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A long-lasting goal of computational biochemists, medicinal chemists, and
structural biologists has been the development of tools capable of deciphering
the molecule–molecule interaction code that produces a rich variety of complex
biomolecular assemblies comprised of the many different simple and biological
molecules of life: water, small metabolites, cofactors, substrates, proteins, DNAs,
and RNAs. Software applications that can mimic the interactions amongst all of
these species, taking account of the laws of thermodynamics, would help gain
information for understanding qualitatively and quantitatively key determinants
contributing to the energetics of the bimolecular recognition process. This, in
turn, would allow the design of novel compounds that might bind at the
intermolecular interface by either preventing or reinforcing the recognition.
HINT, hydropathic interaction, was a model and software code developed
from a deceptively simple idea of Donald Abraham with the close collaboration
with Glen Kellogg at Virginia Commonwealth University. HINT is based on a
function that scores atom–atom interaction using LogP, the partition
coefficient of any molecule between two phases; here, the solvents are water
that mimics the cytoplasm milieu and octanol that mimics the protein internal
hydropathic environment. This review summarizes the results of the extensive and
successful collaboration between Abraham and Kellogg at VCU and the group at
the University of Parma for testing HINT in a variety of different biomolecular
interactions, from proteins with ligands to proteins with DNA.
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1 Introduction

Proteins play many functions in living systems as carriers, enzymes, antibodies,
receptors, hormones, mechanical support, and storage. In essentially all these functions,
proteins interact with small molecules, metals, and other proteins or peptides. Whenever an
interaction occurs between two or more molecules, the recognition is dictated by three key
elements: i) complementarity in shape, ii) complementarity in interacting moieties, and iii)
free energy of binding. There is also a fourth element that deals with time, i.e., how rapidly
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molecules see each other and how long they stay together. In some
cases, this is a few milliseconds, and in other cases, they remain
associated for their entire life before degradation.

Recognition is based on structural and chemical
complementarity (Figures 1A,B). Structural complementarity
might be obtained upon induced fit (Koshland, 1958; Cozzini
et al., 2008) or via a selection among an ensemble of
conformations characterized by small energetic differences (Ma
et al., 1999). Before and after an interaction, the energy
landscape is modified, favoring the conformation that better
matches the interacting pair of molecules. This process is driven
by energy contributions arising from the determinants at the
interface of the partner molecules. Ionic–ionic, polar–ionic,
polar–polar, and apolar–apolar hydrogen bonds and hydrophobic
interactions contribute to the overall energetics of the recognition.
The degree of energetic contributions depends on geometric
parameters, such as distance, and the dielectric constant of the
medium where interacting groups are localized. Thus, a detailed and
precise prediction of the affinity between two molecules can most
confidently be obtained when the three-dimensional structure of the
complex is known at high resolution and when a quantum
mechanical analysis has generated a complete electronic
description of the environment. This is a quite challenging goal
that has yet to be met, except in toy systems (Yilmazer and Korth,
2016; Cavasotto and Aucar, 2020; Kirsopp et al., 2021). While robust
and accurate prediction of the strength of the interaction is complex,
the experimental determination of the affinity is often easier but can
lack the context of “visualizing” the specific interactions involved.
However, for many purposes, the capability of predicting affinities of

a complex might actually direct experimental work, such as in the
development of potential drugs via structure-based or ligand-based
methods. Many efforts have been devoted to the prediction of
affinities between proteins and small ligands, proteins, or nucleic
acids, and many thoughtful reviews have been published (Ajay and
Murcko, 1995; Cozzini et al., 2004; Foloppe and Hubbard, 2006).

Here, we will focus on a very simple approach that exploits both
experimental and computational information to generate a score of the
interaction that is directly related to the free energy of binding
(Figure 1C). This approach was called HINT, which stands for
hydropathic interactions (Kellogg and Abraham, 2000). It was
developed by a collaboration between the inspired medicinal chemist
Donald Abraham and his talented colleague Glen Kellogg at Virginia
Commonwealth University (VCU). Abraham had a long-standing
interest in the “hydrophobic effect” and its importance in
quantitative structure–activity relationship (QSAR) and protein
structure. He had, in fact, collaborated with Al Leo of Pomona
College in an early article attempting to unify the understanding of
LogP (and hydrophobicity) between medicinal chemists and those
structural biologists predicting protein secondary structure based on
sidechain polarity (Abraham and Leo, 1987). The core concept of
HINT, as envisioned by Abraham, was that there was rich
thermodynamic information encoded in LogP, and unlocking it
would provide insight into more interaction phenomena than simple
Newtonian physics-based molecular mechanics force fields. Kellogg
joined Abraham at VCU in 1989 and fleshed out this concept by
building a new, essentially de novo, modeling system that extended the
connection matrix-based CLOG-P system of Hansch and Leo (1979)
(and theAbraham and Leo enhancements) to the 3Dworld of structural

FIGURE 1
Schematic representation of the molecular events that take place when a ligand binds to a protein site: (a) several interactions between ligand polar
and apolar groups and protein sidechain residues are formed, and (b)water molecules within the active site and bound to the ligand are released into the
solvent. These interactions determine the strength of the protein–ligand complex and are computationally evaluated by HINT. (C) The toolboxes of HINT
for the evaluation of ligand–protein interactions, including water molecules.
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biology. Thus, formulas for calculating atomistic LogPs were derived
that retained the uniquely chemistry-aware features of the CLOG-P
system, which itself relied on many thousands of careful measurements
of organic and drug-like compounds. Additionally, methods for very
quickly estimating or looking up solvent-accessible surface areas
(SASAs) for atoms in small molecules, protein residues, and
nucleotide bases were programmed (Kellogg and Abraham, 2000).
Last, a “distance function” for representing the range effect of
hydropathy was determined from some experimental observations
indicating an exponential decay (Israelachvili and Pashley, 1982).
The first and most obvious application of HINT was in calculating
interaction scores between biomolecular species using the atomistic
LogPs, atomistic SASAs, and this exponential decay distance function.

Inspired by the pioneering work of DavidWeininger at Daylight
CIS and other researchers, the HINT program was rewritten in the
late 1990s as a collection of object-oriented toolkit functions to
enable the more facile creation of new application programs
exploiting the HINT interaction model (Kellogg et al., 2005). The
program is available as a set of toolkit functions by request from
Glen Kellogg. The core functions were fully integrated into versions
of the Sybyl program but do not, otherwise, have a turnkey
application.

A major event in the history of HINT was the development of a
very long-term collaboration between VCU’s Abraham and Kellogg
and Andrea Mozzarelli, Pietro Cozzini, and several exceptional
students at the University of Parma. This collaboration and the
numerous exciting results we found are reported in the following
paragraphs. It should be noted that many of the innovations of the
HINT model were inspired by the various interesting projects that
the VCU and University of Parma teams carried out together.

