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Background: Diazoxide is a selective mitochondrial-sensitive potassium channel
opening agent that has a definite effect on reducing myocardial ischemia/
reperfusion injury (MIRI). However, the exact effects of diazoxide
postconditioning on the myocardial metabolome remain unclear, which might
contribute to the cardioprotective effects of diazoxide postconditioning.

Methods: Rat hearts subjected to Langendorff perfusion were randomly assigned
to the normal (Nor) group, ischemia/reperfusion (I/R) group, diazoxide (DZ) group
and 5-hydroxydecanoic acid + diazoxide (5-HD + DZ) group. The heart rate (HR),
left ventricular developed pressure (LVDP), left ventricular end-diastolic pressure
(LVEDP), and maximum left ventricular pressure (+dp/dtmax) were recorded. The
mitochondrial Flameng scores were analysed according to the ultrastructure of
the ventricular myocardial tissue in the electron microscopy images. Rat hearts of
each group were used to investigate the possible metabolic changes relevant to
MIRI and diazoxide postconditioning.

Results: The cardiac function indices in the Nor group were better than those in
the other groups at the end point of reperfusion, and the HR, LVDP and +dp/dtmax

of the Nor group at T2 were significantly higher than those of the other groups.
Diazoxide postconditioning significantly improved cardiac function after
ischaemic injury, and the HR, LVDP and +dp/dtmax of the DZ group at T2 were
significantly higher than those of the I/R group, which could be abolished by 5-HD.
The HR, LVDP and +dp/dtmax of the 5-HD + DZ group at T2 were significantly
lower than those of the DZ group. The myocardial tissue in the Nor group was
mostly intact, while it exhibited considerable damage in the I/R group. The
ultrastructural integrity of the myocardium in the DZ group was higher than
that in the I/R and 5-HD + DZ groups. The mitochondrial Flameng score in the
Nor group was lower than that in the I/R, DZ and 5-HD + DZ groups. The
mitochondrial Flameng score in the DZ group was lower than that in the I/R
and 5-HD + DZ groups. Five metabolites, namely, L-glutamic acid, L-threonine,
citric acid, succinate, and nicotinic acid, were suggested to be associated with the
protective effects of diazoxide postconditioning on MIRI.

Conclusion: Diazoxide postconditioning may improve MIRI via certain metabolic
changes. This study provides resource data for future studies on metabolism
relevant to diazoxide postconditioning and MIRI.
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Introduction

Myocardial ischemia/reperfusion injury (MIRI) refers to a
series of complex pathophysiological changes in the
myocardium after ischemia, hypoxia and blood perfusion,
which can result in severe and even irreversible myocardial
damage (Russo et al., 2017). MIRI is a serious threat to
human health. Mitochondrial ATP-sensitive potassium
channels (mitoKATP) are located in the mitochondrial intima
and are considered end-effectors for alleviating MIRI (Mironova
et al., 2019). Diazoxide is a specific opener of the mitoKATP
channel. Studies have found that diazoxide can attenuate MIRI
(Onukwufor et al., 2016; Jin et al., 2020; Chen et al., 2021).
However, the exact modulation mechanism for alleviating MIRI
has not been clearly illustrated.

Energy metabolism dysfunction is one of the main pathological
changes during MIRI (Kolwicz et al., 2013). Hypoxia inhibits the
oxidative metabolism of fatty acids, glucose, and amino acids and
activates anaerobic glycolysis (Zuurbier et al., 2020). These
metabolic changes largely determine the actual damage that
occurs to the heart following ischemia/reperfusion. Pan et al.
(2020) applied proteomic techniques to find that diazoxide
postconditioning could upregulate three proteins, namely, NADH
dehydrogenase (ubiquinone) flavoprotein 1 (NDUFA1), NADH-
ubiquinone oxidoreductase 75 kDa subunit (NDUFS1) and 2-
oxoglutarate dehydrogenase (OGDH), which are involved in
maintaining mitochondrial respiratory chain function and
regulating the tricarboxylic acid (TCA) cycle to maintain normal
energy supply. Furthermore, mitoKATP channel opening regulates
the expression of some genes (Mt-nd6, Idh2, and Acadl) related to
energy metabolism and regulates the TCA cycle and fatty acid
metabolism to promote ATP production (Cao et al., 2015).
Therefore, mitoKATP channel opening may be involved in
regulating cardiac metabolism and maintaining the balance of
energy demand and supply during MIRI. However, the metabolic
changes related to MIRI and diazoxide postconditioning were not
well determined.

