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Background: Endometrial cancer (UCEC) is a commonly occurring tumor in
females, and polycystic ovary syndrome (PCOS) is closely related to UCEC, but
the molecular mechanisms remain unclear. This article aims to explore potential
molecular mechanisms in UCEC and PCOS, as well as identify prognostic genes
for UCEC.

Methods: Bioinformatics methods were employed to screen for DEGs in UCEC
and PCOS. The shared DEGs were analyzed by constructing a protein-protein
interaction (PPI) network using the String database and Cytoscape software. The
enrichment analysis was performed usingMetascape. The sharedDEGs associated
with the prognosis of UCEC were identified through univariate and lasso Cox
regression methods. A multivariate Cox regression model was constructed and
internally validated. The expression and test efficiency of the key prognostic genes
were verified using external datasets for UCEC and PCOS. Furthermore, the Gepia
database was utilized to analyze the expression of key prognostic genes and their
correlation with the disease-free survival (RFS) of UCEC. Tumor mutation burden
(TMB), immune infiltration, and the correlation of immune cells were assessed for
the prognostic genes of UCEC.

Results: Therewere 151 sharedDEGs identified betweenUCEC and PCOS through
bioinformatics screening. These sharedDEGswere primarily enriched in leukocyte
activation. Following model construction and verification, nine genes were
determined to be prognostic for UCEC from the shared DEGs. Among them,
TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1, VNN2, and ANXA1 were confirmed as
prognostic genes in UCEC through external validation. Additionally, RTN1 was
identified as a key gene in both UCEC and PCOS. Gepia analysis revealed that
higher expression of RTN1 was associated with RFS in UCEC. Immune infiltration
analysis of the shared DEGs demonstrated significant differences in the expression
of various immune cells between UCEC high and low TMB groups. The seven key
prognostic genes in UCEC exhibited regulatory relationships with immune cells.
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Conclusion: This study identified TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1,
VNN2, and ANXA1 as the key prognostic DEGs of UCEC. These genes are
associated with UCEC survival, TMB, immune cell infiltration, and immune cell
regulation. Among them, RTN1 may serve as a potential biomarker for both UCEC
and PCOS.
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1 Introduction

Endometrial cancer (UCEC) is a common malignant tumor in
the female reproductive system, specifically in the endometrium. It is
more prevalent in developed countries, particularly among middle-
aged andmenopausal women (Crosbie et al., 2022). The incidence of
endometrial cancer is 5.9% (Banz-Jansen et al., 2022) and its
mortality rate has been increasing by an average of 1.9%
annually (Makker et al., 2021). Obesity is a recognized risk factor
for the most common type of UCEC (Rahib et al., 2014; Lauby-
Secretan et al., 2016). Polycystic ovary syndrome (PCOS) is a
multifactorial, multigene, inflammatory autoimmune disorder
that commonly affects reproductive-age women. It is
characterized by hyperandrogenism, insulin resistance, ovulation
disorders, metabolic disorders, and other features (Liao et al., 2021).
PCOS often leads to health problems such as obesity, infertility,
metabolic disorders, cardiovascular diseases, and cancers (Patel,
2018; Liao et al., 2021). Obesity and complex metabolic diseases,
including PCOS and diabetes, are considered risk factors for UCEC
(Lauby-Secretan et al., 2016; Patel, 2018; Liao et al., 2021).

UCEC is pathologically staged into four grades by the
International Federation of Gynecology and Obstetrics. A higher
grade indicates greater cancer cell proliferation and more
challenging treatment. The late-stage survival rate of UCEC is
only 17%, highlighting the importance of early diagnosis and
treatment in improving survival and prognosis for UCEC
patients (Zhang M. et al., 2022). UCEC is commonly treated with
surgical resection, hormone therapy, radiotherapy, and
chemotherapy. However, in recent years, immunotherapy has
emerged as a promising new treatment modality for cancer
(Riley et al., 2019; Atsavapranee et al., 2021; El-Mayta et al.,
2021). By leveraging checkpoint inhibitors and adoptive cell
therapy to manipulate the immune system and enhance its
recognition and destruction of cancer cells, cancer
immunotherapies offer the potential for durable therapeutic
responses in a range of solid tumors and hematologic
malignancies (Kennedy and Salama, 2020). Immunotherapy is
now being applied to various cancers, including UCEC, providing
hope for patients (Makker et al., 2019; Liu et al., 2021b).