2 HINT: definition and applications

2.1 The HINT model

2.1.1 Algorithms and code
The core of the HINT code is the assignment to each atom of a

factor a that is derived from a LogP library coupled with algorithms
to appropriately parse this information, where LogP is the partition
function of an atom between water and 1-octanol. These two media
were selected as representative of the polar and apolar environments
within a protein. The atom-type LogP library was adapted from the
CLOG-P approach (Hansch and Leo, 1979) with extensions
(Abraham and Leo, 1987). HINT counts either positive or
negative contributions for each individual atom–atom interaction
based on their hydropathic properties. By summing up these atomic
contributions, an overall score is obtained. As LogP is a
thermodynamic parameter, the HINT score is directly related to
the free energy of complex formation. More explicitly, the
interaction between two atoms, namely, i and j, is the product of
their atom factors, called partial log Po/w (ai) and solvent-accessible
surface area (Si):

bij � ai Si aj Sj f rij( ), (1)

where f(rij) represents a function of the distance between the two
atoms, i and j. The atomistic Si parameters are applied to represent
“exposure” of that atom for interaction with atoms in other

molecules. Atom–atom distances are obtained either from the
three-dimensional structure of the complex or from a model
generated by docking procedures or homology modeling. The
higher the resolution (or reliability) of the structures, the more
precise the prediction (see Section 3.3). Consequently, the total
interaction B between two molecules is calculated by the (double)
sum over all atom–atom interactions:

B � ∑∑ bij. (2)

A key feature of HINT is the exploitation of the experimentally
determined LogP values, thus avoiding complex equations and
approximations present in most of the other methods developed
for predicting protein–ligand interactions. The other conceptual
advantage of using LogP is that this parameter provides an overall
representation of the energetics of the encounter process between
two molecules, without dividing the energetics into specific
enthalpic contributions, such as electrostatic bonds, hydrogen
bonds, and van der Waals bonds, a procedure that is not
thermodynamically legitimate (Dill, 1997). In addition, and quite
relevant, LogP implicitly includes the hydrophobic contribution
generated by the change in th3e number of water molecules
surrounding the interacting molecules before and upon the
complex formation, i.e., the entropic contribution to the free
energy (Figures 1A, B). This contribution, which might be
significant when apolar molecules interact, is usually not counted
by most other programs or roughly approximated by calculating the
accessible surface areas in contact between interacting molecules.

2.1.2 Why is HINT different?
The motivation behind HINT was to minimize the “modeling”

and extract interaction information and guidance as much as
possible from the experiment—in this case, LogP. The
measurement of LogP for a small molecule takes place in an
environment that has gross similarities to that in which biology
takes place, with one solvent (water) commingling with another (1-
octanol) that is a stand-in for lipids and membranes. Nevertheless, a
few tricks had to be applied, e.g., to make the Hansch and Leo
fragment constants atomistic and to properly sign polar interactions
(both Brønsted–Lowry acids and bases are polar) (Kellogg et al.,
1992; Kellogg and Abraham, 2000).

While quantitative aspects of programs like HINT are often used
for comparative purposes, e.g., in dock scoring, virtual screening,
and even LogP prediction, we have always tried to emphasize the
qualitative value of HINT. Most importantly, HINT “thinks” like a
medicinal chemist—perhaps Donald Abraham in particular—with
respect to its language: hydrogen bonds, Lewis acids and bases,
hydrophobic interactions, favorable, unfavorable, solvation, and
desolvation. Thus, HINT’s numerical or graphical output is
always very interpretable, and it includes all biomolecular
interactions to some degree, as they are all holistically encoded in
LogP. HINT is, however, not necessarily as accurate as specialized
software that focuses on specific phenomena, such as electrostatics,
with finely tuned algorithms and parameters. It is, thus, difficult, if
not impossible, to directly quantitate HINT’s relative performance
compared to other tools in a meaningful way: first, because there are
no other tools in that space and, second, because “improved
understanding” is not a definable metric.
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However, to illustrate the quality of HINT code prediction for
the strength of protein and nucleotide complexes, it was tested in
many different types of interacting molecules and compared with
experimentally determined dissociation constants. The overall
results are remarkable, given the simplicity of the code and the
speed of calculations. More importantly, virtually all of our studies
produced results that suggested or proved new principles of
biomolecular interaction. In the next sections, we summarize
several cases where HINT has been applied.

3 HINT applied to the evaluation of
protein–ligand interactions

Many proteins function via interactions with small ligands that
exhibit a wide range of features covering most of the chemical space.
For example, hemoglobin binds oxygen, which is a neutral molecule,
intracellular hormone/vitamin receptors bind mostly apolar ligands,
such as estrogens and retinoids, and proteases bind polar–apolar
polypeptide chains. This is made possible by sites where ligands bind
that possess architectures dictated by the amino acids composing the
pocket or site. Since members of the amino acid set are endowed
with large differences in the polarity/apolarity of their sidechains,
they can accommodate ionic and hydrophobic ligand interactions.
In addition, the complementarity between the host (protein) and
guest (ligand) may be obtained by optimized conformational
changes of either one or the other of the interacting partners to
obtain a “perfect” fit or, in a different view, by the selection of the
protein and ligand conformations that perfectly match by steric and
chemical complementarity. The net result is the formation of a
binary complex characterized by an equilibrium between free and
ligand-bound molecules regulated by a dissociation constant. The
lower the value of the dissociation constant, the higher the match,
i.e., the higher the number and overall strength of the interactions.

In order to evaluate how effectively HINT mimics the energetics
of biological processes that involve the encounter of proteins and
small ligands, we carried out a series of investigations exploring
many of the variables that control the strength of protein–ligand
interaction. These variables are as follows: i) polarity/apolarity of
ligands and/or protein active sites; ii) roles of ligand- and protein-
bound water before and upon complex formation; iii) ionization
state of ligand moieties and amino acid lateral chains contributing to
shape the active sites, i.e., computational titration; iv) orientation of
hydrogen atoms bound to polar residues and involved in H-bonds,
i.e., the rank toolbox, and v) their actual contribution to the binding
free energy, i.e., the relevance toolbox (vide infra) (Figure 1C).

As structural information derived by X-ray crystallography is of
paramount relevance to HINT analysis, as well as most of the codes
aimed at the prediction of protein–ligand energetics, the quality of
the three-dimensional structures significantly impacts the
confidence of the predicted scores.

3.1 Free energy of interactions

We first evaluated by HINT the free energy of binding for
53 protein–ligand complexes formed by 17 proteins of known three-
dimensional structure and characterized by different active site

polarities (Marabotti et al., 2000; Cozzini et al., 2002). This
analysis was carried out without the contribution of bound water
molecules to the binding energy. A successive analysis considered
such contributions (see Section 4.1) (Cozzini et al., 2004; Fornabaio
et al., 2004; Kellogg et al., 2004). To demonstrate that HINT was able
to correctly predict the interaction energy between protein and
ligands, independently of ligand and protein active site polarity, the
selected protein’s active sites vary from very apolar, such as retinol-
binding proteins, where the hydrophobic contribution and,
consequently, the entropic contribution to the binding energy is
predominant, to polar, such as penicillopepsin, where the free
energy of interaction is mainly associated with contributions
from Coulombic interaction between polar or ionizable residues.
Another key feature of the analyzed set of protein–ligand complexes
is represented by the large range of binding strength that varies over
nine orders of magnitude, withΔG ranging from −2 to −15 kcal/mol,
as calculated by either inhibition constants or dissociation constants
(Cozzini et al., 2002).

HINT scores for the protein–ligand complexes were plotted
against the experimental binding affinity, obtaining a remarkably
good correlation with a standard error of 2.6 kcal/mol, which
translates into a prediction of affinity within about two orders of
magnitude (Figure 2). Even better standard errors (1 kcal/mol) were
obtained within single sets of specific ligand–protein complexes,
such as trypsin, thrombin, and tryptophan synthase. Given the
polarity heterogeneity of the 53 protein–ligand complexes, the
prediction was very good.

