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Most internal organs in humans and other vertebrates exhibit striking left-right
asymmetry in position and structure. Variation of normal organ positioning results
in left-right asymmetry disorders and presents as internal organ reversal or
randomization. Up to date, at least 82 genes have been identified as the
causative genetic factors of left-right asymmetry disorders. This study sought
to discover potential pathogenic variants responsible for left-right asymmetry
disorder present in a Han-Chinese family using whole exome sequencing
combined with Sanger sequencing. Novel compound heterozygous variants,
c.5690A>G (p.Asn1897Ser) and c.7759G>A (p.Val2587Met), in the dynein
axonemal heavy chain 1 gene (DNAH1), were found in the proband and absent
in unaffected family members. Conservation analysis has shown that the variants
affect evolutionarily conserved residues, which may impact the tertiary structure
of the DNAH1 protein. The novel compound heterozygous variants may
potentially bear responsibility for left-right asymmetry disorder, which results
from a perturbation of left-right axis coordination at the earliest embryonic
development stages. This study broadens the variant spectrum of left-right
asymmetry disorders and may be helpful for genetic counseling and healthcare
management for the diagnosed individual, and promotes a greater understanding
of the pathophysiology.
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Introduction

Most human and other vertebrate internal organs asymmetrically orient along a left-
right (L-R) axis and exhibit an elaborate L-R asymmetric pattern (McGrath et al., 2003;
Blum et al., 2014). Genetic alterations of L-R signaling pathways may lead to L-R
asymmetry disorders, which may be inherited in autosomal recessive, autosomal
dominant, or X-linked modes (Deng et al., 2015; Perles et al., 2015; Grimes et al.,
2016). Environmental modifiers and developmental randomness are also likely to play
roles in L-R asymmetry disorders (Deng et al., 2015). Three broad types of internal organ
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positioning along the L-R axis are recognized (Levin, 2004; Best
et al., 2019). Situs solitus is a condition in which all internal
organs are positioned in a normal visceroatrial arrangement
(Offen et al., 2016). In situs inversus (SI) and heterotaxy
(HTX), there are mirror-image reversals and randomizations
of visceroatrial arrangements, respectively (Offen et al., 2016;
Geddes et al., 2020). SI and HTX are genetically heterogeneous
disorders with reduced penetrance (Deng et al., 2015). SI with an
incidence of 1 in every 8,500 live births is usually not related to
congenital cardiac defects (Basu and Brueckner, 2008). Complete
reversal of internal organs usually doesn’t result in discernible
physiological risk, as the organs maintain their normal structures
and relative positions (Bisgrove et al., 2003; Peeters and
Devriendt, 2006). HTX with an incidence of 1 in 10,000 live
births is related to at least 3% of all congenital cardiac disease
cases (Basu and Brueckner, 2008). Other congenital anomalies in
HTX usually manifest as pulmonary isomerism, intestinal
malrotation, asplenia, or polysplenia (Wang et al., 2022; Wells
et al., 2022).

Previously reported genetic defects implicated in L-R asymmetry
disorders include complex chromosomal rearrangements,
translocations, insertions/duplications, deletions, and inversions
(Kosaki and Casey, 1998; Olbrich et al., 2002; Sutherland and
Ware, 2009). Since the Zic family member 3 gene (ZIC3) variants
in X-linked HTX were identified, at least 82 genes have been
considered to be responsible for human L-R asymmetry disorders
(Gebbia et al., 1997; Yu et al., 2022).

This study sought to identify the genetic factors responsible for
the L-R asymmetry disorder present in a Han-Chinese family using

whole exome sequencing (WES) combined with Sanger sequencing.
Compound heterozygous variants in the dynein axonemal heavy
chain 1 gene (DNAH1, OMIM 603332, NM_015512.5), including
missense variants c.5690A>G (p.Asn1897Ser) and c.7759G>A
(p.Val2587Met), may be the possible genetic etiology of the L-R
asymmetry disorder. Basic Local Alignment Search Tool
comparison of protein sequences revealed that p.Asn1897 and
p.Val2587 were highly conserved in DNAH1 protein. Structural
modeling also showed that residues are crucial to the structure or
function of DNAH1 protein. These findings expand the variant
spectrum of DNAH1, which may be beneficial for clinical and
genetic diagnosis.

