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Background: Ovarian Serous Adenocarcinoma is a malignant tumor originating
from epithelial cells and one of the most common causes of death from
gynecological cancers. The objective of this study was to develop a prediction
model based on extracellular matrix proteins, using artificial intelligence
techniques. The model aimed to aid healthcare professionals to predict the
overall survival of patients with ovarian cancer (OC) and determine the efficacy
of immunotherapy.

Methods: The Cancer Genome Atlas Ovarian Cancer (TCGA-OV) data collection
was used as the study dataset, whereas the TCGA-Pancancer dataset was used for
validation. The prognostic importance of 1068 known extracellular matrix proteins
for OCwere determined by the Random Forest algorithm and the Lasso algorithm
establishing the ECM risk score. Based on the gene expression data, the
differences in mRNA abundance, tumour mutation burden (TMB) and tumour
microenvironment (TME) between the high- and low-risk groups were assessed.

Results: Combining multiple artificial intelligence algorithms we were able to
identify 15 key extracellular matrix genes, namely, AMBN, CXCL11, PI3, CSPG5,
TGFBI, TLL1, HMCN2, ESM1, IL12A, MMP17, CLEC5A, FREM2, ANGPTL4, PRSS1,
FGF23, and confirm the validity of this ECM risk score for overall survival
prediction. Several other parameters were identified as independent prognostic
factors for OC by multivariate COX analysis. The analysis showed that
thyroglobulin (TG) targeted immunotherapy was more effective in the high
ECM risk score group, while the low ECM risk score group was more sensitive
to the RYR2 gene-related immunotherapy. Additionally, the patients with low ECM
risk scores had higher immune checkpoint gene expression and
immunophenoscore levels and responded better to immunotherapy.

Conclusion: The ECM risk score is an accurate tool to assess the patient’s
sensitivity to immunotherapy and forecast OC prognosis.

OPEN ACCESS

EDITED BY

Wei Zhang,
University of Southern California,
United States

REVIEWED BY

Guangyu Yao,
Southern Medical University, China
Oscar Maiques,
Queen Mary University of London,
United Kingdom

*CORRESPONDENCE

Athina Samara,
athina.samara@odont.uio.no

RECEIVED 04 April 2023
ACCEPTED 31 May 2023
PUBLISHED 14 June 2023

CITATION

Geng T, Zheng M, Wang Y, Reseland JE
and Samara A (2023), An artificial
intelligence prediction model based on
extracellular matrix proteins for the
prognostic prediction and
immunotherapeutic evaluation of ovarian
serous adenocarcinoma.
Front. Mol. Biosci. 10:1200354.
doi: 10.3389/fmolb.2023.1200354

COPYRIGHT

© 2023 Geng, Zheng, Wang, Reseland
and Samara. This is an open-access
article distributed under the terms of the
Creative Commons Attribution License
(CC BY). The use, distribution or
reproduction in other forums is
permitted, provided the original author(s)
and the copyright owner(s) are credited
and that the original publication in this
journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 14 June 2023
DOI 10.3389/fmolb.2023.1200354

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200354/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200354/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200354/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200354/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200354/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1200354/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1200354&domain=pdf&date_stamp=2023-06-14
mailto:athina.samara@odont.uio.no
mailto:athina.samara@odont.uio.no
https://doi.org/10.3389/fmolb.2023.1200354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1200354


KEYWORDS

extracellular matrix, ovarian serous adenocarcinoma, artificial intelligence, prognosis,
immunity therapy

Introduction

Ovarian cancer (OC) is one of the most common gynaecological
malignancies. According to the Global Cancer Observatory of the
World Health organization (WHO) international agency for
research on cancer, a total of 207,252 new fatalities due to
ovarian cancer were reported in 2020, placing it 14th out of
36 different types of tissue cancers (World Health Organization
International Agency for Research on Cancer, 2020). Most ovarian
malignancies originate from epithelial cells, and the most prevalent
histological subtype of epithelial ovarian cancer is ovarian serous
adenocarcinoma (Heintz et al., 2006). Early OC detection is the best
treatment scenario, but as OC presents with nonspecific symptoms
and reflects detection, most patients are given a stage III diagnosis,
indicating that the disease has spread throughout the peritoneum
and/or has involved the lymph nodes (Prat and FIGO Committee on
Gynecologic Oncology, 2014). A multi-stage evaluation is necessary
to manage OC, to determine personalized treatment, and to predict
the presence of distant metastases, tumour stage and prognosis.

As a new treatment option, immunosuppressants, address the
tumour microenvironment (TME) (Pitt et al., 2016). For ovarian
cancer, this cutting-edge therapeutical approach is recently being
studied and applied (Yang et al., 2022, 2023). Despite the fact that
many variables have been demonstrated to predict the therapeutic
effectiveness of immunosuppressant’s, the accuracy of this strategy
still needs to be improved (Gibney et al., 2016). Tumour
development, spread and invasion are all dependent on the TME
(Schreiber et al., 2011; Lei et al., 2020), which contains multiple cell
types, including stroma, vasculature, secretory factors, surrounding
stroma and the internal environment of the tumour cells. As the
TME is primarily determined by the genomic landscape of the
tumour, several algorithms have been developed to predict tumour
purity and estimate the abundance of tumour-infiltrating immune
cells based on gene expression profiles (Tamborero et al., 2018).
These include CIBERSORT, MCP, Xcell, EPIC, ESTIMATE, Timer,
IPS, and QuantiSeq.