High-throughput sequencing can simultaneously detect a large
amount of genomic information, with fast and accurate detection
speed. This capability greatly enhances people’s ability to assess the
risk of complex diseases and the accuracy of targeted drug treatment
(Rodriguez and Miller, 2014; Rego and Snyder, 2019). In recent
years, high-throughput sequencing has become widely utilized in the
medical field. This method enables a profound understanding of
disease pathogenesis from a genetic perspective. (Rego and Snyder,

2019). With the advancement and application of high-throughput
sequencing technology, the diagnosis and treatment of UCEC have
shifted from histology to genomics. Genomic evidence, along with
clinicopathological criteria, provides crucial information for UCEC
treatment and enables the delivery of improved quality and
personalized services to patients (Mitric and Bernardini, 2022).
Bioinformatics, combined with high-throughput sequencing, can
efficiently screen and verify key disease-related genes. Moreover, it
can predict disease risk.

While PCOS has been linked to an increased risk of UCEC
(Lauby-Secretan et al., 2016; Patel, 2018; Liao et al., 2021), meta-
analyses have shown a significant association between PCOS and
the pathogenesis of UCEC (Barry et al., 2014; Li Z. et al., 2022).
However, the molecular mechanisms underlying this link remain
unclear. Understanding the pathophysiological connection
between UCEC and PCOS is crucial for developing effective
clinical treatment strategies. To address this, we employed
bioinformatics methods to screen for shared DEGs between
UCEC and PCOS. We visualized the protein-protein interaction
(PPI) network of these genes using the String database and
Cytoscape software. Next, we utilized lasso Cox regression, and
univariate and multivariate Cox regression methods to identify key
shared differentially expressed genes (DEGs) associated with the
prognosis of UCEC. We then constructed and validated the model.
Using the Gepia database, we analyzed the expression levels and
RFS of key shared DEGs across different pathological stages of
UCEC. Finally, we conducted tumor mutation burden (TMB) and
immune infiltration analysis on both the shared and key
prognostic genes for UCEC and PCOS.

2 Materials and methods

2.1 Data download

The data for UCEC were obtained by searching the keywords
“transcriptome profiling, Gene Expression Quantification, TCGA-
UCEC” from The Cancer Genome Atlas (TCGA) database (https://
portal.gdc.cancer.gov/). Keywords such as “polycystic ovary
syndrome, PCOS” were searched in the Gene Expression
Omnibus (GEO) database to retrieve the gene expression profile
of PCOS. Additionally, keywords such as “Endometrial cancer, EC,
UCEC” were searched in the GEO database to obtain the gene
expression profile of UCEC. The inclusion criteria for the PCOS and
UCEC datasets were as follows: 1) Gene expression profiles must
include both a case group and a control group. 2) Datasets should
have available raw data or analyzable data.
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2.2 Screening for DEGs

The UCEC data matrix file was downloaded from the TCGA
database, the PCOS data matrix file was downloaded from the GEO
database, and the “limma” R package, a microarray linear model,
was utilized to correct the data and analyze the fold change (FC). The
log2 FC of each gene was used to determine its rank in the final gene
list. Genes with a p < 0.05 and |log2 FC| ≥ 0.5 were considered
significant DEGs and were subjected to further analysis.

2.3 Identifying shared DEGs for UCEC and
PCOS

A Venn diagram was constructed using the online website
(http://www.ehbio.com/test/venn/#/) to identify the intersection

of DEGs between UCEC and PCOS, representing the shared
DEGs for both conditions.

2.4 Construction and enrichment analysis of
shared DEGs’ PPI network

“String” is an online network tool that can predict protein
association between proteins and draw a PPI network (von
Mering et al., 2003; Szklarczyk et al., 2017; Szklarczyk et al.,
2023). In this study, we utilized String to analyze the protein
interaction network of shared DEGs between UCEC and PCOS.
The String using method is as follows: Log in to the String database
(https://string-db.org/), click “Multiple Proteins”, enter shared
DEGs into “List of Names”, select “Homo sapiens” for organisms,
and click “search” to perform protein mutual assistance on shared

FIGURE 1
The DEGs and shared DEGs for UCEC and PCOS. (A) The heat map represents the DEGs of UCEC, with a total of 1949 UCECDEGs. (B) The heat map
represents the DEGs of PCOS, with a total of 2199 PCOS DEGs. (C) The Venn diagram illustrates the shared DEGs between UCEC and PCOS, revealing
151 shared genes in both UCEC and PCOS.
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DEGs network analysis, when greater than 0.4 indicates statistical
significance.