3.2 Effects of pH on interactions

A key requirement for obtaining good correlation between
computational and experimental data, thus predicting binding
affinity for ligands with known three-dimensional complex
structures, is the homogeneity between the pH at which binding
affinities are measured in solution and the pH at which structures
have been determined. In fact, frequently, solution data are
determined at pH values quite different from crystal structure
medium. As a result, the protonation state of groups might be
incorrectly attributed (or modeled), thus affecting the scores. A
telling story is represented by an analysis of the binding affinity of
penicillopepsin–ligand complexes measured at pHs 3.5, 4.5, and
5.5 and by three-dimensional structures determined at the same
pH values. HINT score prediction using these data produced a linear
correlation with r2 equal to 0.99 (Cozzini et al., 2002), indicating that
when pH values of solution and structure data match each other, the
HINT prediction is remarkably good.

To address, in a more general way, the dependence of the
HINT score on the protonation state of interacting groups of
ligand and protein, a protocol called “computational titration”
was designed (Fornabaio et al., 2003; Kellogg et al., 2004; 2006;
Spyrakis et al., 2004). The steps required by this method
(Figure 3) are as follows: i) the identification by a careful
inspection of the three-dimensional structures of the ionizable
groups of ligand and protein that can contribute to the free energy
of binding; ii) the generation of all possible ionization state
models for the interacting groups; iii) the energy minimization
of the generated models with no movement of the heavy atoms
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(isocrystallographic models); and iv) the determination of the
score for each model with HINT. This is a rather simple problem
when only a few ionizable residues or functional groups are
involved but increases rapidly in complexity. Each acid has
three possible states (unprotonated and protonation at the two
oxygens), while each amine or thiol has two, and—if
considered—guanidyl could have five. The result is the
dependence of the interaction free energy on group ionization
states and the identification of the pattern of group ionization
states, which leads to the optimal interaction strength. This, in
turn, can be correlated with a well-defined pH value (Spyrakis
et al., 2004).

We applied the computational titration algorithm to the analysis of
the interaction between neuraminidase and nine inhibitors for which
three-dimensional structures and inhibition constants were known from
the literature (Fornabaio et al., 2003), between HIV protease and its
substrate peptide (Spyrakis et al., 2004) and between dihydrofolate
reductase and three ligands (Kellogg et al., 2006). In the case of the
computational titration procedure for neuraminidase, one proton at a
time was introduced into the molecular model. Here, the protein
possesses three ionizable amino acid sidechains, namely, Glu 119,
Asp 151, and Glu 276, in the active site and one carboxylic moiety
on one of the ligands. Thus, a total of four protons were added to the
models, plus the starting 0-level model in which all ionizable groups are

unprotonated. For each added proton, all possible models were
generated, some of them being more chemically probable than others.
As shown in Fornabaio et al. (2003), the dependence of HINT score vs.
added protons exhibits, not surprisingly, a bell shape, suggesting the
optimal protonation state of the ionizable residues, and thus the pH for
optimal interaction strength. A further step in the optimization of the
computational titration, which requires building and energy minimizing
sometimes thousands of models with specific protonation for each
protein–ligand complex, was to exclude high-energy models
(chemically unplausible) and include a statistical mechanics evaluation
of all models. This refined approach was applied to the computational
titration of HIV protease and its peptidic substrate (Spyrakis et al., 2004).
There are four ionizable residues in the active site, i.e., Asp 25α, 29α, 30α,
and 25β, and four potentially interacting ionizable groups on the
substrate, i.e., three carboxylates and one amine. In this case,
4,374 unique protonation models were generated, ranging from the
most basic with all sites deprotonated (overall charge of −7) to the most
acidic with all sites protonated (overall charge of +1). Titration analysis
showed: i) a quite large range of HINT scores for models containing the
same number of protons indicating favorable and unfavorable proton
distributions (Spyrakis et al., 2004), ii) a sharp increase in theHINT score
as protons were added that levels off upon five added protons, and iii) a
good correlation between experimental data, collected between pH 5 and
3, and the Boltzmann-averaged HINT scores.

FIGURE 2
Correlation between experimental ΔG and HINT score units for 53 protein–ligand complexes frommore than 10 distinct proteins (A) characterized
by a wide range of ligand polarity as indicated by their LogP values (B) (Cozzini et al., 2002). The line is the best least-squares fit.
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3.3 Resolution and prediction quality

Another factor that shows a profound impact on the predictions
based on HINT, but also to all other codes, is the quality of the three-
dimensional structures. The higher the resolution, the lower the
standard error in the HINT prediction. We have observed that by
selecting within the 53 complexes only structures determined with a
resolution better than 2.5 Å, the standard error of the prediction
improved to 1.8 kcal/mol compared to 2.6 kcal/mol when the
included complexes possess a resolution within 3.2 Å
(unpublished data). A better crystallographic resolution leads to a
more precise geometry and well-defined distances of interacting
groups that impact HINT scores.

Overall, the HINT score for a protein–ligand complex
depends, in addition to other contributions, on hydrogen-
bonding contribution. A particular property of HINT is that it
is very sensitive to the positioning and orientation of hydrogen-
bonding protons. It is well known that hydrogen atoms can rarely
be detected crystallographically, except for structures with
resolutions higher than ~1 Å. Thus, automated procedures
were put in place to insert hydrogen atoms bound to heavy
atoms and to correctly orient them to optimize the geometry
for hydrogen bonds and, therefore, their strength and scores,
without altering the position of the crystallographically
determined heavy atoms. The energetic contribution of
hydrogen bonds also plays a significant role when water
molecules bound to protein active sites and/or ligands are
considered (see the following section).

4 HINT applied to the evaluation of
protein–ligand interactions: the
contribution of water molecules

Nothing happens in biological processes without the direct or
indirect contribution of water. Protein–ligand complexes, as well as
most biological complexes, form in water and often involve the
displacement of many water molecules from protein binding sites.
However, a few water molecules might be retained that further

stabilize the complex association. Water displacement or retention
participates in the overall free energy of binding, but the detailed
estimation of each water molecule’s contribution is often far from
trivial. Therefore, hit identification and, most of all, lead
optimization might suffer from the uncertainty of retaining or
removing specific water molecules. This has been and continues
to be an interesting problem to us, and we have attempted to
rationalize water’s role and contribution by means of the HINT
code and specifically developed tools (Figure 3), such as rank
(Kellogg and Chen, 2004), to address hydrogen-bonding quality,
free energy contributions of water–ligand interactions (Fornabaio
et al., 2004) and water–protein interactions (Amadasi et al., 2006),
the water relevance metric for assessing water conservation with
respect to ligand binding (Amadasi et al., 2008), and a tool for
similar to GRID (Goodford, 1985) for placing water molecules using
relevance (Kellogg et al., 2005).