As an essential component of TME, the non-cellular network
surrounding the cells, known as the extracellular matrix (ECM), is
tightly associated to the pathophysiology of healthy and cancerous
tissue (Frantz et al., 2010; Henke et al., 2020; Zhu et al., 2022). This
renders ECM a crucial study niche for the initiation, progression,
dissemination, and furthermore treatment and prognosis of
epithelial ovarian cancer (Ween et al., 2011). The metabolic
disruption of various ECM protein-related factors derived from
epithelial cells during tumorigenesis leads to the formation of a
pro-tumorigenic microenvironment that favors tumor growth and
metastasis. This is followed by tumour cell-mediated ECM
remodelling, which ultimately promotes the survival of tumour
cells at the expense of healthy tissue (Zigrino et al., 2005).
Therefore, ECM proteins, which have bidirectional effects on
the generation, recurrence and metastasis of tumour cells
(Valmiki et al., 2021 should be considered key players to the
treatment and prognosis of tumours (Donelan et al., 2022; Zhu
et al., 2022).

An artificial intelligence algorithm, Random Forest (RF) has
been recently employed to predict disease progression by virtue of its
high performance and interpretability (Wu et al., 2021). A
convincing predictive model can be constructed by combining
analysis of gene expression data with diagnostic and therapeutic
data. This model could be effective at forecasting patient survival, the
course of the tumour, and recurrence following various types of
treatment (Lin et al., 2022; Miao et al., 2022). Big data machine
learning may also also be applied. Despite the recent advances in
machine learning methods for ovarian cancer survival analysis,
integration of multi-omics data with immunotherapy targeting is
an approach that has not been thoroughly explored (Henderson
et al., 2016; Belotti et al., 2022). This approach could be
advantageous for the identification of potential therapeutic
targets and may lead to improved outcomes for ovarian cancer
patients.

In this study we used artificial intelligence algorithms to
integrate multifaceted omics data with immunotherapy targets in
ovarian cancer. Specifically, we employed the Random Forest and
Lasso algorithms to process gene expression and survival data from
the TCGA database. The tumour risk score was calculated to
construct features for predicting OC prognosis and
immunotherapy efficacy.

Materials and methods

Datasets and data quality control

Transcriptome expression profiles, somatic mutation data and
clinical survival data were downloaded from the TCGA database
(Supplementary Table S1). FPKM expression data from the UCSC
XENA Project (https://xenabrowser.net/datapages/), which
included the TCGA cancer gene expression sequencing data,
were analysed together to increase the reliability of data analysis.
Normal ovary tissue transcriptome sequencing data from the GTEx
database (https://www.gtexportal.org/home/) were used as
representative normal/healthy tissue data. We utilized the
immune cell markers used in the Tumour MicroEnvironment
(TME) analysis following the method described at Bindea et al.
(2013) and ECM-related gene information was obtained from Naba
et al. (2016). Following quality control measures on gene expression
data and somatic mutations (SNPs and small INDELs), we filtered
out 373 valid sample samples from the pool of 758 valid patient
survival datasets of the TCGA-OV collection.

Construction and evaluation of an ECM risk
score model related to survival

The TCGA-OV data were randomly partitioned into a training
set (n = 298) and a test set (n = 75). We used the randomForestSRC
package (3.1.1) (Ishwaran et al., 2022) to down-size the 1068 ECM
genes including survival information of OC patients. Further
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dimensionality reduction was performed by the Lasso algorithm in
the glmnet package (4.1–2) (Friedman et al., 2010). Survival analysis
of key genes in OVwas performed with multivariate COX regression
in the survival package (3.2–10) (Therneau, 2015).

Differential expression and enrichment
analyses

Two groups of patients with high and low-risk scores were generated.
To calculate the differential gene expression between cancer data and
normal tissue datawe usedDESeq2 v.1.36.0 (Love et al., 2014) inR (4.2.1).
We performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes
andGenomes (KEGG) enrichment analyses usingClusterProfiler v.3.14.3
(Yu et al., 2012) in R (3.6.3). To find BP term enrichment, the Gene Set
Enrichment Analysis (GSEA) (Subramanian et al., 2005) of ranked lists of
differentially expressed genes was carried out. Significant enrichment in
GSEAanalysis is achievedwhen the False discovery rate (FDR) is 0.25 and
an adjusted p-value of 0.05.