Methods

Pedigree and subjects

Nine members of a three-generation Han-Chinese pedigree
containing the L-R asymmetry disorder sufferer were enrolled at
the Third Xiangya Hospital, Central South University, P.R.
China (Figure 1A). Peripheral blood samples and available
clinical data were collected from the proband (II:2) and
available unaffected pedigree members (I:2, II:1, II:4, III:1, III:
2, and III:3). Written informed consents were given by all
participants. This study was conducted in accordance with
the Declaration of Helsinki and approved by the Institutional
Review Board of the Third Xiangya Hospital, Central South
University, Changsha, Hunan, China.

FIGURE 1
Genetic analysis of the left-right (L-R) asymmetry disorder pedigree and the representative computed tomography (CT) image of the proband. (A)
Pedigree analysis of the L-R asymmetry disorder family. Squares and circles indicate males and females, respectively; open symbols indicate unaffected
family members; the arrow indicates the proband; the symbol with a slash indicates a deceased member. (B) CT image of the proband showed the
stomach and spleen were right-sided, and the liver was left-sided. (C)Heterozygous DNAH1 c.5690A>G (p.Asn1897Ser) variant in the proband (II:2).
(D) Heterozygous DNAH1 c.7759G>A (p.Val2587Met) variant in the proband (II:2).
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Sample preparation and whole exome
sequencing

Genomic DNA (gDNA) was isolated from peripheral blood
samples according to the previously described standard method
(Xiang et al., 2018; Xiao et al., 2019). WES was carried out to detect
the proband’s genetic variants by BGI-Shenzhen, China (Xiao et al.,
2018). Qualified gDNA was randomly broken into fragments sized
from 150 bp to 250 bp. Both ends of the end-repaired DNA
fragments were ligated to adapters for amplification, purification,
and hybridization. Captured products were processed to form DNA
nanoballs by circularization and amplification. Agilent SureSelect
Human All Exon V6, which covers about 99% of the human exonic
regions, was used in the exome capture. The qualified circular DNA
library was loaded on a BGISEQ-500 sequencing platform to
perform high-throughput sequencing (Fan et al., 2019).

Variant analysis

Raw data (stored in FASTQ format) derived from the BGISEQ-
500 sequencing platform were processed to obtain clean data.
According to the strict data filtering criteria and data analysis
quality control setup, the clean data were filtered from “raw
data” to get access to high-quality sequencing data. Reads were
cleaned during the “data cleanup” process using the following
criteria: i) adapter sequence, ii) unknown base ratios more than
10%, and iii) inferior-quality base (base quality ≤5) ratios no less
than 50% (Xiong et al., 2021). These clean data were mapped to the
human reference genome sequence (GRCh37/hg19) using the
Burrows-Wheeler Aligner (BWA, v0.7.15) software. Picard tools
(v2.5.0, https://broadinstitute.github.io/picard/) were used to mark
duplicated reads. Reads around insertions/deletions (indels) were
realigned, and a base quality score recalibration step to improve base
quality scores was conducted by Genome Analysis Toolkit (GATK,
v3.3.0, https://gatk.broadinstitute.org/hc/en-us). HaplotypeCaller of
GATK was applied to call a raw variant set including single
nucleotide polymorphisms (SNPs) and indels. Hard-filtering
methods with proper parameters were used to filter SNPs and
indels (Xia et al., 2018; Xia et al., 2019). The resulting high-
confident SNPs and indels were further annotated by a SnpEff
tool (https://pcingola.github.io/SnpEff/). In order to find
candidate variants, high-confident SNPs and indels were filtered
against the 1000 Genomes Project (1000G), the National Heart,
Lung, and Blood Institute (NHLBI) Exome Sequencing Project
(ESP) 6500, the Exome Aggregation Consortium (ExAC), and
Genome Aggregation Database (gnomAD), as well as the Single
Nucleotide Polymorphism database (version 154, dbSNP154). The
remaining variants with minor allele frequency (MAF) lower than 0.
5% were further filtered against the BGI in-house exome databases
(containing 1,943 Chinese controls without L-R asymmetry
disorders).