4.1 HINT estimation of the energy
contribution provided by bridging and
conserved water molecules

The literature provides numerous cases in which water plays
crucial roles in mediating protein–ligand interactions. Examples are
represented by bosutinib binding to Src kinase (Levinson and Boxer,
2014), thermolysin and its water network stabilized by
carboxybenzyl-Gly-(PO2)-L-Leu-NH2−based ligands (Krimmer
et al., 2014), the water networks of the adenosine A2A receptor
and their perturbations resulting from ligand binding (Congreve
et al., 2012), or by the well-known case of HIV-1 protease (Lam et al.,
1994). Trying to rationalize the associated water roles, we used
HINT to estimate the energetics of binding site waters in 23 HIV-1
protease/inhibitor complexes that belong to the different classes of
hydroxyethylenic ligands, peptidomimetic diol derivatives, cyclic
ureidic derivatives, and cyclic sulfamide derivatives. The latter pair
was specifically designed to displace a conserved water molecule
(water 301) in the binding site. A careful analysis of the X-ray
structures of the complexes showed the presence of three different
structural water categories, that is, water 301, symmetrically located
in the binding site with respect to the catalytic one and H-bonding
Ile 50 and Ile 150 backbones, waters 313 and 313′, located in a more
peripheral region, and waters 313bis and 313bis’, inserted in small
clefts in the binding site. The protein–ligand interaction calculated
by HINT, with the inclusion of the water contribution, showed that
bridging water molecules, such as 301, significantly contributes to
the overall energy (about 4–6 kcal/mol) and leads to a better
correlation between experimental and predicted free energy. In
contrast, the contribution of more peripheral waters is variable or
not significant and strongly dependent on the chemical nature and
size of the ligand (Fornabaio et al., 2004). However, the binding
energy gained by the new ligand-to-protein (Ile 50, Ile 150)
interactions in the water 301-displacing cyclic derivatives was
very similar to the energy previously associated with the water-
to-ligand and water-to-protein interactions (Figure 4). As a
conclusion, we recommended including the contribution of water
molecules when predicting the free energy of binding but paying
specific attention to ensure that this adds information and not just
noise.

FIGURE 3
Flowchart of the computational titration.
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We implemented the previous work by evaluating not only the
energy associated with protein–water interaction but also the
geometry quality of the H-bonds formed by each water molecule
to obtain a more reliable estimation and prediction of water’s role in
mediating protein–ligand association (Amadasi et al., 2006). First,
12 solvated proteins, in both the apo and holo form complexed with
inhibitors, were considered for a total of 2,186 co-crystallized water
molecules. Water molecules were classified and separated into the
following categories: 1) water molecules in active sites; 2) water
molecules deeply inserted into cavities; 3) buried water molecules; 4)
first shell external water molecules (within 4 Å of the nearest protein
heavy atom); and 5) second shell external water molecules (more
than 4 Å from the protein; see the study of Amadasi et al. (2006).
Each water molecule was evaluated and classified according to the
interactions made with the protein, bymeans of the HINT score, and
to the number of potential H-bonds, by means of the rank algorithm
(Kellogg and Chen, 2004).

4.2 The Rank algorithm

The latter can evaluate the count, strength, and geometry of
potential hydrogen bonds for each water molecule in the cognate
structure and is also used to optimize water position and hydrogen
placement. Rank can vary from 0, for waters not involved in any
hydrogen bonds, to around 6, for waters forming four high-quality
hydrogen bonds in terms of bond length and angle geometry, and it
is calculated by the following equation:

Rank � ∑
n

2.80Å/rn( ) + ∑
m
cos ΘTd − Θnm( )[ ]/6{ }, (3)

where rn is the distance between the water oxygen and the target
heavy atom; ΘTd is the ideal angle of 109.5°, and Θnm is the angle
between targets. Also, any angle less than 60° is rejected, as well as
the corresponding bond.

The analysis showed that both HINT and Rank scores increase
when evaluating water molecules in the second and first hydration
layers, to waters in active sites, up to waters in protein cavities, or
completely buried in the protein matrix.

Then, 15 protein–ligand complex binding sites, in which the
presence of at least one bridging water molecule was reported in the
literature, were analyzed to provide reference HINT scores and Rank
values for bridging waters. We observed that the average Rank for
protein–water and ligand–water was estimated to be 3.0 and 1.5,
respectively, suggesting that proteins are better able to embed
bridging waters than ligands, which is quite reasonable
considering the residue sidechain flexibility and the presence of
clefts and dips in active sites. We have to consider that a Rank equal
to 3 might correspond to three H-bonds but also to two very good
bonds in terms of distance and geometry. However, no significant
difference was provided in terms of the HINT score for
protein–water and ligand–water interactions.

Finally, we analyzed a set of nine proteins in both native and
complexed state and classified water molecules in active sites in
the following categories according to their relevance: 1)
conserved water molecules in binding sites bridging
protein–ligand interaction; 2) conserved water molecules in
binding sites not relevant for protein–ligand interaction; 3)

conserved water molecules in binding site cavities; 4)
conserved water molecules in peripheral binding site regions;
5) water molecules displaced by ligands replacing their function,
i.e., functionally displaced; 6) water molecules displaced by
ligands only occupying their room, i.e., sterically displaced;
and 7) missing waters. Water molecules with Rank >1.5 and
HINT score <150 can be considered as sterically displaceable and,
thus, potentially removable by ligands at moderate cost. Water
molecules having, instead, Rank values in the 1.5–4.0 range and
HINT scores >150 can be more relevant and quite likely retained
with respect to drug design, while water molecules with
Rank >4 are too buried in the binding site and of less interest
(Amadasi et al., 2006).

4.3 The Relevance metric

The diagnostic potential of the HINT score and Rank in
predicting displaceable, bridging, or buried water molecules was
further implemented in the more quantitative Relevance metric
(Amadasi et al., 2008). Although water molecules are usually
excluded from consideration in structure-based drug design, the
rapid identification of Relevant water molecules that might be
retained or displaced by ad hoc designed ligands (any water can
be, in principle, displaced) can significantly affect the energetics of
protein–ligand interaction. By using a training set of thirteen
proteins, crystallized in the native and complexed state, with a
total number of 125 water molecules, we combined information
coming from the HINT score and Rank in the following equation,
describing the overall probability (PA) of specific water to be
Relevant:

PA � PR WR| | + 1( )2 + PH WH| | + 1( )2
WR| | + 1( )2 + WH| | + 1( )2 , (4)

where PR and PH are calculated by nonlinear polynomial regressions
and correspond to the percent probability for conservation based on
the Rank and HINT score, respectively, while WR and WH are the
weights of Rank and HINT score probabilities, respectively
(Amadasi et al., 2008). This analysis showed Rank and HINT
score values associated with conserved waters: PR > 60%,
corresponding to Rank >2.3, and PH > 80%, corresponding to
HINT score >400. Otherwise, PH > 40%, although corresponding
to HINT score >100, was considered indicative of non-conservation.
When applied on a test set of nine native and complexed proteins,
for which specific bridging water molecules were previously
identified, 59 of 68 water molecules were correctly predicted,
corresponding to a success rate of 87%, which increased to 92%
when only water molecules from X-ray structures having a
resolution <2.0 Å were considered. Importantly, the
crystallographic B factors, often used in such analyses did not
improve this model.

4.4 Hot and cold water

In a later contribution, we designated water molecules in
protein matrices as “cold” and “hot” according to their internal
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energy and possible displacement (Spyrakis et al., 2017). Hot
water can also be considered “unhappy” water, that is, not stable
in binding sites or at protein surfaces, because of the presence of
extensive hydrophobic regions. Being unhappy, they would
benefit from being displaced toward a more polar
environment as the bulk, where they could maximize the
number of H-bonds and provide a favorable variation of the
binding free energy. Cold water, being stably bound in polar
environments can be, instead, considered as “happy” molecules
able to extend protein/ligand functions and to participate in the
protein structure, dynamics, and function. Their displacement
might not be at a trivial expense and may be associated with
meaningless or even unfavorable variation of the binding free
energy.