Tumour microenvironment (TME) and
somatic mutation analyses of the TCGA-OV
dataset

We used the “maftools” package (2.12.0) (Mayakonda et al.,
2018) for the calculation and evaluation of somatic mutations for
each patient. The “drugInteractions” function was employed to
analyse the correspondence between mutated genes and currently
available genetic drugs based on the DGIdb database (Griffith et al.,
2013). We further used multiple algorithms built into the IOBR
package (0.99.9) (Zeng et al., 2021) to assess the immune cell
infiltration level, including B cells, CD4+ T cells, CD8+ T cells,
neutrophils, macrophages and dendritic cells. Then we explored the
variations in immune infiltration and somatic mutation between
groups with high and low-risk scores.

Statistical analysis

The differences between the two datasets were determined using the
Mann-Whitney U test (also known as the Wilcoxon rank sum test) and
independent t-test. To evaluate between-group differences, one-way
analysis of variance (ANOVA) with the Kruskal–Wallis test and chi-
square test were utilised. Correlation analysis was conducted using non-
parametric Spearman correlation tests. The connection between potential
genes and overall survival was examined using a single-variable Cox
regression analysis (OS). The difference was shown to be statistically
significant when p < 0.05 was used (p < 0.05 *; p < 0.01 **; p < 0.001 ***).

Results

Screening and validation of ECM-related
prognostic key genes

The clinicopathological characteristics of 379 OC patients in the
TCGA database, are summarized in Table 1. The random forest

algorithm was used to decrease the training set. 147 genes were
screened out of 1068 ECM-related genes, and the accuracy of this
survival prediction model was validated using the test set. The
receiver operating characteristic curve (ROC) for the training set
and test set were plotted separately, with the area under the curve
(AUC) of 0.810 for the training set and 0.684 for the test set
(Figure 1A).

The results of “lambda.min” of the Lasso algorithm were
employed and 15 key genes closely related to prognosis were
obtained (Figures 1B, C). These were Ameloblastin (AMBN),
Chemokine (C-X-C motif) ligand 11 (CXCL11), Peptidase
inhibitor 3 (PI3), Chondroitin sulfate proteoglycan 5 (CSPG5),
Transforming growth factor (TGFBI), Tolloid-like 1 (TLL1),
Endothelial cell-specific molecule 1 (ESM1), Matrix
metallopeptidase 17 (MMP17), Angiopoietin-like 4 (ANGPTL4),
Fibroblast growth factor 23 (FGF23), Hemicentin 2 (HMCN2),
Interleukin 12A (IL12A), C-type lectin domain family 5, member
A (CLEC5A), FRAS1 related extracellular matrix protein 2 (FREM2),
serine protease 1 (PRSS1), and the gen prediction model with the
risk coefficient of 15 genes given by the Lasso algorithm was
constructed:

Risk score � TGFBI p 0.0092( ) + CSPG5 p −0.0307( )
+ PI3 p 0.0481( ) + CXCL11 p −0.1219( )
+MMP17 p 0.0512( ) + IL12A p 0.0084( )
+ ESM1 p −0.0317( ) +HMCN2 p 0.0707( )
+ TLL1 p 0.4759( ) + FGF23 p 0.0328( )
+ PRSS1 p −0.0277( ) + ANGPTL4 p 0.0245( )
+ FREM2 p −0.0014( ) + CLEC5A p 0.0311( )
+ AMBN p 1.2734( )

The Cox model was used to verify the predictive ability of the
15 key genes for the 1-year, 3-year and 5-year overall survival (OS),
and the key genes fit well with the ideal line at the three-time points
(Figure 1D). The TCGA-OV sample was divided into two groups
with high and low-risk scores based on the average risk score.
Furthermore, the Kaplan Meier (KM) curves of high/low-risk

TABLE 1 Characteristics of OC patients; source TCGA database.

Characteristics N

Age

≤60 208

>60 171

Total 379

OS

Alive 147

Dead 232

Total 379

FIGO stage

Stage I 1

Stage II 23

Stage III 295

Stage IV 57

Total 376
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score groups were plotted, showing a significant difference between
the high and low-risk score groups (Figure 1E). Additional
multifactorial Cox models were used to analyse the relationship
between the 15 key genes and ovarian cancer OS (Table 2), and we
found thatAMBN, CXCL11, CLEC5A,CSPG5 FREM2, MMP17, and
PI3 were independent prognostic factors for ovarian cancer.

Differential expression analysis and
functional enrichment of high and low ECM
risk score groups

The ECM risk score, survival information, and one-to-one
correspondence to the expression of the 15 key genes for each sample
in TCGA-OV are presented in Figure 2A. The results of differential gene
expression of high vs. the low-risk score group showed that 1004 genes
were significantly upregulated (logFC > 0.4, adj. p < 0.05), and 378 genes
were significantly downregulated (Figure 2B).

We documented that there is a substantial difference in the
extracellular matrix-related processes in the enrichment of
GOKEGG functions (Supplementary Figure S1A). Additionally, it
was shown that biological processes associated with immune cells
differed dramatically (GO:0071621, GO:0043030 et al.). Two
immune-related pathways were revealed to be blocked in the
high ECM risk score group in the GSEA results (Supplementary
Figure S1C). Based on the 15 key prognostic genes in the TCGA-OV
at the principal component analysis (PCA cluster), there was little
difference between the high and low-risk subgroups in the PC1 and
PC2 dimensions (Figure 2C).