In the present study, we hypothesized that diazoxide
postconditioning can impact principal metabolic pathways in
hearts with MIRI. This study may provide new insights into the
protective mechanism of diazoxide postconditioning in heart MIRI.

Materials and methods

Animals. Twenty-four male Sprague-Dawley (SD) rats
(250–300 g, 16–20 weeks old) were housed in a specific
pathogen-free (SPF) animal facility with 12-h light/dark cycles
and ad libitum access to food and water. All experimental
procedures were approved by the Animal Care and Use
Committee of Zunyi Medical University (no.KLLY (A)-2019-043)
and were performed according to the Guide for the Care and Use of
Laboratory Animals (National Research Council (US) Committee
for the Update of the Guide for the Care and Use of Laboratory
Animals, 2011).

Perfusion protocol. Rats were anaesthetized with sodium
pentobarbital (40 mg/kg) by intraperitoneal injection. The heart
was quickly isolated and placed in K-H solution (1.19 mM
KH2PO4, 11.1 mM glucose, 4.75 mM KCl, 1.19 mM
MgCl2•6H2O, 2.50 mM CaCl2 and 24.80 mM NaHCO3,
118.00 mM NaCl, 4°C, pH 7.40). Then, the heart was rapidly
connected to a Langendorff perfusion system. All hearts were
perfused by a Langendorff apparatus with K-H solution for
20 min for equilibration. The rat hearts were randomly divided
into four groups, including the Nor, I/R, DZ and 5-HD + DZ groups
(n = 6/group). Hearts in the Nor group were continuously perfused
with K-H solution with oxygen for 120 min. After 20 min of
equilibration, hearts in the I/R w group ere perfused with St.
Thomas solution (1.20 mM CaCl2, 110.00 mM NaCl, 16.00 mM
MgCl2, 10.0 mM NaHCO3, 16.00 mM KCl, 4°C) for ischemia for
40 min and then were perfused with K-H solution for 60 min. After
ischemia, hearts in the DZ group were perfused with K-H solution
containing diazoxide (50 μM) for 5 min before reperfusion and then
with K-H solution for 55 min. Hearts in the 5-HD + DZ group were
perfused with 5-hydroxydecanote (50 μM in K-H solution) for
5 min, perfused with diazoxide (50 μM) for 5 min, and then with
K-H solution for 50 min. The protocols are outlined in Figure 1. At
the end of reperfusion, the ventricular tissues were collected and
stored at −80°C. At the end of equilibration (T1) and reperfusion
(T2), the heart rate (HR), left ventricular developed pressure
(LVDP), left ventricular end-diastolic pressure (LVEDP), and
maximum left ventricular pressure (+dp/dtmax) were recorded by
the Langendorff perfusion system.

Transmission electron microscopy (TEM). Myocardial tissue
(1 mm3) at the end of reperfusion was fixed with 2.5%
glutaraldehyde electron microscopic fixative, rinsed with PBS and
then fixed with 1% osmic acid. The tissues were dehydrated with
acetone and embedded using epoxy resin (35°C overnight, 45°C for
8 h, 60°C for 48 h). Myocardial sections were stained with uranyl
acetate and lead citrate for 20 min. The myocardial ultrastructure
was examined using an electron microscope (HITACHI-H7500,
Hitachi, Japan), and mitochondrial damage was evaluated using the
Flameng scoring method for each group (n = 6) (Flameng et al.,
1980).

Metabonomics analysis. In total, 25 mg of myocardial tissue
samples and 800 μl of methanol and acetonitrile were mixed for each
group (n = 6). Themixture was sonicated for 10 min and centrifuged
at 25,000 rpm for 15 min. The resulting supernatants were
transferred to LC-MS vials and stored at −80°C. Quality control
(QC) samples were prepared by mixing equal aliquots of the
supernatants from all of the samples. LC-MS/MS analysis was
performed using an UHPLC system (Waters 2D; Waters,
United States) with a high-resolution mass spectrometer (Q
Exactive; Thermo Fisher Scientific, United States). Mobile phase
A was 0.1% formic acid in water for the positive ion mode and
10 mM ammonia formate in water for the negative ion mode, and
mobile phase B was 10 mM ammonia formate in 95% methanol.