Sanger sequencing verified the candidate variants revealed by
WES in the proband and screened them in the available family
members. The used primer sequences designed by Primer3 software
(https://primer3.ut.ee/) for the candidate variants were 5′-TGCCCC
TTGGCATAGAATAC-3′ and 5′-CATGGGTGAGGAGGTCAA
AC-3′, and 5′-GAAGCTGGTCCTCTTCATGG-3′ and 5′-AAG

CATGGGTCAGTCAAACC-3′, respectively. The detected
variants were further classified according to the American
College of Medical Genetics and Genomics (ACMG) guidelines
for interpreting gene variants (Richards et al., 2015). Clustal Omega
(http://www.ebi.ac.uk/Tools/msa/clustalo/) was used to carry out a
conservative analysis by aligning nine homologous DNAH1 protein
sequences retrieved from the National Center for Biotechnology
Information Protein database (https://www.ncbi.nlm.nih.gov/
protein/). The tertiary structures of wild-type and variant-type
were conducted with the online SWISS-MODEL tool (https://
swissmodel.expasy.org/) and further visualized structures were
constructed via PyMOL software (version 2.3, Schrödinger, LLC,
Portland, United States) (Xiang et al., 2019).

Results

Clinical data

The proband (II:2) is a 54-year-old female without
respiratory symptoms or fertility problems. L-R asymmetry
disorder was diagnosed after a routine preoperative assessment
for surgical management of a multinodular goiter. From the
ultrasonographic examination and computed tomography
(CT) results, she was diagnosed as suffering from SI, including
dextrocardia, left-sided liver, and stomach and spleen on the
right side of the proband’s body (Figure 1B). Transthoracic
echocardiography revealed normal characteristic
morphological features and normal function of the heart, as
well as normal valve morphology and function.

Genetic analysis

Proband gDNA exome sequencing produced a total of
226.50 million clean reads. After duplicate reads removal,
201.92 million effective reads were generated. Of these, 99.94%
were mapped to the human reference genome. The average
sequencing depth across the target region was 249.91×, and
99.41% of the target region was covered at 10×. In total,
103,286 SNPs and 18,053 indels were detected. Commonly
known variants with MAF ≥0.5% recorded in the 1000G, the
NHLBI ESP6500, and the dbSNP154 databases were removed.
The remaining variants were further filtered against the BGI in-
house exome databases. By screening all known disease-causing
genes responsible for L-R asymmetry disorders, only two compound
heterozygous DNAH1 gene missense variants, c.5690A>G
(p.Asn1897Ser) in the exon 36 and c.7759G>A (p.Val2587Met)
in the exon 49, were classified as potential disease-causing
variants for the proband. Other potential disease-causing variants
in at least 82 known genes associated with L-R asymmetry disorder
phenotypes were ruled out in the proband, though large variants like
complex rearrangement and gross deletion/duplication in these
genes cannot be completely excluded. The c.5690A>G and
c.7759G>A variants are documented in the dbSNP154 and have
low frequencies in the global population (Table 1), indicating the
compound heterozygous variants are potentially disorder-related
variants.
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Sanger sequencing confirmed the DNAH1 variants
c.5690A>G and c.7759G>A in the proband (Figures 1C, D).
In the pedigree, unaffected family members (I:2 and III:1) had
the heterozygous c.5690A>G variant, and unaffected family
members (II:4, III:2, and III:3) had the heterozygous
c.7759G>A variant. These results indicated that the
compound heterozygous variants c.5690A>G and c.7759G>A
co-segregated with L-R asymmetry disorder in the pedigree. The
c.7759G>A variant was absent from 1000G and the BGI in-house
exome databases. Although the c.5690A>G (rs138560279)
variant was recorded in the public database, the frequencies
were low, with a MAF for “G” ranging from 0.0005 (ExAC) to
0.0016 (1000G). The c.5690A>G variant was also absent from
the BGI in-house exome databases. The sequence variants,
c.5690A>G and c.7759G>A, were classified as “likely
pathogenic” following the ACMG standards and guidelines.
Clustal Omega showed that the two residues p.Asn1897 and
p.Val2587 in the DNAH1 protein were fully conserved among
nine vertebrates (Figure 2), indicating that the two variants are
probably pathogenic. A structural model showed the
conformational alterations of asparagine (Asn-1897) into
serine (Ser-1897) and valine (Val-2587) into methionine
(Met-2587), further supporting the possible pathogenicity of
the variants (Figure 3).

