-
DRB1,HLA-DQB1, andHLA-DPB1 (Ali and Vino, 2016). Therefore, we
further analyzed the differential expression of HLA genes and their
correlation with Anoikis-related genes. We found that most HLA genes
showed differential expression between the normal and disease groups,
mainly includingHLA-A/B/DMA/DMB/DOA/DPA1/DPB1/DQA1/
DQA2/DQB1/DQB2/DRA/DRB1/F/DRB5. In addition, CD74 and
NOTCH3 exhibited the highest positive or negative correlation with
HLA-DRB1/DMB, respectively. CD74 is a membrane protein mainly
distributed on the surface of immune cells, which transduces signals by
binding to MIF (Sánchez-Zuno et al., 2021), while HLA-DRB1
sharesepitope sequences that mainly encode antigen presentation
proteins and contribute to ACPA-positive RA (Kampstra and Toes,
2017). The positive correlation between the twomay reflect the degree of
immune cell-mediated autoimmune inflammation. NOTCH3 and
NOTCH target genes are significantly upregulated in FLS, and in
animal models, inhibition of NOTCH3 or blocking NOTCH signaling
can reduce inflammation and prevent joint damage in inflammatory
arthritis (Wei et al., 2020). HLA-DMA0103 and HLA-DMB0104 alleles
are considered to be biomarkers reflecting the severity of RA disease
(Morel et al., 2004), but further experimental evidence is needed to
confirm the negative correlation between NOTCH3 and HLA-DMB.

The use of differential genes for disease typing is beneficial for
individualized treatment. Based on the 26 differential genes
associated with Anoikis, we further divided the disease group
into two clusters (cluster 1 and cluster 2). Functional enrichment,
immune infiltration, and HLA genotyping analyses were then
conducted. We found that most immune cells showed
significantly differential expression between the two clusters, with
the majority of immune cells exhibiting significantly higher scores in
cluster 2 than in cluster 1. Consistently, most immune response gene
sets, such as antigen processing and presentation, antimicrobials,
and BCR signaling pathway, as well as HLA gene expression, were
significantly higher in cluster 2 than in cluster 1, with statistical
differences. In summary, this may indicate that cluster 2 has a more
severe inflammatory response and disease severity.

Subsequently, we conducted WGCNA analysis, which is a system
biology method that uses gene expression data to construct an unscaled
network. We first found a large number of differential genes between
the two clusters, and GO enrichment analysis showed that the major

pathological factors of RA were mainly related to cytokines and
cytokine receptors. Through WGCNA analysis and intersecting with
the aforementioned differential genes, we obtained 51 hub cluster
1 differential genes and 172 hub cluster 2 differential genes. Based
on these cluster-specific differentially expressed genes, we initially
conducted GO and KEGG enrichment analyses to further elucidate
their biological functions. Cluster 1 was notably associated with the
Hippo signaling pathway, a crucial factor influencing RA FLS behavior.
Within this pathway, the tyrosine phosphatase PTPN14 has been
reported to enhance the pathological manifestations of RA FLS by
forming a complex with YAP (Bottini et al., 2019). Cluster 2’s
enrichment results revealed associations with a multitude of
lymphocytes and related signaling pathways. Lymphocytes, including
T cells, are pivotal effector cells in RA inflammation and its subsequent
progression. Subsequently, we conducted additional validation of the
identified cluster genes in synovial tissue from both RA and OA
patients. This validation process included 42 hub genes from cluster
1 and 153 hub genes from cluster 2. These genes were identified as
significant differential hub genes in OA or HC and RA respectively,
marking them as pivotal genes distinguishing the two clusters. These
genes represent important directions for our future research, warranting
further elucidation of their functionality and underlying mechanisms.
We further analyzed protein-protein interactions and mined core hub
genes. We also explored the interactions between these hub genes and
drugs based on the DGIdb database. We identified three hub genes that
interact with drugs in cluster 1, namely, CXCR4, EGFR, and LAMA2,
and five hub genes that interact with drugs in cluster 2, namely, GZMB,
IL2RB, IL2RG, LCK, and ZAP70. CXCR4 is aberrantly expressed in
multiple immune cell populations in RA and has multiple functions,
including promoting FLS proliferation, facilitating T cell migration,
promoting the differentiation of inflammatory macrophages, and
promoting inflammation, angiogenesis, and bone destruction
processes (Zhao et al., 2022a). EGFR has long been considered a
potential therapeutic target for RA, as its activation primarily
promotes synoviocyte proliferation and cytokine production, and
EGFR activation is also an important mechanism by which cells
resist apoptosis, which may contribute to FLS overproliferation
(Yuan et al., 2013). LAMA2 is primarily associated with congenital
muscular dystrophies (CMD) (Barraza-Flores et al., 2020). LAMA2 is a
major component of the basement membrane and an extracellular
protein that mediates cellular adhesion, migration, and other functions
through its interactions with other extracellular matrix molecules. As
there is a lack of direct research on the relationship between
LAMA2 and RA, further experimental studies are needed to
establish a link between the two. Given that LAMA2’s physiological
functions, it may affect the proliferation andmigration of multiple cells,
including FLS, via apoptosis resistance. GZMB ismainly associated with
inflammation and matrix degradation and is the strongest apoptotic
activity of the granzyme family members, with caspase-like abilities. In
RA, GZMB is abnormally expressed in multiple immune and non-
immune cells, which may contribute to bone destruction through
mechanisms such as matrix degradation (Zheng et al., 2023a).
Studies have shown that GZMB can increase tissue-destructive
effects by inducing apoptosis, contributing to the pathological
characteristics of RA (Buzza et al., 2005). IL2RB is a subunit of the
IL-2 receptor that mainly participates in T cell-mediated immune
responses and is associated with early bone erosion in RA as a
susceptibility gene (Ruyssen-Witrand et al., 2014). The protein