RawMS data were filtered using the following criterion: less than
50% of all sample numbers in a group contained a metabolite (QC
samples were also taken as a group). Missing values were replaced by
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half of the minimum value in the dataset by default. OSI-SMMS
(Version 1.0, Dalian Chem Data Solution Information Technology
Co. Ltd.) was used for the self-built database after XCMS (Version
3.2) data processing. The repeated metabolites from the positive and
negative ion modes were merged. The variable importance in
projection (VIP) score of the PLS-DA model was applied to rank
the metabolites that best distinguished between comparisons. A
t-test was also used for univariate analysis to screen differential
metabolites. Metabolites with p < 0.05 and VIP ≥1 were considered
differential metabolites between comparisons. Metabolites were
mapped to KEGG metabolic pathways for pathway and
enrichment analyses. p < 0.05 was considered statistically
significant. Pathways meeting this condition were defined as
significantly enriched pathways for differential metabolites.

Statistical analysis. Statistical analyses were performed using
SPSS (Version 22.0, IBM Corp., Armonk, NY, and United States).
Normally distributed data are presented as the mean ± SD. Groups
were compared using Student’s t test (normally distributed data).
Two-way ANOVA followed by Sidak’s multiple comparisons test
was used to compare haemodynamic parameters at the same time
point in different groups. Comparisons of the Flameng scores
among different groups were conducted using the Kruskal-Wallis
test followed by Dunn’s post hoc test for multiple comparisons. To
identify correlations between metabolite levels and the LVDP,
stepwise multivariate linear regression was used, and Pearson’s
correlation analysis was applied using MetaboAnalyst 4.0.

Result

Diazoxide postconditioning improves cardiac function. There
was no statistical significance in the comparison of HR, LVDP, +dp/
dtmax and LVEDP among the four groups at T1. The HR, LVDP and
+dp/dtmax of the Nor group and the DZ group at T2 were

significantly higher than those of the I/R and 5-HD + DZ groups
(Figures 2A–C), whereas the LVEDP of the Nor group and the DZ
group at T2 was lower than that of the I/R and 5-HD + DZ groups
(Figure 2D). These findings suggested that diazoxide
postconditioning improved I/R-induced haemodynamic
dysfunction, which was abolished by treatment with its blocker
5-HD.

Myocardial ultrastructure and the Flameng score. The
myofilaments in the I/R and 5-HD + DZ groups were ruptured,
dissolved and disordered. Moreover, the mitochondria were
dissolved and destroyed (Figures 3B, D). In the DZ group,
myocardial morphology was basically normal, and fewer
myofilaments were dissolved. Most mitochondria in the DZ
group were intact, but a few of them were slightly swollen
(Figures 3A, C). The Flameng score in the DZ group was lower
than that in the I/R group (p < 0.001) (Figure 3E). However, the
Flameng score in the 5-HD +DZ group was significantly higher than
that in the DZ group (p < 0.001) (Figure 3E).

Multivariate statistical analysis. A partial least squares
discriminant (PLS-DA) model was built using a dataset including
the four groups of samples. R2Y and Q2 represent the interpretation
rate of the Y matrix and the predicted variation, respectively, with
parameters as follows: R2Y = 0.90, Q2 = 0.26 (Nor group vs. I/R
group); R2Y = 0.98, Q2 = 0.84 (DZ group vs. I/R group); and R2Y =
0.95, Q2 = 0.63 (DZ group vs. 5-HD + DZ group). The score plots
revealed that each class was well separated, suggesting that the PLS-
DA model successfully discriminated samples according to their
underlying metabolic profiles (Figures 4A–C).

Identification of potential regulated metabolites. The PLS-DA
model was used to screen differential metabolites. Metabolites with
p < 0.05 and VIP ≥1 were considered differential metabolites
between comparisons. The levels of ten metabolites were
significantly decreased after myocardial ischemia/reperfusion
injury, while the levels of eight metabolites increased (Table 1).