Cytoscape software, when combined with extensive
databases of PPI, protein-DNA, and genetic interactions, is a
powerful tool (Shannon et al., 2003). In this study, the String
database and Cytoscape software were employed to map and
visualize the PPI networks of shared DEGs between UCEC and
PCOS. The CytoNCA plug-in in Cytoscape software (version
3.9.1) was utilized to perform topological analysis and
betweenness centrality (BC) screening of the resulting

protein interaction network data (Tang et al., 2015).
Subsequently, the shared DEGs were ranked based on their
degree values. A PPI network map representing the shared
DEGs between UCEC and PCOS was generated, and the top
10 shared DEGs with the highest degree values were identified
and visualized.

Metascape (https://metascape.org/gp/index.html#/main/step1)
is an online platform that provides comprehensive annotation
and analysis resources for gene lists (Zhou et al., 2019). In this
study, we utilized Metascape to perform gene ontology (GO) and

FIGURE 2
The PPI network and enrichment analysis of shared DEGs for UCEC and PCOS. (A) The key shared DEGs of UCEC and PCOS. Among the shared
DEGs, LCP2, NKG7, IL2RG, CD7, CCR5, RAC2, CD79A, KIT, CCR7, and GBP5were the top ten genes based on degree. (B) The PPI network of shared DEGs
for UCEC and PCOS. The shared DEGs enrichment GO color by cluster (C) and p-value (D). (E) The bar chart of enrichment analysis of shared DEGs. The
result showed that they mainly enrich leukocyte activation, inflammatory response, and regulation of lymphocyte activation.
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Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses on the shared DEGs between UCEC and PCOS.

2.5 Establishment of the UCEC prognostic
gene model

The UCEC prognostic model was developed using shared DEGs
data from UCEC and PCOS. Univariate Cox analysis was employed
to identify UCEC prognostic genes. Lasso analysis and cross-
validation were used to address the issue of overfitting by
eliminating highly correlated genes. Subsequently, multivariate
Cox regression was performed to further reduce dimensionality.
Genes associated with UCEC survival in multivariate Cox regression
were extracted as prognostic genes. These prognostic genes were
utilized to construct the model and generate forest plots.

2.6 Internal validation of the prognostic
model on the TCGA database

The TCGA-UCEC data were divided into training (50%) and
testing datasets (50%) for model internal validation. The obtained
model was then used to predict the risk of training and testing
samples. Based on the median value of the training dataset, patients
in both datasets were divided into high-risk and low-risk groups.
The risk value was calculated using the formula: Risk value =
expression level of gene 1 * coef1 + expression level of gene 2 *
coef2 +. expression level of gene n * coefn. To compare the difference
in overall survival between the high-risk and low-risk groups,
Kaplan-Meier (KM) analysis from the “survival” package was
performed on the training and testing datasets. Additionally, the
predictive performance of the model was evaluated using receiver
operating characteristic (ROC) curves generated for 1, 3, and 5 years
using the “survivalROC” package. These ROC curves were created
for both the training and testing datasets. Risk values for the training
and testing datasets were obtained and used to generate risk score
distribution maps, survival distribution maps, and expression heat
maps to visualize the results.

2.7 External validation of prognostic genes,
and the establishment of key genes

External validation datasets for UCEC and PCOS prognostic
genes were obtained from the GEO database, meeting the selection
criteria. The expressions of key shared DEGs from UCEC and PCOS
were verified using the external validation datasets. UCEC
prognostic key genes were selected based on significant
differences between normal controls and UCEC in the external
validation dataset. Similarly, PCOS key genes were chosen by
identifying the key shared DEGs that displayed significant
differences between normal controls and PCOS in the external
validation dataset. The intersection of externally validated key
genes for both UCEC and PCOS represents potential markers for
both diseases. The predictive performance of the genes was assessed
using ROC curves generated with the “qROC” package. A ROC
curve greater than 0.6 was considered indicative of good predictive
performance for the gene.