We also examined the expression of the 15 key genes in normal
ovarian tissue vs. the TCGA-OV collection, and in low/high ECM
risk score groups (Figures 2D, E). In the expression analysis of
normal vs. tumour tissues, only PRSS1 was not significantly
differentially expressed in normal versus tumour tissues. The
expression levels of TLL1, HMCN2, FREM2 and MMP17 were
significantly higher in normal ovarian tissues than in tumour

FIGURE 1
Construction of ECM risk score model (A) AUC for random forest train model (blue) and test model (red); (B) Lasso dimensionality reduction for
random forest prognosis model; (C) Locus plot of all genes in random forest prognosis model; (D)Nomogram survival plot for 15 key prognosis genes; (E)
KM survival plot for high/low ECM risk score group.
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tissues. AMBN, TGFBI, CSPG5, PI3, CXCL11, ESM1, FGF23,
ANGPTL4, CLEC5A and IL12A all showed significantly higher
expression in tumour tissues samples.

In the differential expression analysis of low/high ECM risk
score groups, AMBN, IL12A and FREM2 were not statistically
different, whereas PI3, TGFBI, TLL1, HMCN2, MMP17, CLEC5A,
ANGPTL4, FGF23 had higher expression in the high-risk group and
CXCL11, CSPG5, ESM1, PRSS1 were highly expressed in the low-
risk group.

The genes BCRA2, MUC1 and MUC16 (in the red-framed
rectangles in Figures 1C, D, and the heat map), were also
assessed to supplement our analysis with three genes from the
same dataset, previously functionally characterized for their
prognostic role in OC (Wang et al., 2007; Zhai et al., 2020;
Custódio et al., 2022). The genes are also.

Assessing the role of ECM risk score in
tumour immune cell infiltration and
immunotherapy response

The analysis using almost all algorithms, documented that
CD8 T cells showed a significant difference, with lower levels of
infiltration in the high-risk group than in the low-risk group. In the
high-risk group, the signature score of CD4 T memory resting cells
was higher, and lower in all other T cells (Figure 3A). Neutrophils
scored variable results among the four algorithms: there were group
differences in the infiltration levels of neutrophils in the
CIBERSORT and MCPcounter algorithms, with both algorithms

showing higher levels in the high-risk group (Figure 3B). According
to the EPIC, MCPcounter, and xCell algorithms, the high-risk group
had higher numbers of cancer-associated fibroblasts (CAFs)
(Figure 3C).

Both the xCell and ESTIMATE algorithms indicated a lower
immune microenvironment score for the high-risk group when
computing the immune microenvironment score. The high-risk
group displayed a higher stromal score in the ESTIMATE
algorithm, indicating the presence of more stromal cells (Figure 3D).

The analysis of B cells also showed high variation among the
algorithms used: significant differences between groups were only
documented by the xCell algorithm; naive B cells and plasma cells
showed group differences under the CIBERSORT algorithm but
not when the xCell algorithm was employed (Supplementary
Figure S2). There was no discernible difference between the two
groups in monocytes (Supplementary Figure S2). Only xCell
revealed group differences in DC cells (Supplementary Figure
S2). NK cells only showed between-group differences under the
MCPcounter and quantiseq algorithms, but there was an opposite
trend: NK cells showed relatively low levels in the high-risk group
under the MCPcounter algorithm but relatively high levels in the
high-risk group under the quantiseq algorithm (Supplementary
Figure S2). The high-risk group’s Macrophage M1 levels were only
marginally different to the low-risk group according to the
CIBERSORT and xCell results, and there was no difference
between groups when the EPIC method was used
(Supplementary Figure S2).

We also extracted the expression levels of eight
immunological checkpoint genes (Figure 3E). The expression

TABLE 2 Multifactorial Cox survival analysis of the 15 key genes in TCGA-OV patients.

Characteristics High Low (Reference) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p value Hazard ratio (95% CI) p value