FIGURE 1
Perfusion protocol for isolated hearts.
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The levels of eight metabolites were significantly decreased after
diazoxide postconditioning, while ten metabolites increased
(Table 2). The levels of five metabolites were significantly
decreased after 5-hydroxydecanoic acid and diazoxide
postconditioning, while six metabolites increased (Table 3). The
significantly changed metabolites between the Nor and I/R groups
are presented as heatmaps in the Supplementary Material
(Figure 5A). The significantly changed metabolites between the
DZ and I/R groups are presented as heatmaps in the
Supplementary Material (Figure 5B). The significantly changed
metabolites between the DZ and 5-HD + DZ groups are
presented as heatmaps in the Supplementary Material
(Figure 5C). Our results showed that the levels of nicotinic acid,
citric acid, L-threonine and L-lysine in the Nor and DZ groups were
higher than those in the I/R group. The levels of nicotinic acid in the
DZ group were higher than those in the I/R and 5-HD + DZ groups.
The levels of L-glutamic acid in the DZ group were lower than those
in the I/R and 5-HD + DZ groups.

Biological pathway analysis. Pathway analysis was applied to
investigate the biological functions of the altered metabolites.
Multiple metabolic pathways were impacted after MIRI and
diazoxide postconditioning in both the Nor group and the I/R
group (Figure 6A), both the DZ group and the I/R group
(Figure 6B), and both the DZ group and the 5-HD + DZ group
(Figure 6C), mainly including the tricarboxylic acid cycle, nicotinate

and nicotinamide metabolism, glutamate metabolism, glutathione
metabolism, and aminoacyl-tRNA biosynthesis.

Changes in five metabolites are relevant to diazoxide
postconditioning. Correlation analysis was used to determine the
metabolites related to diazoxide postconditioning in MIRI. Finally,
we identified five metabolites that may be relevant to diazoxide
postconditioning: L-glutamic acid (LVDP: p = 0.0036), L-threonine
(LVDP: p = 0.0400), citric acid (LVDP: p = 0.0400), succinate
(LVDP: p = 0.0036), and nicotinic acid (LVDP: p = 0.0317)
(Figure 5D).

Discussion

In this study, diazoxide postconditioning was found to
significantly reduce myocardial ischemia-reperfusion injury,
which is consistent with our previous results (Cao et al., 2015;
Pan et al., 2020; Chen et al., 2021). The present study indicated that
MIRI disturbed multiple metabolic changes, including decreased
levels of citrate, nicotinate, L-threonine, and L-lysine. However,
diazoxide postconditioning increased the levels of these metabolites.
In addition, MIRI also increased the levels of succinate and
L-glutamic acid. However, the levels of these metabolites were
decreased after diazoxide postconditioning. Our results suggest
that the TCA cycle and amino acid metabolism might be

FIGURE 2
Haemodynamic parameters. Diazoxide postconditioning improves HR (A), LVDP (B), dp/dtmax (C) and LVEDP (D) after MIRI, whereas 5-HD
eliminates the effect (comparisons at different time points in the same group and comparisons at the same time point in different groups were conducted
using two-way ANOVA followed by Sidak’s post hoc test). ***p < 0.001. HR, heart rate; dp/dtmax, maximum rate of the rise in intraventricular pressure;
LVDP, left ventricular developed pressure; LVEDP, left ventricular end-diastolic pressure.
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relevant to MIRI and the myocardial protective mechanism of
diazoxide postconditioning.

The TCA cycle, also known as the citric acid cycle (CAC) or
Krebs cycle, is a significant pathway for various nutrients, including
glucose, fatty acids, and amnio acids, and eventually produces ATP
through oxidative phosphorylation (LaNoue et al., 1970). Citric acid
is an important intermediate in the TCA cycle and is produced from
oxaloacetate and acetyl-CoA.

In the TCA cycle, citric acid is converted into α-ketoglutarate (α-
KG) via isocitrate by isocitrate dehydrogenase (IDH) (Akram, 2014).
Citric acid plays a significant role in inflammatory response-related
pathways and is connected with several important proinflammatory
mediators, including NO, ROS and prostaglandin E2 (PGE2)
(Williams and O’Neill, 2018). A previous study found that the
level of citric acid was decreased after MIRI (Mu et al., 2017),
which was consistent with our findings.