2.8 Expression and survival analysis by Gepia

The Gepia database (http://gepia.cancer-pku.cn/) is a valuable
resource for data mining and gaining insights into gene function
(Tang et al., 2017). In this study, we utilized the “survival”module of
the Gepia database to explore the association between the expression
of key prognostic genes and the RFS in UCEC.

2.9 Immune infiltration analysis of shared
DEGs

Cibersort immune cell infiltration analysis was conducted on the
shared DEGs using the “limma” R package. A bar plot distribution of
the shared DEGs was generated for 22 immune cell subsets. The
shared genes were then categorized into high and low TMB groups
in UCEC, and the differences in immune cell infiltrate between these
groups were compared.

2.10 Immune correlates of key prognostic
genes

To examine the correlation between key prognostic genes in
UCEC and immune cells, we utilized the R packages “reshape2”,
“ggpubr”, and “ggExtra”. Subsequently, we employed R software to
create a lollipop diagram to visualize the correlation between the key
prognostic genes and immune cells.

3 Results

3.1 Identification of DEGs

The TCGA-UCEC database consists of 35 cases of normal
endometrium and 554 cases of UCEC. Through screening, a total
of 1949 UCEC DEGs were identified, including 958 upregulated
differential genes and 991 downregulated differential genes. The

TABLE 1 The top ten degrees of shared DEGs in PCOS and UCEC.

Name Betweenness Closeness Degree Shared name

LCP2 1247.608 0.371951 28 LCP2

NKG7 438.321 0.308081 20 NKG7

IL2RG 843.6401 0.365269 18 IL2RG

CD7 157.3024 0.309645 16 CD7

CCR5 1065.951 0.335165 16 CCR5

RAC2 1717.966 0.363095 16 RAC2

CD79A 126.3662 0.306533 14 CD79A

KIT 168.2864 0.283721 12 KIT

CCR7 59.69935 0.291866 12 CCR7

GBP5 333.5 0.262931 12 GBP5
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UCEC DEGs are presented in the heat map (Figure 1A). The
analysis of PCOS dataset GSE34526 from the GEO database was
performed using the Affymetrix Human Genome U133 Plus
2.0 Array platform, resulting in the identification of
2199 DEGs meeting the conditions, including
1373 upregulated differential genes and 826 downregulated
differential genes. The PCOS DEGs are shown in the heat map
(Figure 1B).

3.2 Confirming the shared DEGs for UCEC
and PCOS

The Venn diagram demonstrates the presence of 151 shared
DEGs between UCEC and PCOS (Figure 1C). Among the

FIGURE 3
The robust prognostic shared DEGs of UCEC and PCOS were based on the Cox regression model. (A) The partial likelihood bias and log λ of lasso
Coss analysis, and Lasso regression identified 16 candidate genes. (B) The coefficient and log λ of lasso Coss analysis. (C) The forest plot of nine prognostic
shared DEGs was based on the multivariate Cox regression model.

TABLE 2 Multivariate Cox regression analyses of nine shared DEGs.

ID Coef HR HR.95L HR.95H p-value

TSPYL5 0.033701 1.034275 1.008409 1.060806 0.009109

PARVG −0.10052 0.904369 0.800222 1.022071 0.107344

KCNJ15 −0.67959 0.506825 0.27009 0.951057 0.034326

RTN1 0.200334 1.221811 1.115558 1.338183 1.59E-05

CTSW −0.19341 0.824144 0.700535 0.969563 0.01966

HMOX1 0.002834 1.002838 1.001585 1.004093 8.97E-06

DCAF12L1 0.088495 1.092529 0.990085 1.205574 0.078136

VNN2 0.039031 1.039803 1.0096 1.07091 0.009454

ANXA1 −0.00733 0.992698 0.985906 0.999537 0.03643
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FIGURE 4
The KM survival curve and ROC curve in the training and testing dataset. The survival curve in the high- and low-risk groups of the training dataset (A)
and testing dataset (E) indicated that the high-risk group had a shorter survival time compared to the low-risk group (p< 0.05). The ROC curve values at 1
(B), 3 (C), and 5 (D) years in the training dataset were 0.776, 0.786, and 0.813 (AUC>0.6). The ROC curve values at 1 (F), 3 (G), and 5 (H) years in the testing
dataset were 0.64, 0.614, and 0.717 (AUC>0.6).