Discussion

Human L-R asymmetry disorders may arise as a manifestation
of a wide disease spectrum, such as primary ciliary dyskinesia
(PCD), polycystic kidney disease 2 (PKD2), nephronophthisis,
and Bardet-Biedl syndrome (Kosaki and Casey, 1998; Bataille
et al., 2011; Marion et al., 2012). SI may be an incidental
discovery in asymptomatic individuals during health
examinations since complete mirror-image reversal of all
asymmetrical structures may pose no detriment (Casey, 1998;
Bisgrove et al., 2003). L-R asymmetry establishment in
vertebrates generally has four phases: L-R symmetry breaking at
early embryonic stages, transfer of asymmetric signals, asymmetric
expression of left determinants in the left lateral plate mesoderm,
and visceral organ L-R asymmetric morphogenesis (Gebbia et al.,
1997; Okada et al., 2005; Shiraishi and Ichikawa, 2012). The genes
encoding dynein axonemal heavy chains (DNAHs), such as DNAH5
(OMIM 603335), DNAH6 (OMIM 603336), DNAH9 (OMIM
603330), DNAH11 (OMIM 603339), and DNAH17 (OMIM
610063), are involved in L-R symmetry disorder development.
Genetic variants in the above human DNAH genes have been
reported to be associated with cilia and flagella dysfunction
(Fliegauf et al., 2005; Hornef et al., 2006; Li et al., 2016; Xiong
et al., 2021; Yu et al., 2022).

TABLE 1 Identification of the dynein axonemal heavy chain 1 gene variants in the patient.

Variant Variant 1 Variant 2

Nucleotide change c.5690A>G c.7759G>A

Amino acid change p.Asn1897Ser p.Val2587Met

Zygosity Heterozygote Heterozygote

Variant type Missense Missense

dbSNP154 rs138560279 rs747611842

Allelic frequencies

1000G 1.60 × 10−3 —

ExAC 4.73 × 10−4 3.66 × 10−4

gnomAD 5.06 × 10−4 1.86 × 10−4

dbSNP154, Single Nucleotide Polymorphism database (version 154); 1000G, 1000 Genomes Project; ExAC, Exome Aggregation Consortium; gnomAD, Genome Aggregation Database.