TGFBI 186 187 1.118 (0.863–1.448) 0.398 0.822 (0.587–1.150) 0.252

CSPG5 186 187 0.754 (0.582–0.978) 0.033 0.811 (0.611–1.077) 0.047

P13 186 187 1.470 (1.133–1.908) 0.004 1.379 (1.044–1.820) 0.023

CXCL11 186 187 0.614 (0.472–0.798) <0.001 0.567 (0.425–0.756) <0.001

MMP17 186 187 1.689 (1.301–2.192) <0.001 1.553 (1.150–2.098) 0.004

IL12A 186 187 1.010 (0.780–1.308) 0.939 0.942 (0.716–1.238) 0.666

ESM1 186 187 0.936 (0.723–1.213) 0.618 1.035 (0.783–1.369) 0.809

HMCN2 186 187 1.503 (1.157–1.953) 0.002 1.172 (0.871–1.578) 0.294

TLL1 186 187 1.400 (1.080–1.815) 0.011 1.285 (0.966–1.711) 0.085

FGF23 186 187 1.191 (0.919–1.543) 0.185 1.085 (0.821–1.436) 0.565

PRSS1 186 187 0.818 (0.630–1.061) 0.131 0.979 (0.738–1.299) 0.885

ANGPTL4 186 187 1.377 (1.061–1.786) 0.016 1.064 (0.794–1.424) 0.679

FREM2 186 187 0.724 (0.558–0.940) 0.015 0.633 (0.473–0.847) 0.002

CLEC5A 186 187 1.577 (1.213–2.051) <0.001 1.444 (1.044–1.998) 0.026

AMBN 6.630 (2.508–17.526) <0.001 8.544 (3.045–23.976) <0.001

*Total number of patients 373.

Statistically significant values are indicated in bold.
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levels of six immune checkpoint genes (TIGIT, CD274, PDCD1,
CTLA4, LAG3, and PDCD1LG2) was higher in the low-risk
group than in the high-risk group, with the exception of
SIGLEC15 and HAVCR2. The IPS score for the major
histocompatibility complex (MHC), and for senescent cells
(SC) was greater in the low-risk group than in the high-risk

group. Endothelial cells (EC) IPS score did not differ
statistically significantly between the two groups. However,
the high-risk group had a higher Classical Pathway (CP) IPS
score than the low-risk group. Both the aggregated z-score (AZ)
and the weighted total IPS showed that the low-risk group was
higher than the high-risk group (Figure 3F).

FIGURE 2
Differential analysis of function between high/low ECM risk score group (A) Information of sample group based on ECM risk score and 15 key
prognosis gene expression heatmap. (B) Volcanomap of differential gene expression analysis in TCGA-OV. (C) Principal component analysis (PCA cluster)
based on the 15 key prognostic genes in TCGA-OV. (D) 15 key genes expressed in normal ovary and TCGA-OV. (E) 15 key genes expression in ECM high/
low-risk score groups. The genes BCRA2, MUC1 and MUC16 (in red frames) have been functionally characterized in other studies, for their
prognostic role in OC, and used as a reference.
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Validation of the prognostic function of ECM
risk score in the TCGA-pan-cancer dataset

TCGA pan-cancer data with survival information were used to
validate the ECM risk score. A total of 9162 “Primary Solid Tumour”
data with both gene expression data and survival data were included
in the analysis. We screened all adenocarcinoma expression data and
survival data as a validation dataset. 2084 samples meeting the
criteria were extracted, of which 1580 samples carried information
on initial treatment outcome. We found that the low-risk group had
a higher initial treatment Complete Response (CR) and Partial
Response (PR), there was no significant difference in the number
of patients with Progressive Disease (PD) between the low- and

high-risk groups, and the number of patients with Stable Disease
(SD) was significantly higher in the high-risk group than in the low-
risk group (Figure 4A). We also analysed the expression levels of
eight immune checkpoint genes in the high/low ECM risk score
group (Figure 4B). Only four immune checkpoint genes showed
significant differences between the two groups. Fifteen ECM’ key
genes were extracted from all gene expression data, and the ECM
risk score was calculated for each patient. The expression levels of
15 ECM key genes were differentially expressed in both the high and
low-risk groups (Figure 4C). Computes the predicted survivor
function for a Cox proportional hazards model and plots the KM
curve (Figure 4D). The ECM risk score was found to be a good
predictive tool for overall survival prognosis in the adenocarcinoma

FIGURE 3
Comparison of immune cell infiltration between high/low ECM risk score group groups in TCGA-OV. Comparison with several algorithms for T cell
(A) infiltration, Neutrophil (B), cancer-associated fibroblast (CAFs) (C), Immune microenvironment score (D) infiltration, expression levels of 8 immune
checkpoint genes in high/low ECM risk score group in TCGA-OV (E), and IPS score in high/low ECM risk score group in TCGA-OV (F).
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FIGURE 4
Validation of ECM risk key genes in TCGA Adenocarcinoma. First-course treatment outcome of high/low ECM risk score group in TCGA-
Adenocarcinoma (A). Expression levels of 8 immune checkpoint genes (B) and 15 ECM key genes (C) in high/low ECM risk score group in TCGA-
Adenocarcinoma. KM survival plot for high/low ECM risk score group in TCGA-Adenocarcinoma (D).
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FIGURE 5
Differential analysis of somaticmutations between high/low ECM risk score group in TCGA-OV. The relation of the top 25mutated genes in the high
(A) and low (B) ECM risk score groups. Analysis of cancer-related key pathway components affected by somatic genemutations in the high (C) and low (D)
ECM risk score groups. Differential analysis of somatic gene mutatios between high/low ECM risk score group (E). Oncogenic signalling pathways
enrichment analysis in high (F) and low (G) ECM risk score group.
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data. However, it was not adequate in effectively predicting for OS
between the high and low-risk groups after 4000 days.