FIGURE 3
Myocardial ultrastructure and the Flameng score. At the end of reperfusion, the ultrastructure of cardiomyocytes was analysed by transmission
electronmicroscopy (magnification: ×10,000) in the Nor (A), I/R (B), DZ (C) and 5-HD +DZ (D) groups. Flameng scores of mitochondria (E). Comparisons
among the different groups were conducted using the Kruskal-Wallis test followed by Dunn’s post hoc test. ***p < 0.001. I/R, ischemia/reperfusion
group; DZ, diazoxide postconditioning group; 5-HD + DZ, 5-HD (mitoKATP blocker) + diazoxide group.

FIGURE 4
Score plot of PLS-DA. Score plot in the Nor group and I/R group (A) score plot in the DZ group and I/R group (B) score plot in the DZ group and 5-HD
+DZ group (C). PC1, the first principal component score. PC2, the second principal component score. PLS-DA, partial least squares discriminant analysis.
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In the present research, the citric acid content was increased
after diazoxide postconditioning. In the TCA cycle, succinate is
produced from α-KG via succinyl CoA synthase and converted
into fumarate via succinate dehydrogenase (SDH) (Huang and
Millar, 2013). During ischemia, the accumulation of succinate is
caused by reversal of SDH, which might convert fumarate to
succinate. Following reperfusion, abundant succinate is rapidly
oxidized and drives reverse electron transport (RET) to generate
massive reactive oxygen species (ROS) at mitochondrial complex
I (Chouchani et al., 2014; Kula-Alwar et al., 2019). Early studies
revealed that extensive ROS induce serious acute damage and
variations in pathology (Granger and Kvietys, 2015; Bystrom
et al., 2017; Cadenas, 2018). ROS trigger mitochondrial
permeability transition pore (mPTP) opening in conjunction
with alterations in Ca2+ levels and physiological pH,
aggravating MIRI (Cadenas, 2018; Bugger and Pfeil, 2020).
Evidence indicates that inhibiting SDH reduces the content of
succinate and ROS production, thus protecting cardiac function
from MIRI (Valls-Lacalle et al., 2018; Xu et al., 2018). Our
previous result showed that diazoxide postconditioning can
decrease ROS level (Chen et al., 2021). This study showed that
the level of succinate decreased after diazoxide postconditioning,
which may be involved in inhibiting SDH (Anastacio et al., 2013).
The cardioprotective effect of diazoxide postconditioning may be
associated with regulating CAC intermediates and maintaining
the normal function of the CAC.

Nicotinic acid (NA) and nicotinamide, which are known as
vitamin B3, are precursors of nicotinamide adenine dinucleotide
(NAD+) and nicotinamide adenine phosphate (NADP) (Cantó et al.,

TABLE 1 Significantly differential metabolites in heart tissues between Nor and
I/R group.

Metabolites Formula VIP p-value FC

4-hydroxyprolylleucine C11 H20 N2 O4 1.5048 0.0384 58.6213

N-acetylleucylleucine C14 H26 N2 O4 1.423 0.0424 47.5131

2-hydroxyestradiol C18 H24 O3 1.422 0.0443 29.5835

N-arachidonylglycine C22 H35 N O3 1.2318 0.0046 3.5885

Cannabidiolic acid C22 H30 O4 1.2007 0.0119 6.0837

Lipoxin b4 C20 H32 O5 1.1962 0.0404 9.6321

Prostaglandin g2 C20 H32 O6 1.1885 0.0406 17.930

Valylvaline C10 H20 N2 O3 1.0222 0.0384 3.3415

Nicotinic acid C6 H5 N O2 2.1749 0.0005 −0.0449

O-acetylcarnitine C9 H17 N O4 2.0184 0.0150 −0.1905

Ornithine C5 H12 N2 O2 1.9882 0.0021 −0.0992

Pyroglutamate C5 H7 N O3 1.7696 0.0091 −0.1066

Citric acid C6 H8 O7 1.6698 0.0008 −0.1503

Homogentisate C8 H8 O4 1.544 0.0247 −0.1291

L-kynurenine C10 H12 N2 O3 1.4219 0.0116 −0.1606

L-threonine C4 H9 N O3 1.1585 0.0237 −0.4020

L-lysine C6 H14 N2 O2 1.112 0.0203 −0.4253

B-alanine C3 H7 N O2 1.1018 0.0448 −0.3569

FC, Fold change; VIP, Variable importance.

TABLE 2 Significantly differential metabolites in heart tissues between DZ vs. I/
R group.