Behind the hot/cold classification is, in fact, their enthalpic
and entropic contributions. Several considerations can be
drawn that might be useful with respect to a drug design
perspective (Ahmed et al., 2013; Spyrakis et al., 2017): i) hot
water molecules in binding sites can be easily displaced with a
manifest gain in entropy and a negligible loss in enthalpy; ii)
attention must be paid when displacing cold water molecules
since the entropic gain might not balance the enthalpic loss; iii)
the enthalpy/entropy compensation associated with cold water
displacement can lead to quite small changes in the binding
free energy, thus often making drug design efforts ineffectual;
iv) hot water networks around protein–ligand complexes hide
hydrophobic moieties stabilizing the association; and v) both
hot and cold water molecules at the protein–protein
interface can provide precious indications when designing
protein–protein inhibitors.

4.5 Virtual screening with the HINT scoring
function

Clearly, the emphasis onmodern drug discovery has shifted over
the past decade or so toward higher-throughput modeling
approaches, such as virtual screening. Before using HINT for
extensive docking experiments, we were curious whether docking
scores from various scoring functions correlated better with RMSD
(root-mean-squared distance) or free energy of binding. In other
words, does reproducing a crystal structure by docking, which is
how most scoring functions are optimized, necessarily produce
accurate predictions of binding energy? We examined
19 protein–ligand complexes for which X-ray crystallographic
structures and binding energy data were available, and we
calculated experimental vs. computationally-derived free energy
correlation by means of the HINT free energy scoring tool and
other scoring functions (Spyrakis et al., 2007a). Correlations drawn
after re-docking the cognate ligands in their corresponding protein
structures were generally better with the HINT scoring function
(Spyrakis et al., 2007a). Also, it was obvious from this study that
scoring functions uniquely calibrated for the dataset or sets under
study should nearly always be preferable to universal scoring
functions.

The HINT scoring function described earlier has indeed been a
powerful tool for virtual screening (Salsi et al., 2010; Farzan et al.,
2011; Spyrakis et al., 2014; Obaidullah et al., 2018; Kayastha et al.,
2022) with a few caveats, including: 1) the scoring function is
extremely sensitive to structure, especially properly optimized
hydrogen-bonding interactions that include the donor hydrogen’s
position, and 2) while it is more than fast enough for scoring docking

FIGURE 4
Structural water molecules in the HIV-1 protease binding site. The residues lining the pocket (light blue), the ligand (pink), and the water molecules
are shown in capped sticks. The protein is displayed in cartoons, and H-bonds involving water molecules are shown by gray dashed lines (PDB ID: 1HIH).
The image has been obtained with PyMol version 2.x.
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models, it is not, at present, in the “giga” docking timescale range.
Thus, HINT, in our hands, has been used as a second scoring
function after docking with programs like GOLD or AutoDock and
their native scoring functions have been applied as primary filters. In
this use case, our in-house studies generally have been relatively
small-scale and speculative, i.e., purchasing 10–100 compounds for
actual assay with a variety of low-to-medium-throughput methods.
Nevertheless, about one-in-five of the compounds identified by
virtual screening with HINT scoring were active.

Three examples of this research are as follows: 1)
14 pentapeptides, binding to Haemophilus influenzae
O-acetylserine sulfhydrylase (OASS) with affinities ranging
from μM to mM, were identified with good correlation
between computational and experimental data, excluding
peptides bearing a positive charge, which are likely
overestimated by HINT. These results, combined with X-ray
structures of the three best complexes, defined a
pharmacophoric scaffold for the design of peptidomimetic
inhibitors for this enzyme (Salsi et al., 2010). 2) To identify
new antimicrobials toward Treponema denticola cystalysin, we
performed virtual screening on 9,357 compounds with the
FLAPsite algorithm (Baroni et al., 2007), docked those most
promising, and rescored with HINT in a consensus approach.
Among the 17 compounds selected for testing, two showed IC50s
in the low μM range, identifying interesting hits for the
development of novel antimicrobials (Spyrakis et al., 2014).
3) The most recent publication using HINT in this way
(Kayastha et al., 2022) details the discovery of three new
potent eIF4A inhibitors that diminished the viability of
diffuse large B-cell lymphoma (DLBCL) cells. The actives
were discovered via target-based virtual screening in the
MolPort database, followed by pharmacophore-based and
analog screening. Modeling suggests that these compounds
clamp eIF4A into mRNA in an ATP-independent manner
and depress eIF4A-dependent oncogene expression.
Eukaryotic translation initiation factor 4A is essential in
translation initiation as it unwinds the secondary structure of
messenger RNA upstream of the start codon and enables active
downstream ribosomal recruitment.

5 HINT applied to the evaluation of
protein–protein interactions

Protein–protein interactions are emerging as one of the most
important features of biological structures. Building an
understanding of their contributions is challenging because of
many of the aforementioned issues. However, an important
advantage of the HINT model in evaluating protein–protein
interactions is that the key hydrophobic–hydrophobic
interactions are handled in a robust atom-to-atom manner
(Kellogg and Abraham, 2000; Sarkar and Kellogg, 2010), not
lumped together as lipophilic surface contact areas or other
aggregate metrics. There are two types of protein–protein
interactions: the first between distinct separate proteins, which
have many implications for biological function, metabolism, and
diseases, and the second within a protein—as in protein multimers,
protein folding, and intramolecular associations. Although these

definitions are broad and probably inclusive of most biology, we
have applied HINT to several specific problems as we looked for
insight into the link between structure and function.

5.1 Dissecting the energetics of
protein–protein associations

While protein–ligand interactions are complex on their own, the
addition of more degrees of freedom when two proteins interact is
another level of complexity. For example, in a typical protein–ligand
interaction, there will likely be only a few relevant water molecules,
but at a protein–protein interaction surface, there can be one or two
dozen. Using the aforementioned computational titration algorithm
(Fornabaio et al., 2003; Spyrakis et al., 2004; Kellogg et al., 2006)
would typically involve 2–3 ionizable residues or functional groups
in a protein–ligand complex, but again, at a protein–protein surface,
this could be a much larger number.

To explore the water issue, we adapted the rank and relevance
algorithms to protein–protein interactions in order to probe the roles
of water molecules found specifically at protein–protein interfaces
(Ahmed et al., 2011; 2013). The result was the surprising conclusion
that less than one-quarter of waters found at such interfaces were
engaged in truly structure-supporting bridging roles, and just over
one-quarter of them had unfavorable interactions with respect to both
proteins. The remainder, over one-half, had favorable interactions
with one protein and unfavorable interactions with the other (Ahmed
et al., 2011). We proposed a new structural motif—the hydrophobic
bubble—to describe the phenomenon of one or a collection of water
molecules “trapped” in a hydrophobic cavity formed by the
protein–protein association (Figure 5). Moreover, we hypothesized
that these bubbles are critical to protein function as points/regions of
instability to assist in protein–protein dissociation when needed. Two
implications of these observations are worth mentioning: 1) it will be
very difficult to predict the presence of water in such loci based only
on energetics as they are by definition unstable, although water
clusters do gain enthalpic advantage through their interactions
with each other, and 2) these phenomena may present a unique
opportunity for drug discovery at protein–protein interfaces as they
are the true “hotspots” (Spyrakis et al., 2017).