FIGURE 5
The risk score of the nine shared DEGs in UCEC. The risk score distribution of patients in the training dataset (A) and testing dataset (B). UCEC patient
survival in the training dataset (C) and testing dataset (D). The higher risk scores were associated with increased mortality rates in the training and testing
dataset. The expression profiles of nine shared DEGs in the training dataset (E) and testing dataset (F).
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151 shared differential genes, 73 were upregulated and 78 were
downregulated in UCEC (Supplementary Figure S1).

3.3 PPI network and enrichment analysis of
shared DEGs for UCEC and PCOS

Based on the interactions of shared DEGs obtained from the
Sting database, Cytoscape software was used to visualize the key
shared DEGs (Figure 2A) and the PPI network diagram of shared
genes (Figure 2B). It was determined that the top ten genes based
on degree were LCP2, NKG7, IL2RG, CD7, CCR5, RAC2,
CD79A, KIT, CCR7, and GBP5(Table 1; Figures 2A, B). The
shared DEGs were enriched using the Metascape online database,
and PPI networks were based on cluster analysis (Figure 2C) and
p-value (Figure 2D). The top three enrichment analyses were
leukocyte activation, inflammatory response, and regulation of
lymphocyte activation as the most significant processes
(Figure 2E).

3.4 Establishment of shared DEGs prediction
model for UCEC

The analysis of the 151 shared DEGs between UCEC and PCOS
involved performing univariate Cox regression, which revealed
23 DEGs associated with UCEC survival. The lasso regression
lambda optimal algorithm was employed, and tenfold cross-
validation identified an optimal lambda value of −3.6
(Figure 3A). Utilizing lasso regression, 16 candidate genes
associated with UCEC prognosis were identified, each having
non-zero lasso coefficients (Figure 3B). Those genes include
TSPYL5, ZNF683, SPOCK3, PARVG, DCAF12L2, KCNJ15,
RTN1, NEURL1, SKAP2, KCNH2, ACKR3, CTSW, HMOX1,
DCAF12L1, VNN2, and ANXA1. Subsequently, a multivariate
Cox regression model was constructed, resulting in the
identification of nine prognostic markers for UCEC. These
markes are TSPYL5, PARVG, KCNJ15, RTN1, CTSW, HMOX1,
DCAF12L1, VNN2, and ANXA1 (Table 2; Figure 3C). Among them,
VNN2, PARVG, CTSW, HMOX1, and ANXA1 are upregulated in

FIGURE 6
The bar chart of the nine DEGs in UCEC external verification. The expressions of TSPYL5 (A), KCNJ15 (C), RTN1 (D), HMOX1 (F), DCAF12L1 (G),
VNN2 (H), and ANXA1 (I)were significantly different in normal control and UCEC (p> 0.05). The expressions of PARVG (B) and CTSW (E)were not different
in normal control and UCEC (p> 0.05).
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UCEC, while DCAF12L1, KCNJ15, TSPYL5, and RTN1 are
downregulated in UCEC (Supplementary Figure S2).

3.5 Internal validation of shared DEGs
prediction models

The TCGA-UCEC data were divided into a training dataset
(272 cases) and a testing dataset (272 cases). The median risk value
of the training dataset was determined to be 1.653732. Using this
median risk value as the cutoff, both the training datasets and testing
datasets were divided into two groups: high-risk and low-risk. Each
group consisted of 136 UCEC cases. The risk value proved to be a
reliable predictor. The KM survival curves for the high-risk and low-
risk groups in both the training and testing datasets indicated that

the high-risk group had a shorter survival time compared to the low-
risk group (p< 0.05, Figures 4A, E).

The ROC curve values at 1, 3, and 5 years in the training dataset
were 0.776, 0.786, and 0.813, respectively, (Figures 4B–D). The
testing dataset was used to validate the model and the
corresponding ROC curve values at 1, 3, and 5 years in the
testing dataset were 0.64, 0.614, and 0.717, respectively, (Figures
4F–H). These ROC curve values indicate that the model constructed
by the nine prognostic genes in both the UCEC training dataset and
the testing dataset performed well, as all values were greater than 0.6.