Metabolites Formula VIP p-value FC

Uracil C4 H4 N2 O2 1.7776 0.0034 0.0809

Eicosapentaenoic acid C20 H30 O2 1.4318 0.0163 0.2139

L-aspartic acid C4 H7 N O4 1.3743 0.0053 0.1461

Prostaglandin a2 C20 H30 O4 1.2555 0.048 0.1325

Lipoxin b4 C20 H32 O5 1.2416 0.0485 0.0995

L-glutamic acid C5 H9 N O4 1.2415 0.0117 0.2673

Succinate C4 H6 O4 1.224 0.0139 0.2668

Spermidine C7 H19 N3 1.1164 0.0044 0.4652

Nicotinic acid C6 H5 N O2 2.3879 0.0011 −14.7018

Hexanoylcarnitine C13 H25 N O4 2.1384 0.0095 −4.9302

Ornithine C5 H12 N2 O2 2.0173 0.0000 −8.6706

L-carnitine C7 H15 N O3 2.0143 0.0465 −1.8073

Citric acid C6 H8 O7 1.8272 0.0001 −5.7788

L-threonine C4 H9 N O3 1.3456 0.0387 −2.0369

L-lysine C6 H14 N2 O2 1.3272 0.0309 −2.0230

Pipecolic acid C6 H11 N O2 1.3338 0.0307 −2.0331

Cytosine C4 H5 N3 O 1.3068 0.0199 −2.9574

L-kynurenine C10 H12 N2 O3 1.2496 0.0004 −3.3334

L-tyrosine C9 H11 N O3 1.1905 0.0397 −1.8692

FC, Fold change; VIP, Variable importance.

TABLE 3 Significantly differential metabolites in heart tissues between DZ vs.
5-HD + DZ group.

Metabolites Formula VIP P FC

Uracil C4 H4 N2 O2 1.6671 0.0221 7.4379

Sebacic acid C10 H18 O4 1.5291 0.0127 2.9046

Ophthalmic acid C11 H19 N3 O6 1.2602 0.039 2.2042

Azelaic acid C9 H16 O4 1.2346 0.0283 1.9060

L-glutamic acid C5 H9 N O4 1.183 0.0313 2.7131

Hypoxanthine C5 H4 N4 O 1.0309 0.0462 1.5543

Nicotinic acid C6 H5 N O2 3.0196 0.0316 −0.2919

2-hydroxyglutaric acid C5 H8 O5 1.8662 0.0142 −0.3227

N-acetylornithine C7 H14 N2 O3 1.154 0.0389 −0.5583

L-arabitol C5 H12 O5 1.1321 0.0378 −0.5208

D-glucose 6-phosphate C6 H13 O9 P 1.0887 0.0313 −0.5526

FC, Fold change; VIP, Variable importanc.
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2015). NAD+ plays a significant role in diverse metabolic pathways,
including the CAC and oxidative phosphorylation (OXPHOS),
glycolysis, fermentation, cell signalling and inflammatory

pathways (Yang and Sauve, 2016). NAD+ is converted into
NADH by accepting hydride groups in normal oxidation. Then,
NADH is oxidized to produce ATP in mitochondria through

FIGURE 5
Heatmap of differential metabolites and correlations betweenmetabolite levels and LVDP. Heatmap of differential metabolites in theNor group vs. I/
R group (A), DZ group vs. I/R group (B), and DZ group vs. 5-HD + DZ group (C). Heatmap showing the correlations of metabolites to LVDP and LVEDP (E).
*p < 0.05, **p < 0.001.

FIGURE 6
Pathway analysis of different metabolites. Nor group vs. I/R group (A), DZ group vs. I/R group (B), DZ group vs. 5-HD + DZ group (C).
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OXPHOS, which is responsible for 95% of the ATP production in
the heart (Matasic et al., 2018). The function of OXPHOS was
impaired byMIRI due to a series of enzymes, such as NADH oxidase
or mitochondrial ROS release. Many studies have confirmed that
increasing NAD+ during MIRI could mitigate oxidative stress and
alleviate myocardial injury (Trueblood et al., 2000; Yamamoto et al.,
2014; Tai et al., 2015). In the present study, the NA content
significantly decreased after I/R, while the NA content increased
after diazoxide postconditioning, indicating that diazoxide may
exert protective effects by regulating NA and NAD+ concentrations.