Relationship between ECM risk score and
tumour mutation burden (TMB)

We further investigated the connection between the ECM risk
score and TMB because OC is marked by a high degree of somatic
mutation. Missense Mutation was the main component of somatic
mutation in the high/low ECM risk score group. In the single
nucleotide variant (SNV) analysis showed that the highest rate of
C > T was observed in both groups. Variants per sample of the high
ECM risk score group were lower than in the low ECM risk score
group (Supplementary Figures S3A, B). In both high/low ECM risk
score groups, CSMD3, TTN, TP53, FLG2, MUC16, FLG and FAT3
were found in the top 20 mutated genes (Supplementary Figures
S3C, D). In comparison to the high-risk group, the mutation rates in
TP53, TTN and RYR2 were higher in the low-risk group, while those
of CSMD3, USH2A and FLG2 were nearly identical (Supplementary
Figures S3E, F).

In the mutation Exclusive/Co-occurring analysis of the top
20 mutation genes, we found 11 pairs of genes with Co-occurring
relationships in each of the high/low ECM risk score groups but
2 pairs of Exclusive in the low ECM risk score group (Figures 5A, B).
We also examined the mutation status of the elements of eight
signalling pathways that have been demonstrated to be crucial in the
development of tumours (Sanchez-Vega et al., 2018). We found that
the number of genes affected by somatic mutations in most
signalling pathways was approximately the same between the two
groups, except for RTK-RAS, NOTCH, WNT, and PIK2 (Figures 5C,
D). The expression levels of all somatic mutations were analysed
between the high/low ECM risk score groups, and we found
statistically significant differences in CSMD1, FRMPD1,
IL1PARL2 and PKHD1. All four genes showed a higher mutation
rate in the low ECM risk score group (Figures 5D, E). Based on the
differences in somatic mutations between the two groups, we
enriched the analysis for drug-gene interactions, and the
“Druggable Genome: was found to be highly enriched within
both groups (Figure 5F, G).

Additionally, we documented that the low ECM risk score group
was more responsive to RYR2 gene-related immunotherapy,
whereas the high ECMs risk score group may be more responsive
to TG-related immunotherapeutics (Supplementary Table S2). We
also analysed the mutations in 15 key genes (Supplementary
Figure S4).

Discussion

Ovarian cancer is a malignant tumour with a highmortality rate.
Because of its insidious onset, it is usually late-stage when obvious
clinical symptoms appear (Prat J and FIGO Committee on
Gynecologic Oncology, 2014). Patient prognosis is thus based on
an accurate and reliable assessment. As the extracellular matrix is
closely linked to epithelial cells, we aimed to construct a prognostic
prediction model based on extracellular matrix proteins to evaluate
the prognostic survival of patients with ovarian serous

adenocarcinomas. We successfully filtered 15 key genes out of
1068 extracellular matrix-associated proteins, with excellent
predictive ability on ovarian serous adenocarcinoma prognosis
using the Random Forest and the Lasso algorithms.

We used the random forest algorithm as is a popular machine
learning technique with documented outstanding performance in a
wide range of predictive modeling tasks, including cancer prognosis
prediction (Toth et al., 2019; Li Y et al., 2020). When analyzing
tumor sequencing data, the relationship between variables and
outcomes can be complex due to the volume of data. Random
forest can handle a large number of input variables without
overfitting, which has been a challenge for traditional models
such as logistic regression or decision trees (Maroco et al., 2011;
Lan et al., 2020). Additionally, traditional linear models are unable to
handle the nonlinear relationship between a large amount of
sequencing data and survival outcomes, but random forest can
address this issue (Lee and Lim, 2019). Compared to support
vector machines (SVM), random forest is less sensitive to outliers
andmissing data, which is important in cancer prognosis prediction,
where data quality may vary and missing data is common
(Pelckmans et al., 2005; Lee and Lim, 2019).

Among the 15 key genes generated by our our analysis, CSPG5,
CXCL11 and ESM1 mRNAs were abundantly expressed in OC tissue
compared to normal tissue. Cancer cells, fibroblasts, endothelial cells,
and immune cells such as leukocytes, monocytes, and dendritic cells are
primarily responsible for CXCL11 production (Gao and Zhang, 2021)
CXCL11 is an effector chemokine regulating T cell recruitment that
promotes effector immune cells (e.g., CD8T cells, Th1 cells, TH17 cells
and antigen-presenting cells). Studies have shown that induction of
CXCL10 and CXCL11 expression in breast cancer cells enhances the
infiltration of CD8 T cells (Liu et al., 2011; Gao et al., 2019). In addition
to its influence on tumour progression through its angiostatic effects
(Strieter et al., 2006), CXCL11 is part of the CXCR7/CXCL11 axis that
was shown to induce the epithelial–mesenchymal transition and
metastatic behaviour of OC cells under ERα control (Benhadjeba
et al., 2018). ESM1 is a soluble proteoglycan expressed by vascular
endothelial cells and is associated with inflammatory cell recruitment
(Hung et al., 2020). Vascular endothelial dysfunction can be brought on
by high levels of ESM1 (Kalantaridou et al., 2006; Rocha et al., 2014; Sun
et al., 2019), whereas it has also been shown to be closely correlated with
OC development and progression (Li et al., 2023). Our analysis showed
that the tumour tissue had significantly higher ESM1 expression levels
than normal ovarian tissue, which may be associated with abnormally
elevated cell proliferation and tumour tissue revascularization.
Furthermore, CSPG5, also known as Neuroglycan C (NGC), is a
protein originally associated with extracellular matrix production in
the nervous system (Pintér et al., 2020) and shown to decrease first and
then increase following ischemic and hypoxic injury, presumably
associated with ECM damage repair (Matsui et al., 2005). Of note,
two recent studies showed that expression of CSPG5 was significantly
correlated with the prognosis of patients with epithelial OC (Su et al.,
2021; Wang et al., 2023). In our study, higher CSPG5, CXCL11 and
ESM1 expression and inflammatory cell infiltration, especially of
CD8 T cells, were present in the low-risk group. The high level of
immune cell environment may explain the better prognosis for overall
survival in the low-risk group.