To further examine our insistence on the importance of water
at protein–protein interfaces, we reported a docking study on a
small number of protein–protein complexes both “dry”, as
allowed by the native ZDOCK (Pierce and Weng, 2008; Pierce
et al., 2011) program, and “wet”, where we tricked ZDOCK into
recognizing interfacial water molecules (Parikh and Kellogg,
2014) (Figure 6). The latter models were far superior by HINT
score and numerous metrics developed by the Critical
Assessment of PRedicted Interactions (CAPRI)
communitywide experiment (Janin et al., 2003; Mendez et al.,
2005), but creating such models was very tedious at that time due
to the limitations inherent in the ZDOCK code, e.g., its automatic
deletion of anything that was not in its library of 20 amino acids.
This, coupled with the inherent problems in predicting the
presence of water molecules that are “not” energetically viable,
although obviously present, set us in a different direction with
respect to HINT-based structure prediction (section 5.3),
including protein–protein docking.
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5.2 The intramolecular HINT score

As we were developing HINT, implementing an intramolecular
score was a very simple addition. However, it was not immediately
obvious how to apply it to interesting and important problems until
we started thinking about the difficulties of dealing with low-
resolution crystal structures and how their reflection data are
collected and refined. When the resolution is high, the reflection
data are more than adequate to model the structure within the
electron density envelopes and features, such as hydrophobic
interactions, are seen. However, at low resolution, somewhat
crude molecular mechanics forcefield algorithms are applied, and
hydrophobic interactions—that are not explicit in these force
fields—are often lost. We used the intramolecular HINT score as
an adjuvant to contemporary structure refinement protocols
(Koparde et al., 2011). We showed that low-resolution structures
refined by including our HINT intramolecular score-based protocol
were significantly more native-like based on structure quality
metrics.

More recently, Agosta et al. (2022) used the intramolecular
HINT score to evaluate the stability of proteins in response to single
(and multiple) site mutations. In particular, the SARS CoV-2 spike
glycoprotein that exhibits interaction between its receptor-binding
domain and the human angiotensin-converting enzyme 2, and has
been seen to mutate rapidly with devastating consequences, was
modeled and mutated in silico. The intramolecular HINT scores for

the alpha, beta, gamma, delta, and omicron variants confirm that all
mutated trimeric spike protein structures are similarly or more
stable than the wild-type. In addition, these scores show that the
receptor-binding domains of these mutants are more stable than the
wild-type. The HINT intramolecular scoring is very rapid, and
presuming the structures are well-modeled is suggestive that it
may be useful as a pre-screening tool for as-yet undiscovered
mutants for any protein.

5.3 Protein structure predictions and 3D
hydropathic networks

The concept of interaction networks has been recognized for
decades as it is a way to systematize protein structure, especially
regarding hydrogen bonding. Our work with HINT has continually
highlighted the parallel and often more important hydrophobic
interactions. For example, it is not a coincidence that the α1β1
(and α2β2) interface of hemoglobin are largely unaffected by the
deoxy to oxy hemoglobin transitions (and dominated by
hydrophobic contacts between the two subunits), while the
α1β2 interface, with just as many hydrogen bonds, has few
hydrophobic interactions (Abraham et al., 1997) and shifts
significantly in the transition. Also relevant are the “unfavorable”
hydrophobic interactions (including those involving water), which
are similarly key elements of protein structure. To systematize all of
these observations and to create a platform for structure modeling,
we developed a 3D interaction mapping paradigm wherein all
interactions (polar and hydrophobic, favorable, and unfavorable)
between a residue and its structural environment are visualized as
contours with specific colors, strengths, and positions for each
residue in a protein (Ahmed et al., 2015; Ahmed et al., 2019). To
control backbone conformation, we adopted a chess square schema
in which the Ramachandran plot is binned into 8 × 8, 45° × 45° chess
squares (Ahmed et al., 2015). Further binning or parsing by
sidechain conformations were applied as follows: χ1 for
asparagine, aspartic acid, cysteine, histidine, isoleucine, leucine,
methionine, phenylalanine, proline, serine, threonine, tryptophan,
and tyrosine, and χ1 and χ2 for arginine, glutamine, glutamic acid,
and lysine. The former, thus, have three parses per chess square and
the latter nine (AL Mughram et al., 2021). These maps can,
interestingly, after binning, be clustered into limited sets of
interaction motifs characteristic of residue type, solvent
accessibility, and structural role. The number of clusters obtained
is dependent on the population of the associated bin and the
complexity of observed and anticipated interactions. For example,
alanine sidechains show about four unique maps per chess square,
while arginine can show as many as 18 maps in some of the nine χ1/
χ2 parses. Altogether, there are about 18,000 maps for our soluble
proteins data set—each represents a unique constellation of
interacting atoms for that residue type, backbone conformation,
and sidechain parse. For illustration, Figure 7 sets out example
contoured maps for six diverse residue types, all in the α-helix region
of the Ramachandran plot. Importantly, it is not the identity of those
interacting atoms but their specific properties, e.g., hydrophobic,
polar, hydrogen bond donor or acceptor, etc., and water molecules
can fill these roles just as other amino acid residues, cofactors or
small molecules can. Because these roles are agnostic in terms of

FIGURE 5
Cavity is formed during the association of the human placental
RNase inhibitor (hRI) and human angiogenin (hAng) proteins to form
the complex (pdbid: 1a4y). A closeup view of a portion of this inter-
protein interface is shown. The cavity’s extents are depicted by
rendering in white dots; the green and purple contours represent the
character of the proteins surrounding that cavity, hydrophobic and
polar, respectively. What we are terming a “hydrophobic bubble” is
found in the upper left region of the cavity as it encloses or traps three
non-relevant waters in a largely hydrophobic (green) environment,
where their strongest interactions may be amongst themselves. The
other two waters in the cavity are in a polar (purple) region and are
more relevant. See the study of Ahmed et al. (2011) for a further
discussion on water molecules at protein–protein interfaces. Note
that displacement of the three non-relevant “hot” waters, likely as a
cluster, may reveal a pocket large enough for targeting as a site for
protein–protein inhibition.
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sequence, we call this paradigm “3D interaction homology” to
emphasize that it is not the residue identity but its interactions
that drive the structure.

With this extensive set of in-hand data, ~18,000 maps abstracted
from ~750,000 residues in our dataset, we have a complete,
quantifiable picture of the hydropathic valence of each residue
type and its potential roles in a protein’s hydropathic interaction
network. Exploiting this set of maps involves “matching” each
backbone-aligned map’s encoded interactions between residues.
Because there are limited sets of such maps for residue type and
backbone conformation, this is a comparatively simpler problem
than de novo atomistic minimization. More importantly, however,
using HINT scoring and its core interaction model has enabled our
view of the structure to be built upon a free energy framework and to
account for some more subtle features of interactions that are not
necessarily detected by molecular mechanics-based approaches. For
example, sidechain maps of aromatic residues, phenylalanine,
tyrosine, and tryptophan, show evidence of pi–pi stacking and
pi–cation interactions (AL Mughram et al., 2021). Also, the
computational titration algorithm was applied to aspartic acid,
glutamic acid, and histidine map generation and allowed
pH tuning of those residues’ interaction profiles (Herrington and
Kellogg, 2021). Likewise, an understanding of the large differences in

structural role between the serine and cysteine was explored with our
HINT/interaction maps approach (Catalano et al., 2021). While our
first goal was to document the interactions in which these residues
engage, we were also able to develop an improved understanding of
their roles in protein structure: 1) serine is considered to be
somewhat more polar than cysteine but is significantly more
solvent exposed; 2) while both have similarly consistent
interaction roles (~50–60% favorable polar, Figure 8) regardless
of their accessibility, clearly very few cysteines are found on the
outside of proteins; 3) it is also interesting (Figure 8) that bridging
(-S–S- bonded) cysteines exist in much more hydrophobic
environments than their unbridged analogs, which may be
mechanistically suggestive. In another more recent study, the
aliphatic hydrophobic residues were examined in both soluble
and membrane proteins (AL Mughram et al., 2023), which
surprisingly revealed somewhat modest differences in interaction
profiles for these residues in soluble proteins, where they are often
buried, and membrane proteins, where they are exposed to lipids.
The latter is particularly important because very few X-ray crystal or
even cryo-EM structures of membrane proteins retain their native
lipids (Guo, 2020).