The survival scores and status of theUCEC training dataset indicated
that higher risk scores were associated with increased mortality rates
(Figures 5A, C). Furthermore, when validating the risk score of themodel
using the testing dataset, the survival scores and status of the high-risk
and low-risk groups also demonstrated that higher-risk scores were

FIGURE 7
The ROC curve of the nine DEGs in UCEC external verification. The ROC curves of those nine shared DEGs had good predictive performances. The
AUCs of TSPYL5 (A), PARVG (B), KCNJ15 (C), RTN1 (D), CTSW (E), HMOX1 (F), DCAF12L1 (G), VNN2 (H), and ANXA1 (I) were 0.933, 0.668, 0.869, 0.679,
0.632, 0.859, 0.853, 0.723, and 0.814, respectively.
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correlated with higher mortality rates (Figures 5B, D). The expression
levels of the nine key shared DEGs in both the training and testing
datasets were visualized using a heat map (Figures 5E, F).

3.6 External validation of prognostic genes

The UCEC dataset GSE17025 was used as an external
validation dataset to validate the prognostic genes TSPYL5,
PARVG, KCNJ15, RTN1, CTSW, HMOX1, DCAF12L1,
VNN2, and ANXA1. Among them, the expressions of
TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1, VNN2, and
ANXA1 exhibited significant differences between normal
controls and UCEC (p< 0.05, Figure 6), confirming their
status as key prognostic genes for UCEC. The ROC curves for
all nine prognostic genes in the UCEC external validation set
were over 0.6 (Figure 7A–I), indicating their good predictive
performance. The PCOS dataset GSE48301 was used as an
external validation dataset to validate the same nine
prognostic genes. The results showed that RTN1 exhibited a

significant difference between normal controls and PCOS (p <
0.05, Figure 8D). However, the expressions of TSPYL5 (Figure
8A), PARVG (Figure 8B), KCNJ15 (Figure 8C), CTSW (Figure
8E), HMOX1 (Figure 8F), DCAF12L1 (Figure 8G), VNN2 (Figure
8H), and ANXA1 (Figure 8I) were not different in normal control
and PCOS (p > 0.05). Moreover, the ROC curves for KCNJ15
(Figure 9C), RTN1 (Figure 9D), CTSW (Figure 9E), and
DCAF12L1 (Figure 9G) demonstrated good predictive
performance (AUC>0.6). Therefore, RTN1 was identified as a
potential marker in both UCEC and PCOS.

3.7 RFS and expression analysis by Gepia

The expressions of the key prognostic genes TSPYL5, KCNJ15,
RTN1, HMOX1, DCAF12L1, VNN2, and ANXA1 in UCEC were
analyzed using Gepia. The results showed that higher expression of
RTN1 was associated with longer RFS in UCEC patients (p< 0.05,
Figure 10C). However, the expressions of TSPYL5 (Figure 10A),
KCNJ15 (Figure 10B), HMOX1 (Figure 10D), DCAF12L1

FIGURE 8
The bar chart of the nine DEGs in PCOS external verification. The expression of RTN1 (D)was significantly different in normal control and PCOS (p<
0.05). The expressions of TSPYL5 (A), PARVG (B), KCNJ15 (C), CTSW (E), HMOX1 (F), DCAF12L1 (G), VNN2 (H), and ANXA1 (I)were not different in normal
control and PCOS (p> 0.05).
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(Figure 10E), VNN2 (Figure 10F), and ANXA1 (Figure 10G) were
not found to be related to the RFS of UCEC patients (p> 0.05).

3.8 Immune infiltration analysis of shared
DEGs

Based on the Cibersort algorithm, we analyzed the infiltration of
immune cells in UCEC and PCOS using the shared DEGs.
Figure 11A shows the proportion of 22 immune cell subsets in
the 151 shared DEGs. We processed the shared DEGs using R
software and stratified them into high and low TMB groups. The
results indicated that T cells CD8, T cells CD4 memory resting,
T cells CD4 memory activated, T cells follicular helper, T cells
regulatory, NK cells activated, macrophages M1, macrophages M2,

mast cells resting, and mast cells activated exhibited significantly
different expressions between the UCEC high and low TMB groups
(p < 0.05, Figure 11B).