Glutamate is an important excitatory neurotransmitter in the
central nervous system and is associated with cerebral I/R injury
(Kim et al., 2017; Leung et al., 2020; Song et al., 2020). In addition,
glutamate receptors and transporters exist in peripheral tissues, such
as the heart, lung, kidney and liver (Du et al., 2016). Currently, the
effect of glutamate on the heart is still controversial. Studies have
claimed that exogenous glutamate supplementation may alleviate
injury caused by myocardial ischemia (Kristiansen et al., 2008; Sufit
et al., 2012 no date). However, several studies hold the contrary
opinion. One study demonstrated that the concentration of
glutamate was elevated after 15 min of reperfusion in a rat
cardiac transplantation model (Venturini et al., 2009).
Additionally, Sun et al. (2014) claimed that the serum glutamate
concentration increased after I/R and mediated ventricular
arrhythmias by inducing Ca2+ accumulation, which may be
mediated by initiating voltage-dependent Ca2+ channels and
NMDA receptor channels (Piccirillo et al., 2020). Yokoyama
et al. (2019) showed that mitoKATP opening can suppress
glutamate release to reduce neuronal injury induced by I/R in the
brain. Consistently, our results demonstrate that the level of
L-glutamic acid in the DZ group was lower than that in the I/R
and 5-HD + DZ groups. The mechanism of glutamate release in
MIRI is quite complicated and should be determined in future
studies.

L-Threonine is an essential amino acid in the human body and
plays a significant role in lipid metabolism (Chen et al., 2022). Under
anaerobic conditions, L-threonine is converted to keto acid, which
produces ATP via substrate-level phosphorylation to provide a
source of energy to the cells (Simanshu et al., 2007). Research
has reported that L-threonine may participate in the innate
immune response by activating the NF-κB signalling pathway
and suppressing sirtuin-1 (SIRT1) (Wu et al., 2018). Recently,
studies have proven that both the NF-κB signalling pathway and
SIRT1 are associated with MIRI (Xu et al., 2021; Aghamohammad
et al., 2022; Xiao et al., 2022). The cardiovascular protective effect of
the NF-κB signalling pathway is related to regulating the
inflammatory response (Dong et al., 2022). SIRT1, an NAD+-
dependent deacetylase, plays a significant role in antioxidative
stress activity (Zhang et al., 2017). Lysine is an indispensable
amino acid. Zhang et al. (2019) reported that L-lysine
supplementation may ameliorate proinflammatory changes by
reducing lipid peroxidation and proinflammatory mediators,
including tumour necrosis factor α (TNFα), interleukin-8 and
macrophage inhibitory factor, to protect against acute lung
injury. Furthermore, lysine is one of the amino acid groups most
susceptible to modification (Moreno-Yruela et al., 2022). In recent
years, lysine methylation, lysine succinylation, and lysine acetylation
have been closely associated with cardiovascular disease and have

provided a new theoretical basis for the treatment of heart disease
(Boylston et al., 2015; Yi et al., 2017; Herr et al., 2020). Although the
effects of L-threonine and L-lysine on MIRI have not been reported,
our study found that the level of L-threonine after MIRI was
decreased, which can be alleviated by diazoxide postconditioning,
suggesting that these metabolite changes might be relevant to MIRI
and the myocardial protective mechanism of diazoxide
postconditioning.

Study limitations

The present study has several limitations. First, we should
add 5-HD group to make our results more rigor and we will
consider this in future study. Seconed, the solated hearts of
langendorff may not be an appropriate model for studying
myocardial ischemia/reperfusion injury. It will be interesting
to explore the effects of diazoxide postconditioning on
ischemia/reperfusion injury using a classic ischemia/
reperfusion method, and further compared the results between
different ischemia/reperfusion methods. Third, we did not
perform in vivo experiments to confirm the metabolic changes
and protective effects of diazoxide postconditioning in MIRI.
Four, we did not validate the function of these identified
metabolites or the associated pathways in MIRI.

Conclusion

In summary, the present study indicated that diazoxide
postconditioning may improve MIRI via certain metabolic
changes, including changes in the levels of citrate, nicotinic acid,
L-glutamic acid, L-threonine and L-lysine. This study provides
resource data for future studies on metabolism relevant to
diazoxide postconditioning and MIRI.
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