In the last few years, AlphaFold2 and RoseTTAFold (Baek
et al., 2021; Jumper et al., 2021) achieved an astonishing power of

FIGURE 6
(A) Unsolvated docking results for the HyHEL-63/HEL complex. The left panels overlay the predicted ligand poses (cyan) with the crystal structure
(red), and the right panels illustrate the interactions of B/Tyr58 with ligand residues. This model is representative of 40% of generated poses found after
clustering of the complete set of docking solutions but does not show native residue–residue contacts. (B) Solvated docking results for the HyHEL-63/
HEL complex. This model shows native water-mediated residue-residue contacts, with B/Tyr58 showing a water-mediated hydrogen-bonding
network with C/Val99 and C/Asp101 (see the study of Parikh and Kellogg, 2014).
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prediction of protein three-dimensional structures thanks to the
application of deep learning methods that revolutionized the
approach applied until then (Goulet and Cambillau, 2022) This
new capacity has changed the landscape of structural biology and
drug discovery in surprisingly fundamental ways. There remain
many proteins poorly predicted by these tools, and the emerging
information concerning membrane proteins has likely not been
effectively incorporated in these algorithms, as those structures
themselves are not well-understood, especially with respect to the
role(s) of their native lipids. In some cases, the value of
experimental structural characterization has even been
questioned! It should be noted, however, that even if
computational predictions generate accurately-folded protein
models, they are not likely to produce models that have
sidechain conformations accurate enough for structure-based
drug discovery and design (Tong et al., 2021). Indeed, it is the
subtle features of the structure that drive toward success in these
endeavors. HINT and other modeling tools that focus on the
subtle interactions beyond gross folding and salt bridges will
continue to be relevant and useful.

6 HINT applied to the evaluation of
DNA–ligand and DNA–protein
interactions

The inclusion in HINT of both hydrophilic and hydrophobic
terms makes it able to predict energy contributions in DNA–ligand
and DNA–protein complexes very well. Indeed, it is well known that
the structure of DNA is stabilized by the stacking interactions between
the planes of the nucleobases along the helix axis, which are the main
factor in stabilizing the double helix (Yakovchuk et al., 2006), and by
the hydrogen bonds between complementary base pairs. Stacking
interactions are hydrophobic in nature, whereas hydrogen bonds are
essentially hydrophilic (Feng et al., 2019); therefore, when other
(macro)molecules bind to DNA, their interactions are conditioned
by both contributions assessed by the HINT.

6.1 Intercalation agents

The analysis of energetic interactions involving DNA by using
HINT was exploited for the first time in the study of the effects of
antineoplastic drugs, such as chlorambucil (an alkylating agent), and
anthracycline antibiotics, such as doxorubicin, daunorubicin, and
others (which act as intercalating agents). In the first example, HINT
analysis of a computational model of the adducts derived by
administration of chlorambucil to the shuttle vector plasmid
pZ189 demonstrated that the methylenes, as well as the phenyl
ring of this drug, can form favorable hydrophobic interactions with
nucleotides near the adduct site in the minor groove of DNA,
promoting alkylation at the N-3 position of adenine (Wang et al.,
1994).

Next, HINT was used to study the selectivity of doxorubicin
intercalation and binding in all 64 unique base pair quartet
combinations. The results showed that the interactions between
doxorubicin and the base pairs above and below the intercalation
site are mainly polar and favorable, resulting from acid–base
interactions between the heteroatoms of the antineoplastic drug
and the nucleotide bases. In addition, favorable hydrophobic
contributions are also present. Specificity was mainly associated
with hydrogen bonds, in particular with a base pair three positions
away from the intercalating site (Kellogg et al., 1998). These analyses
were subsequently extended to explore the binding of six different
anthracycline antibiotics (doxorubicin, daunorubicin,
hydroxydoxorubicin, 9-dehydroxydoxorubicin, adriamycinone,
and daunomycinone) to 32 different DNA octamer sequences.
The analysis showed that the differences in free energy among
the various compounds were in line with that experimentally
observed, indicating that HINT was able to pinpoint the
energetic contributions of ligand functional groups most relevant
to sequence specificity (Cashman et al., 2003). A further
investigation of 65 doxorubicin analogs and their complexes with
eight octamer DNA sequences allowed prediction of the net
energetic contribution of several functional groups in the tested
ligands and detection of selective ligands for the different
combinations of DNA sequences simulated in this study
(Cashman and Kellogg, 2004).

Analysis of the interactions of the two antibiotics gentamicin
and paromomycin with 12 designed analogs with ribosomal RNA

FIGURE 7
Example contoured hydropathic interaction basis maps for six
residue sidechain types. The full set for all residue types includes about
18,000 such maps. Each of these maps illustrate one observed
collection of interactions—discovered by 3D map
clustering—between the named residue and its environment,
including all other residues and water. Each map is taken from the set
calculated in the same alpha helix region of the Ramachandran plot,
and all are contoured at largely similar iso-density levels. Two views
are plotted for each case: left- the CA–CB (z) axis is pointed up, and
right- the CA–CB axis is pointed out of the page. The interaction types
are color-coded by type: green- favorable hydrophobic interactions,
i.e., depicting hydrophobic interactions between the residue depicted
and other atoms in its environment; purple- unfavorable hydrophobic
(i.e., hydrophobic-polar) interactions; blue- favorable polar (e.g.,
hydrogen bonding) interactions; and red- unfavorable polar
interactions. For more explanation, see the following: alanine- Ahmed
et al. (2019), isoleucine- ALMughram et al. (2023), serine and cysteine-
Catalano et al. (2021), phenylalanine- AL Mughram et al. (2023),
aspartic acid- Herrington and Kellogg (2021).
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also showed that rings III and IV of these compounds are involved in
important polar interactions with rRNA (Cashman et al., 2001).
Therefore, HINT has proven to be a sensitive tool for dissecting
interactions between nucleic acids and their ligands and for
assessing the strength of interactions with existing drugs, as well
as for predicting possible modifications of these molecules to
improve their affinity and/or selectivity.

6.2 Interactions between proteins and DNA

HINTwas tested for its ability to evaluate interactions ofmuchmore
complex systems, such as protein–DNA complexes. An initial study was
conducted on the interactions between estrogen receptors (ER) alpha and
beta and the corresponding estrogen-responsive elements (EREs) near
estrogen-regulated genes (Marabotti et al., 2007). By analyzing the

FIGURE 8
Residue interaction character as a function of solvent-accessible surface area. Each data point represents a cluster of interaction maps. The size of
each marker is representative of the number of residues within that cluster (see legend). Left: the character of interactions made by serine residues are
dominated (~60%) by favorable polar (blue) with very minor contributions from hydrophobic interactions (green) that decrease from ~5% at low solvent
accessibility to near zero at fully exposed. On average, serine’s solvent exposure is around 50% (vertical line). Center: same graph for cysteine. The
overall trends are quite similar, except that, on average, cysteine’s solvent exposure is only ~10%, indicating that cysteine is far more likely to be found
buried in a protein than on its surface. Right: same graph for S–S bridged cysteine (cystine), where the average solvent exposure is now only about 7%.
Also, the character of interactions made by cystine is dominated by unfavorable hydrophobic interactions (purple), followed by favorable hydrophobic.
Thus, -S–S- bridged cysteines are found most frequently in strongly hydrophobic environments that are buried. These data may provide insight into
predictions of cysteine -S–S- bridge formation in protein structures (see the study of Catalano et al., 2021).