3.9 Regulatory relationship between key
prognostic genes and immune cells in UCEC

The key prognostic genes TSPYL5, KCNJ15, RTN1, HMOX1,
DCAF12L1, VNN2, and ANXA1 in UCEC were found to have
regulatory relationships with immune cells such as T cells, B cells,
NK cells, and others (Figures 12A–G). Among them, RTN1 was
positively correlated with resting dendritic cells, resting
CD4 memory T cells, neutrophils, and M0 macrophages, and
negatively correlated with follicular helper T cells. (Figure 12C).

FIGURE 9
The ROC curve of the nine DEGs in PCOS external verification. The ROC curves of KCNJ15 (C), RTN1 (D), CTSW (E), and DCAF12L1 (G) were 0.681,
0.757, 0.610, and 0.710, respectively, indicating good predictive performance (AUC>0.6). The ROC curves of TSPYL5 (A), PARVG (B), KCNJ15 (C),
HMOX1 (F), VNN2 (H), and ANXA1 (I) had no predictive performances (AUC<0.6).
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4 Discussion

UCEC, the fourth most prevalent female malignancy worldwide,
is a common tumor in the female reproductive system (Cai et al.,
2021). Its incidence is increasing globally, especially in developed
regions (Makker et al., 2021; Banz-Jansen et al., 2022; Crosbie et al.,
2022), which can be attributed to the rising prevalence of obesity
(Rahib et al., 2014; Lauby-Secretan et al., 2016). UCEC has a low
survival rate and poor prognosis (Brooks et al., 2019; Liu et al.,
2021a), with a 5-year overall survival rate of 15%–17% for recurrent
UCEC (Makker et al., 2021). However, early diagnosis and treatment
of UCEC lead to better outcomes (Oaknin et al., 2022). Therefore,
early diagnosis and treatment are crucial for UCEC. PCOS is a
common disorder among women of reproductive age, with a global
prevalence ranging from 6% to 20% (Joham et al., 2021; Kumariya
et al., 2021). Obesity and low-grade inflammation associated with
obesity are common features of PCOS (Barrea et al., 2021). Women
with PCOS have an increased risk of developing tumors, including
UCEC, ovarian cancer, breast cancer, and others (Gadducci et al.,
2005; Xu et al., 2017; Meczekalski et al., 2020; Li Z. et al., 2022; Mitric
and Bernardini, 2022). However, clinical outcomes of patients with
the same tumor stage vary considerably, suggesting that
conventional staging techniques may not accurately predict
cancer prognosis (Xu et al., 2017). This emphasizes the
importance of genetic diagnosis and therapy. Therefore, our
focus is to explore the pathophysiological association between
UCEC and PCOS and identify potential genetic biomarkers
of UCEC.

Our study identified 1949 DEGs in UCEC, 2199 DEGs in
PCOS, and 151 shared DEGs in UCEC and PCOS when compared

to normal tissues. The shared DEGs PPI network of UCEC and
PCOS was visualized using Cytoscape software, and Metascape-
generated PPI networks were used for gene enrichment analysis (Li
et al., 2019). GO and KEGG enrichment analysis of the 151 shared
DEGs through the Metascape online database revealed that they
were primarily enriched in leukocyte activation. Through model
construction and internal verification using the TCGA database,
TSPYL5, PARVG, KCNJ15, RTN1, CTSW, HMOX1, DCAF12L1,
VNN2, and ANXA1 were identified as prognostic genes for UCEC
within the shared DEGs of UCEC and PCOS. Additionally, the
UCEC high-risk group exhibited a shorter survival time and worse
prognosis compared to the low-risk group. External validation
with additional datasets confirmed that TSPYL5, KCNJ15, RTN1,
HMOX1, DCAF12L1, VNN2, and ANXA1 were key prognostic
genes for UCEC. Analysis of these seven key prognostic genes
using Gepia revealed that higher expression of RTN1 was
associated with longer RFS in UCEC patients, indicating that
detecting RTN1 expression may aid in the prognosis assessment
of UCEC patients. Furthermore, RTN1 was identified as a potential
marker in both UCEC and PCOS. Several studies have indicated
that the seven key prognostic genes identified in this study for
UCEC, including TSPYL5, VNN2, ANXA1, and DCAF12L1, are
associated with tumor occurrence and development (Feng et al.,
2020; Soler et al., 2020; Hernandez-Meza et al., 2021; Lu et al.,
2021). In particular, DCAF12L1 has been considered a methylated
gene contributing to the development of UCEC (Lu et al., 2021).
Moreover, diabetes is a risk factor in both PCOS and UCEC
(Lauby-Secretan et al., 2016; Patel, 2018; Liao et al., 2021), and
HMOX1, RTN1, and KCNJ15 are considered diabetes-related
genes (Okamoto et al., 2012; Meng et al., 2021; Meng et al., 2022).