FIGURE 2
Conservation analyses of the dynein axonemal heavy chain 1 p.Asn1897 and p.Val2587 amino acid residues.
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The DNAH1 gene, located on 3p21.1, comprises 78 exons and
encodes an inner dynein arm heavy chain with 4,265 amino-acid
residues. The DNAH1 protein functions as an ATP-dependent
motor protein that generates force towards the minus end of
microtubules, which is required for the bending of cilia and
sperm flagellum motility (McGrath and Brueckner, 2003;
Wambergue et al., 2016). Its C-terminal ~3,500 amino-acid
residues constitute the conserved dynein motor domain, which
conducts the ATP-hydrolysis process in a ring of AAA+
(extended ATPases associated with various cellular activities)
domains (Wendler et al., 2012; Schmidt and Carter, 2016).
Dyneins play roles in mitosis, cellular transport, ciliary and
flagellar motility, and L-R asymmetry determination (Supp et al.,
1997; Supp et al., 1999; Basu and Brueckner, 2008; Schmidt et al.,
2015). DNAH1 protein deficiencies may result in ciliary structure
and function defects and impair sperm axoneme biogenesis,
proposed to result in PCD and male infertility, respectively
(McGrath and Brueckner, 2003; Imtiaz et al., 2015; Yang et al.,
2018). Previously identified DNAH1 gene variants include at least
29 missense variants, 11 nonsense variants, 11 splicing variants,

6 frameshift variants, a deletion variant, and an extension variant
(Table 2). Except for theDNAH1 gene homozygous missense variant
c.3460A>C (p.Lys1154Gln) that was reported to be responsible for
PCD in combination with SI (Imtiaz et al., 2015), the other known
variants were involved in male infertility (Amiri-Yekta et al., 2016;
Sha et al., 2017; Wang et al., 2017). Strikingly, the proband in our
study denied the history of in vitro fertilization, and seems to have
three biological children who inherited the possible disease-causing
variants c.5690A>G (III:1) and c.7759G>A (III:2 and III:3), consistent
with the reports that variants in DNAH genes may also not cause
infertility (Xiong et al., 2021; Feng et al., 2022; Yu et al., 2022).

In this study, two DNAH1 gene variants were identified in a
Han-Chinese family including L-R asymmetry disorder sufferer.
The DNAH1 variants c.5690A>G and c.7759G>A are located at
AAA2 and a highly conserved nucleotide-binding motif (P-loop) in
AAA4 (UniProt ID Q9P2D7), respectively (Mocz and Gibbons,
2001; Kon et al., 2004). These two DNAH1 variants may interfere
with the rigid block formed by the whole AAA2-AAA4 region which
may produce detrimental effects on the inner dynein arm heavy
chains involved in generating oscillating beating in cilia (Shingyoji

FIGURE 3
Cartoon model of the dynein axonemal heavy chain 1 (DNAH1) protein structure visualized by PyMOL based on the SWISS-MODEL. The asparagine
(N) and mutated serine (S) at position 1897 and the valine (V) and mutated methionine (M) at position 2587 are indicated with ball-and-stick models.
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TABLE 2 Clinical data of the dynein axonemal heavy chain 1 gene variant carriers in different families.

Ped Case Sex Age GT Nucleotide
change

Amino acid change Variant type IF PCD Situs References

P1 NA NA NA CH c.1286+7C>A,
c.5356C>T

NA, p.R1786C Splicing,
missense

NA Y N Guan et al.
(2021)

P2 II:1 M 34 years CH c.1336G>C,
c.2912G>A

p.E446Q, p.R971H Missense,
missense

Y N NA Hu et al. (2021)

P3 NA M 32 years CH c.2602C>T,
c.12748C>T

p.R868*, p.R4250* Nonsense,
nonsense

Y N N Yu et al. (2021)

P4 NA NA NA Hom c.2610G>A p.W870* Nonsense NA Y N Guan et al.
(2021)

P5 NA M 32 years CH c.2610G>A,
c.12287G>T

p.W870*, p.R4096L Nonsense,
missense

Y N NA Sha et al. (2017)

P6 NA NA NA CH c.2912G>A,
c.11135G>A

p.R971H, p.R3712Q Missense,
missense

NA Y N Guan et al.
(2021)

P7 NA M 32 years CH c.3108G>A,
c.5864G>A

p.W1036*, p.W1955* Nonsense,
nonsense

Y N NA Sha et al. (2017)