FIGURE 9
Complex between the wild-type gene-regulating protein ARC and the DNA (PDB ID: 1BDN). The four chains of the protein are represented with
different shades of pink and with highlighted solvent-accessible surface area. In transparency, it is possible to see the secondary structure elements
composing the protein. The color code for the nucleotides is as follows: A: red, T: blue, G: green, andC: yellow. Cyan balls represent watermolecules. The
image has been obtained with UCSF ChimeraX (version 1.5).
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structure of theDNA-binding domain (DBD) of ERα and the homology-
based model of ERβ bound to the ERE sequence, it was possible to
identify the residues that contributed most to the binding affinity.
Furthermore, by mutating each nucleotide pair in the two halves of
the ERE binding site with all other possible pairs, it was possible to
understand how mutations in the different positions of ERE could affect
the binding affinity in both complexes. The results showed that,
consistent with the experimental results, ERα binds the consensus
ERE sequence with higher affinity than ERβ and that few amino
acids and bases of the consensus sequences are involved in specific
interactions. Specifically, HINT was able to discriminate with high
sensitivity the affinity of ERα/ERβ DBDs for ERE sequences, as well
as for non-ERE sequences used as negative controls (glucocorticoid- and
progestinic responsive elements), whereas DDNA (Zhou et al., 2005),
another predictor of protein–DNA interaction energies available at that
date, did not. We hypothesized that the reasons for this failure was that
the DDNA predictor was based on a knowledge-based statistical
potential trained on a reference database not including protein–DNA
complexes. However, it is significant that the HINT code was not derived
specifically from the analysis of DNA structures; therefore, this fact

confirmed us the general validity of the hydropathic approach (Marabotti
et al., 2007).

For this particular set of complexes, the specificity of protein–DNA
sequence binding did not appear to be much affected by water
molecules. However, given the importance of the contribution of
water in the thermodynamics of DNA–protein recognition, this
investigation was extended in parallel to 39 additional DNA–protein
complexes for which a three-dimensional structure was available
(Spyrakis et al., 2007b). Thus, it could be shown that the inclusion
of water molecules at the interface between protein and DNA (the so-
called “bridging waters”) in the energetic contribution calculated by
HINT improved the correlation between its score and the experimental
free energy of association, with a lower standard error. The fraction of
bridging waters in this set of experiments was only 3.5% of the water
molecules detected in the 39 crystallographic complexes, consistent
with the percentage of water mediating recognition between proteins
and DNA identified previously (Reddy et al., 2001). It was also possible
to observe that the orientation and binding strength of these water
molecules depended more on the nature of the amino acid sidechain
than on the type of DNA bases.

FIGURE 10
Heat map describing the water enhancement factor (WEF), i.e., the HINT score enhancement due to water contribution, calculated for each amino
acid–base pair. A water enhancement factor of 1 indicates an amino acid (AA)–base (B) interaction with no significant bridging water molecules. Data are
extracted from Marabotti et al. (2008).
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6.3 Protein–DNA recognition

A more comprehensive study on energy-based prediction of the
specific recognition between amino acid residues and nucleotide bases
was subsequently performed on a dataset of 100 high-resolution
protein–DNA complexes (Marabotti et al., 2008) (Figure 9) and
used to predict specific contacts between amino acids and
nucleotide bases in a set of 45 zinc finger–DNA complexes
identified by phage display selection (Ghosh et al., 2006). By
applying the HINT code, three main questions could be answered:
i) Which amino acid–base pairs are energetically most relevant to
achieve a specific interaction? ii) Are there energetic propensities that
justify specific recognition of a nucleotide base by an amino acid? iii)
Are bridging waters able to influence the specificity of amino
acid–base recognition? The results showed that the amino acids
that interact most frequently with nucleotide bases are Arg, Asn,
Lys, Gln, Thr, Ser, Asp, and Gly; in fact, HINT calculated that the sum
of their contacts accounts for more than 70% of the total number of
contacts. Arg-G, Asn-A, Asp-C, Gln-A, Glu-C, and Lys-G appear to
be the most energetically favorable contacts (Arg-G being the
interaction that accounts for about 2/5 of the total HINT score for
the complexes), while Asn-T, Asp-G, Gln-T, Glu-G, Ile-T, Leu-T,
Met-T, and Val-T are unfavorable interactions. The analyses also
showed that the same amino acid–nucleotide base pairs relevant to
protein–DNA interactions are also particularly involved in water-
mediated interactions.

For some amino acid–base pairs, it was also possible to calculate
a “water enhancement factor,” that is, the ability of bridging waters
to enhance the energetics of the amino acid–base interaction
(Figure 10). Finally, based on the HINT score extracted from this
analysis, it was possible to correctly predict more than 70% of the
experimentally observed amino acid–base pairs in the zinc
finger–DNA used as a test set. This percentage increased to
nearly 90% when a relevance-weighted success descriptor,
considering the relative energy relevance of each amino acid–base
pair to the total protein–DNA recognition energy, was included. In
this way, it was possible to show that amino acid–nucleotide base
preferences could be explained by the energy-based analysis
performed by HINT better than through qualitative approaches
based on purely geometric considerations. Moreover, HINT also
made it possible to predict unfavorable interactions, some of which
are surprisingly well-conserved and usually involve the methyl
group of thymine. This finding is interesting in that one might
speculate that the amino acid–base interaction evolved before DNA
development and was later adapted to DNA, but the presence of the
thymine methyl group still continues to be a disruptive element in
protein–DNA interaction (Marabotti et al., 2008).

7 Conclusion

The prediction of events in antiquity was a very profitable but
risky job, from the prophet Cassandra to those relying on Sibilla
oracle cards. In addition to gambling, which, by definition, remains
unpredictable, the forecast of weather is perhaps the most common
modern-day testing ground for prediction. In use are algorithms that
take into account the many variables that dictate sunny or rainy
days, windy or calm weather conditions, and temperature. In this

case, the robustness of the prediction can be and is verified every day,
and the applied algorithms are constantly adjusted with incremental
but beneficial improvements.

Prediction of the binding affinity between a protein and a ligand, or
for any two biological molecules, independently of their molecular
weights, is as challenging to predict as a protein structure. Multiplicity
and diversity are the rules as many small energetic contributions lead to
either loose, medium, or tight complexes. Some of these contributions are
difficult to pinpoint as they deal with entropy or other emergent
phenomena. HINT is one of the few codes that have attempted
energetic evaluations of the molecular events associated with the
formation of a protein–ligand complex—considering both enthalpic
and entropic contributions—in a very simple and “natural” way
(Kellogg and Abraham, 2000). This idea was one of many innovative
and transformative concepts that can be credited to Donald J. Abraham.
He was an outstanding medicinal chemist who, by having visited Max
Perutz’s laboratory at the Cambridge MRC (Medical Research Council),
had a clear appreciation of the value of protein structural information for
the discovery, design, and development of novel drugs.

The results of applications of HINT to many diverse
protein–ligand and protein–nucleotide complexes with and
without water contributions, reported herein, demonstrate that it
is possible to obtain very usable, if not accurate, predictions of
protein–ligand strength in short times and even with very low
computational power. This paves the way for the design of
chemical entities that correctly fit within protein active sites,
enabling either inhibition or enhancement of their function, and
potentially act as drugs to treat diseases. This was the dream of
Abraham, and we are still pursuing it. We might be a bit closer!
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