FIGURE 10
RFS and expression of the seven key prognostic genes in UCEC. The expression of RTN1 (C) was related to the RFS of UCEC (p< 0.05). The
expressions of TSPYL5 (A), KCNJ15 (B), HMOX1 (D), DCAF12L1 (E), VNN2 (F), and ANXA1 (G) were not related to RFS of UCEC (p> 0.05).
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Great progress has been made in the treatment of UCEC, but
advanced or recurrent patients still present treatment challenges
(Zhang Y. et al., 2022). Immunotherapy is a promising treatment
approach that utilizes drugs to enhance the immune cells’
infiltration in the tumor microenvironment and activate the
immune system to recognize and attack cancer cells
(O’Donnell et al., 2019; Tao et al., 2021; Li X. et al., 2022;
Marin-Jimenez et al., 2022; Zhang Y. et al., 2022). This
method can effectively reduce the damage to healthy cells
caused by treatment (Marin-Jimenez et al., 2022). Checkpoint
inhibitor immunotherapy has revolutionized the treatment of
various tumors, including UCEC (Marin-Jimenez et al., 2022).
Pembrolizumab, a checkpoint inhibitor, has demonstrated
efficacy in treating tumors with TMB, and pembrolizumab/
lenvatinib has been used in the treatment of UCEC with high

TMB (Marin-Jimenez et al., 2022). The results of this study on the
immune infiltration of UCEC and PCOS-shared DEGs revealed
differences in the expression of immune cells such as NK cells,
CD8+ T cells, macrophages, and mast cells between patients with
high and low TMB in UCEC. Further analysis of the seven key
prognostic genes of UCEC indicated regulatory relationships
with immune cells. However, the main limitation of this study
is the lack of clinical validation experiments, as only samples
from the TCGA database, GSE34526 dataset, GSE17025 dataset,
and GSE48301 dataset were included. Although the altered
expressions of TSPYL5, KCNJ15, RTN1, HMOX1, DCAF12L1,
VNN2, and ANXA1 are associated with UCEC survival, TMB,
immune infiltration, and immune cell regulation, it does not
necessarily imply that the risk prediction model can be applied in
actual clinical practice to provide a basis for immunotherapy.

FIGURE 11
The immune infiltration analysis of shared DEGs. (A) The bar chart of shared DEGs and immune cell subsets. Each column represents a sample, and
different colors represent different immune cells. (B) The violin diagram of the TMB in shared DEGs. TheWilcoxon rank-sum test showed that T cells CD8
(p< 0.001), T cells CD4 memory resting (p = 0.014), T cells CD4 memory activated (p< 0.001), T cells follicular helper (p < 0.001), T cells regulatory (p =
0.025), NK cells activated (p = 0.008), Macrophages M1 (p < 0.001), Macrophages M2 (p = 0.001), Mast cells resting (p = 0.001), and Mast cells
activated (p = 0.006) had a difference in high and low TMB groups.
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In summary, this study successfully developed and validated
a potential marker model for UCEC and PCOS, which identified
TSPYL5, PARVG, KCNJ15, RTN1, CTSW, HMOX1,
DCAF12L1, VNN2, and ANXA1 as prognostic genes for
UCEC. Among these genes, TSPYL5, KCNJ15, RTN1,
HMOX1, DCAF12L1, VNN2, and ANXA1 were found to be
associated with the survival time, TMB, and immune infiltration
in UCEC. RTN1 may serve as a novel immunotherapy
biomarker for both UCEC and PCOS.
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