P8 III:1 F NA Hom c.3460A>C p.K1154Q Missense Y Y SI Imtiaz et al.
(2015)

III:2 F NA Hom c.3460A>C p.K1154Q Missense Y Y SI

P9 NA NA NA CH c.3836A>G,
c.6328_6337del

p.K1279R, p.S2110Gfs*19 Missense,
frameshift

NA Y N Guan et al.
(2021)

P10 NA M 31 years CH c.3836A>G,
c.11726_11727del

p.K1279R, p.P3909Rfs*33 Missense,
frameshift

Y N NA Sha et al. (2017)

P11 III:1 M NA Hom c.3860T>G p.V1287G Missense Y N NA Amiri-Yekta
et al. (2016)

III:3 M NA Hom c.3860T>G p.V1287G Missense Y N NA

P12 NA M NA Hom c.3877G>A p.D1293N Missense Y N NA Ben Khelifa et al.
(2014)

P13 NA M 32 years CH c.4115C>T,
c.11726_11727del

p.T1372M, p.P3909Rfs*33 Missense,
frameshift

Y N NA Sha et al. (2017)

P14 NA M 29 years CH c.4552C>T,
c.9685C>T

p.Q1518*, p.R3229C Nonsense,
missense

Y NA NA Yu et al. (2021)

P15 NA M 28 years CH c.4552C>T,
c.11787+1G>A

p.Q1518*, NA Nonsense,
splicing

Y NA NA Yu et al. (2021)

P16 NA M 41 years CH c.4552C>T,
c.12287G>T

p.Q1518*, p.R4096L Nonsense,
missense

Y NA NA Yu et al. (2021)

P17 IV:1 M 28 years CH c.4670C>T,
c.8170C>T

p.T1557M, p.R2724* Missense,
nonsense

Y NA NA Jiang et al.
(2021)
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TABLE 2 (Continued) Clinical data of the dynein axonemal heavy chain 1 gene variant carriers in different families.

Ped Case Sex Age GT Nucleotide
change

Amino acid change Variant type IF PCD Situs References

P18 NA M NA Hom c.5094+1G>A NA Splicing Y N NA Ben Khelifa et al.
(2014)

P19 NA M 24 years CH c.5104C>T,
c.11726_11727del

p.R1702*, p.P3909Rfs*33 Nonsense,
frameshift

Y NA NA Yu et al. (2021)

P20 NA M NA CH c.5105G>A,
c.10823+1G>C

p.R1702Q, NA Missense,
splicing

Y NA NA Oud et al. (2021)

P21 NA M 28 years CH c.5573T>C,
c.11726_11727del

p.L1858P, p.P3909Rfs*33 Missense,
frameshift

Y NA NA Yu et al. (2021)

P22 NA M 22 years CH c.5626G>C,
c.7066C>T

p.A1876P, p.R2356W Missense,
missense

Y NA NA Yang et al.
(2018)

P23 II:2 F 54 years CH c.5690A>G,
c.7759G>A

p.N1897S, p.V2587M Missense,
missense

N N SI This study

P24 NA M 30 years CH c.5766–2A>G,
c.10630G>T

NA, p.E3544* Splicing,
nonsense

Y N NA Sha et al. (2017)

P25 NA M 27 years CH c.6004C>T,
c.10982C>A

p.R2002C, p.S3661* Missense,
nonsense

Y NA NA Yu et al. (2021)

P26 NA M NA CH c.6212T>G,
c.12200_12202del

p.L2071R, p.N4069del Missense,
deletion

Y N NA Sha et al. (2017)

P27 NA M 35 years CH c.6253_6254del,
c.11726_11727del

p.E2086Gfs*8, p.P3909Rfs*33 Frameshift,
frameshift

Y N NA Sha et al. (2017)

P28 NA M 33 years Het c.6446T>G p.L2149R Missense Y NA NA Yang et al.
(2018)