Interestingly, two proteins commonly associated with bone biology
and development were identified among the ECM prognostic markers.
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AMBN was discovered as a tooth enamel matrix protein, playing an
important role in enamel, cranial and long bone development. It was
however demonstrated that AMBN was among four factors that were
potential independent prognostic factors for prostate cancer (Xu et al.,
2018). In our multifactorial Cox analysis, AMBN was shown to be one
of the independent prognostic factors for ovarian serous
adenocarcinomas. Furthermore, the analysis revealed a prognostic
role for FGF23, the bone-derived hormone secreted by osteoblasts
and osteocytes (Guo and Yuan, 2015). Previous studies have shown
its expression alterations in breast cancer (Cekin et al., 2020) and
identified that serum or plasma FGF23 concentrations are elevated in
patients with advanced stage epithellal ovarian cancer (Tebben et al.,
2005). According to our data, FGF23 was expressed in the tumours, and
its expression levels were higher in the high-risk group.

MMP17, PI3, TLL1, ANGPTL4, and TGFBI have all been previously
associatedwith cancer. Our analysis found that transcripts of all these five
genes were expressed at higher levels in the high-risk group than in the
low-risk group. MMP17 has been associated with the maintenance of
normal physiological function in vascular smooth muscle (Martín-
Alonso et al., 2015) and a promotive effect on tumour cells (Paye
et al., 2014). Additionally, it was shown that its expression was much
higher in EOC patients than in pericarcinomatous tissues (Xiao et al.,
2022). PI3, also known as elafin, is an elastase-specific inhibitor that
directly affects tumour suppression by inhibiting elastase (Hunt et al.,
2013). High levels of PI3 are associated with severe disease severity in
various cancers (Hunt et al., 2013; Longatto-Filho et al., 2021), while
another TCGA-OVanalysis showed its prognostic value inOC (Li J et al.,
2020). Additionally, high elafin expression has been associated with
unfavorable OS but better immunotherapy responses (Lu et al., 2023).
Recent studies have found that TGFBI CpG islands are hypermethylated
in adjacent normal colon tissue, with the corresponding sequences
showing hypomethylation in colon cancer tissue, and that higher
TGFBI levels are associated with poorer prognosis (Zhang H. et al.,
2019). In mammals, Tolloid-like (mTLL)-1 is a BMP-1-associated
protease, and BMP1/TLL1 is involved in the process of tissue
remodelling in the ovary, assisting in the maturation of pre-collagen
molecules and the deposition of collagen fibres (Ohnishi et al., 2005). In
hepatocellular carcinoma (Matsuura et al., 2017), SNP may impact the
splicing of TLL1 mRNA and result in short variants with high catalytic
activity, speeding up the development of liver fibrosis and cancer. In a
recent study,TGFBI, PI3, TLL1 andMMP17were predicted to be among
the 19 genes that comprise the TME-related high grade serous ovarian
carcinoma prognostic genetic panel (Belotti et al., 2022). ANGPTL4 is
regulated by peroxisome proliferator-activated receptor γ (PPARγ)
(Aryal et al., 2019), who has been observed to be significantly
increased in malignant ovarian tumours (grade 1, 2 and 3) compared
to benign and borderline tumours (Zhang et al., 2005). It was also
recently identified in a scRNA-seq study of ovarian cancer CAF ligands
to epithelial cells (Carvalho et al., 2022). Finally, ANGPTL4 and TGFBI
were identified both in a hypoxia riskmodel constructed to reflect theOC
immune microenvironment in and predict prognosis (Wei et al., 2021),
and among the genes that comprise an OC glycolysis-related gene
signature (Zhang et al., 2021).