Frontiers in Molecular Biosciences frontiersin.org13

Zhao et al. 10.3389/fmolb.2023.1202371

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1202371


encoded by IL2RG is an important signaling component of many
interleukin receptors, including interleukin-2, -4, -7, and -21, and
may participate in multiple signaling pathways in RA. LCK and
ZAP70 mainly participate in the development and activation of
lymphocyte T and B cells, promoting the abnormal immune state
in RA. LCK can bind to cell surface receptors (including CD4 and
CD8) and other signaling molecules (Hu et al., 2022), while
mutations in ZAP70 change the sensitivity of developing T cells
to thymic positive/negative selection by altering self-peptide/MHC
complexes, change the self-reactive TCR repertoire to include
dominant arthritis-specific ones, and affect thymic development
and the production of self-immune inhibitory regulatory T cells
(Treg) (Takeuchi et al., 2020).

Finally, we discussed the relevance between key hub genes in the
two clusters and potential drug efficacy. In cluster 1, the major drug-
related genes included CXCR4, EGFR, and LAMA2. Targeting the
inhibition of CXCR4 and EGFR may be crucial directions to
suppress the aberrant pathological behavior of RA FLS and
angiogenesis. For example, BEVACIZUMAB can counteract
angiogenesis by inhibiting VEGF (Mitsuhashi et al., 2015), while
CXCR4 antagonists exhibit stronger anti-angiogenic effects
(Gravina et al., 2017). OLMUTINIB is also an EGFR inhibitor
(Roskoski, 2019), and given the biological functions associated
with LAMA2, it suggests that targeting LAMA2 and EGFR may
hold therapeutic value for RA. In cluster 2, the major drug-related
genes included GZMB, IL2RB, IL2RG, LCK, and ZAP70. The
connection between the GZMB family and RA has been
progressively elucidated (Zheng et al., 2023b). DACLIZUMAB is
a specific IL2 receptor-targeting drug, which is related to GZMB,
IL2RB, and IL2RG, and research indicates its therapeutic potential
in the experimental arthritis model induced by CIA (Brok et al.,
2001). It is possible that innovative treatments for RA targeting
IL2 may emerge in the future. As for LCK and ZAP70, as previously
mentioned, they are primarily associated with lymphocytes, and
numerous drugs target these genes, potentially impacting various
lymphocytes. This naturally affects the abnormal inflammation and
bone destruction in RA, although further exploration is needed to
determine if targeting LCK and ZAP70 for drug development is a
viable approach.

In summary, our analysis revealed that the hub genes in cluster
1 mainly function in the excessive proliferation of FLS in early RA
and the autoimmune cell migration process, while the hub genes in
cluster 2 mainly function in the excessive activation of autoimmune
cells and bone destruction processes in later stages of RA. Compared
to cluster 1, cluster 2 represents a more severe RA state. Moreover,
these key hub genes in the clusters are also associated with some
clinical drugs, including common clinical drugs for RA, which can
provide guidance for the clinical treatment and target development
of RA.
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SUPPLEMENTARY FIGURE S1
Flowchart of analysis process. Download relevant datasets from GEO, and
perform batch effect removal analysis to obtain corresponding RA and HC
samples, then conduct subsequent analysis on the merged sample data.

SUPPLEMENTARY FIGURE S2
The differential analysis of HLA genes in Anoikis-related genes. A: The
differences in HLA gene expression between disease and normal samples. B:
The Spearman correlation between differentially expressed Anoikis-related
genes and HLA gene expression, displaying the scatter plots of their
maximumpositive and negative correlations and the boxplots of the positive
and negative correlations of Anoikis-related genes and HLA genes that
differ between disease and normal samples.

SUPPLEMENTARY FIGURE S3
GO and KEGG for hub genes in cluster 1 and cluster 2 A: GO results for
hub genes in cluster 1. B: KEGG results for hub genes in cluster 1.C: GO
results for hub genes in cluster 2. D: KEGG results for hub genes in
cluster 2.

SUPPLEMENTARY TABLE S1
Validations for hub genes in cluster 1 and cluster 2. The expression of hub
genes in cluster 1 and cluster 2 was analyzed in clinical synovial tissue
samples collected from the Guanghua Hospital Precision Medicine
Research Cohort, which includes 9 rheumatoid arthritis (RA) patients and
15 osteoarthritis (OA) patients, and significant differences were observed
(FDR <0.05).
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