P29 NA M 30 years CH c.6526–1G>T,
c.9850G>A

NA, p.E3284K Splicing,
missense

Y NA NA Yu et al. (2021)

P30 NA M 42 years CH c.6822C>G,
c.9850G>A

p.D2274E, p.E3284K Missense,
missense

Y N NA Sha et al. (2017)

P31 NA M 43 years CH c.6912C>A,
c.7076G>T

p.R2304*, p.R2359L Nonsense,
missense

Y N NA Zhuang et al.
(2022)

P32 II:1 M 36 years CH c.7066C>T,
c.11726_11727del

p.R2356W, p.P3909Rfs*33 Missense,
frameshift

Y N NA Sha et al. (2017)

II:3 M 31 years CH c.7066C>T,
c.11726_11727del

p.R2356W, p.P3909Rfs*33 Missense,
frameshift

Y N NA

P33 NA M 31 years CH c.7201del,
c.7205C>A

p.A2402Pfs*39, p.A2402D Frameshift,
missense

Y NA NA Yang et al.
(2018)

(Continued on following page)
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TABLE 2 (Continued) Clinical data of the dynein axonemal heavy chain 1 gene variant carriers in different families.

Ped Case Sex Age GT Nucleotide
change

Amino acid change Variant type IF PCD Situs References

P34 NA M 28 years Hom c.7377+1G>C NA Splicing Y N NA Sha et al. (2017)

P35 NA M 33 years CH c.7397G>A,
c.12287G>A

p.R2466Q, p.R4096H Missense,
missense

Y NA NA Yu et al. (2021)

P36 NA F 15 years Het c.7795G>T p.A2599S Missense NA Y N Emiralioğlu et al.
(2020)

P37 NA M 22 years CH c.8322+3del,
c.11726_11727del

NA, p.P3909Rfs*33 Splicing,
frameshift

Y NA NA Yang et al.
(2018)

P38 NA M NA Hom c.8626–1G>A NA Splicing Y N NA Amiri-Yekta
et al. (2016)

NA M NA Hom c.8626–1G>A NA Splicing Y N NA

NA M NA Hom c.8626–1G>A NA Splicing Y N NA

P39 NA M NA Hom c.8626–1G>A NA Splicing Y N NA Amiri-Yekta
et al. (2016)

P40 NA M 25 years Het c.11412del p.L3805Sfs*7 Frameshift Y NA NA Yang et al.
(2018)

P41 NA M 40 years Hom c.11726_11727del p.P3909Rfs*33 Frameshift Y N NA Wang et al.
(2017)

P42 NA M 38 years Hom c.11726_11727del p.P3909Rfs*33 Frameshift Y N NA Wang et al.
(2017)

NA M 37 years Hom c.11726_11727del p.P3909Rfs*33 Frameshift Y N NA

P43 NA M 33 years Hom c.11726_11727del p.P3909Rfs*33 Frameshift Y N NA Wang et al.
(2017)

P44 II:1 F 31 years Hom c.11726_11727del p.P3909Rfs*33 Frameshift Y N NA Liu et al. (2021)

P45 NA M 31 years Het c.11726_11727del p.P3909Rfs*33 Frameshift Y NA NA Yang et al.
(2018)

P46 NA M 32 years Hom c.11726_11727del p.P3909Rfs*33 Frameshift Y NA NA Yu et al. (2021)