To further assess the relationship between the ECMrisk score and the
immune microenvironment, we assessed the abundance of multiple
inflitrating cells in the immune microenvironment of these patients
using multiple algorithms. Patients with more infiltrating and
activated immune cells in TME may have better immunotherapeutic

outcomes (Li et al., 2016). We observed higher levels of CD8 T cell
infiltration in the low-risk group, suggesting enhanced immune
surveillance via CD8+ T cells, while this implies a possible enhanced
susceptibility to PD-1/PD-L1-targeted immune checkpoint therapies
(Strickland et al., 2016; Iyer et al., 2021). Furthermore, the degree of
macrophage infiltration was similar to both CD8 and CD4 T cell
infiltration, with both showing high levels in the low-risk group. This
is consistent with previous studies describing a positive correlation
between T cells and macrophage infiltration levels (Desbois et al., 2020).

Previous studies have also shown that cancer cells regulate their local
microenvironment to promote tumour survival, chemoresistance and
evasion of immune surveillance (Kim et al., 2007) and that there is a tight
association between malignant tumour cells and CAFs in promoting
tumour growth and survival (Xing et al., 2010; Karagiannis et al., 2012;
Chen et al., 2021). scRNA-seq analysis of high grade serous ovarian
cancers, also showed that CAFs induce epithelial-mesenchymal
transition (EMT) of tumor cells via TGFβ signaling, with consequent
effects on chemoresistance and metastasis (Kan et al., 2020). In
accordance with these, our results also showed that higher levels of
CAFs were found in high-risk groups with poor prognosis.

It is known that the immune microenvironment immune cells,
immunomodulating factors and immune checkpoint molecules are
crucial for the immune escape of tumour cells (Charoentong et al., 2017;
Zhang Y. et al., 2019). We thus developed an immunophenoscore (IPS)
based on immune subpopulation infiltration and expression of immune
regulatory molecules using the random forest to identify determinants
of immunogenicity. Among several IPS subtypes tested, we found that
the low-risk group had higher IPS and could benefit during treatment
with immune checkpoint inhibitors. As the immunophenoscore is a
surrogate to patients’ immunotherapeutic outcomes, our IPS results of
the ECMs risk scores may only be considered of predictive value, and
future studies will confirm their clinical importance.

We also explored the tumour mutation burden (TMB) changes in
the TCGA-OV cohort. The ovarian cancer genome exhibits high levels of
instability, as evidenced by functional cells (Stewart et al., 2011), copy
number changes (Schwarz et al., 2015), and status of somatic mutations
(Bashashati et al., 2013). TMB is the total number of substitutions and
insertion/deletion mutations per megabase in the exon-coding region of
the gene under evaluation in the tumour cell genome (Stenzinger et al.,
2019). Somatic mutations may result in tumourigenesis and many
somatic mutations can generate neoantigens facilitating anti-tumour
immunity (Gubin et al., 2015). In a study on immunotherapy for
lung cancer, researchers discovered that patients with PD-L1 1% but a
subgroup of 10 mutations/Mb in the combination chemotherapy group
had a better objective response rate (ORR) and median progression-free
survival (median PFS, mPFS) with the immune combination regimen
CheckMate 227 (Hellmann et al., 2018). This suggests that in the higher
TMB population, PFS was better in the combination immunotherapy
group than in the chemotherapy alone group, irrespective of PD-L1
expression. In our study, the mean TMB values were higher in the low-
risk group than in the high-risk group, implying that the low-risk group
may have more potential for immunotherapy. TP53, the gene encoding
the tumour suppressor protein p53, is one of the most commonly
mutated genes in human cancers, and driver mutations are prevalent
in high-grade ovarian plasmacytoma (Ahmed et al., 2010). Chalmers and
coworkers have shown that TP53 mutations were associated with high
TMB (Chalmers et al., 2017). Our study similarly confirmed that in the
TCGA-OV datasets TP53mutations were the most frequent in the high-
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and low-risk groups, and thatTP53mutations were higher in the low-risk
group than in the high-risk group. However, there are limitations to
cohort-based studies. Most mutated genes are unique to each case, and in
clinical treatment, patients should be treated based on their mutation
sequencing results. Our analysis may provide theoretical support for the
selection of immunological agents.

Our study aimed to investigate the role of the matrisome and the
gene changes in the ECM in a widely studied, publicly available
ovarian cancer transcriptomic and clinicopathological collection of
patients. The role of matrisome has been regretfully understudied in
this type or cancer that commonly goes undetected till it reaches
high grades, as the ECM can influence drug resistance. We used
bioinformatics and machine learning methods to investigate the
TCGA-OV collection and identified several prognostic genes, some
of which have also been identified by previous studies. Given the
current cost-effectiveness of biotechnological approaches, rapid
genetic testing tools are commonly promoted and widely applied
in clinical diagnostics and treatment (Young and Argáez, 2019).
These tools have improved accuracy and testing times have
significantly shortened. Targeted multigene tests and genetic
screening can be thus rapidly employed to assist diagnosis
postoperatively and develop more effective treatment plans.

Conclusion

In conclusion, this study developed an ECM risk score prediction
model to enable prognosis of patients with ovarian serous
adenocarcinoma. We further identified the tumour
microenvironment and somatic mutations using the TCGA-OV
collection datasets. These results should be further validated with
targeted future studies to evaluate their real predictive function and
their use in personalized immunotherapy applications.
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