P47 NA M 27 years CH c.11726_11727del,
c.12089+1G>A

p.P3909Rfs*33, NA Frameshift,
splicing

Y NA NA Yu et al. (2021)
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et al., 1998; Mocz and Gibbons, 2001; Schmidt et al., 2015).
Perturbation may occur at the earliest stages in the signaling
pathways that coordinate the L-R asymmetry and result in
deficient embryonic nodal flow, impaired asymmetric transport of
L-R signals and gene expression, and the final complete inversion of
the L-R axis (Supp et al., 1997; Bisgrove et al., 2003; Peeters and
Devriendt, 2006). PCD is a genetically and clinically heterogeneous
disease with a diverse phenotype spectrum including chronic
respiratory tract infections, L-R asymmetry disorders, and
infertility (Lobo et al., 2015; Horani and Ferkol, 2018).
Approximately half of PCD patients had SI or HTX (Basu and
Brueckner, 2008; Deng et al., 2015). The proband in this study did
not have related respiratory symptoms or fertility problems and
cannot be diagnosed as typical PCD. The lack of respiratory
symptoms may be due to the underlying compensation role of
other dyneins that are phylogenetically close to DNAH1, such as
DNAH3 (OMIM 603334), DNAH7 (OMIM 610061), and DNAH12
(OMIM 603340) (Ben Khelifa et al., 2014). Similarly, biallelic
DNAH17 carriers and a few DNAH9 patients were reported to
only exhibit SI or sperm flagellum defects, but without other cilia-
related symptoms (Fliegauf et al., 2005; Yu et al., 2022). Our patient
only has L-R asymmetry disorder, without other PCD-associated
disorders, which may also be counted as a variant form of PCD
suffering a mild consequence of cilia dysfunction. A limitation of this
study is the lack of nasal epithelial brush biopsy samples for cilia beat
and ultrastructure analysis.

Cilia are central to the initial breaking of L-R symmetry (Basu
and Brueckner, 2008; Zhu et al., 2020; Little and Norris, 2021).
During the development of vertebrate L-R asymmetry, motile
embryonic cilia produce leftward extracellular fluid flow to
initiate the event that converts early embryonic bilateral
symmetry to a left-sided heart and asymmetric arrangement of
visceral organs (Brody, 2004; Fliegauf et al., 2005). Structural and
functional ciliary defects are related to hydrocephalus,
Kartagener’s syndrome, infertility, PKD2, and randomization
of the L-R axis (Ibañez—Tallon et al., 2002; Brody, 2004;
Fliegauf et al., 2005). More than 100 genes may be involved in
L-R asymmetry defects in model organisms (Catana and Apostu,
2017). Dnah5 mutations in mouse models result in the
randomization of visceral organs’ laterality (Ibañez—Tallon
et al., 2002; Olbrich et al., 2002). In Dnah1 mutant mice,
abnormal sperm behavior, fertilization failure, and reduced
ciliary beat frequency were observed, similar to phenotypes of
patients suffering from infertility and PCD (Neesen et al., 2001;
Hu et al., 2019). The identification of the DNAH1 gene variants in
PCD patients with SI and the limited reports of animal models
implies that more cases and animal models are warranted to fully
reveal the effect of the DNAH1 gene variants on L-R asymmetry
(Neesen et al., 2001; Imtiaz et al., 2015).

Early L-R asymmetry disorder diagnosis may be beneficial to
patients when they need external chest compression or emergency
surgery for heart attack or abdominal trauma. Plain chest
radiographs, echocardiography, abdominal sonography, CT, and
magnetic resonance imaging are effective means of discovering and
diagnosing L-R asymmetry disorders (Winer-Muram, 1995).

In summary, the novel compound heterozygousDNAH1 gene
c.5690A>G (p.Asn1897Ser) and c.7759G>A (p.Val2587Met)
variants were identified in a Han-Chinese pedigree containingTA
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L-R asymmetry disorder sufferer. We present, for the first time,
evidence that DNAH1 variants do not necessarily lead to female
infertility. This conclusion is based on our analysis of the female
proband and her female offsprings, and further discovery of more
such cases, especially homozygous variants cases, may help to
understand the genotype-phenotype association of DNAH1. The
discovery provides new evidence of the potential association
between the DNAH1 gene and L-R asymmetry disorders and
extends the phenotypic spectrum of DNAH1-associated diseases.
It supports the notion that laterality disorders may result from
disturbances at the primary cilia level (Peeters and Devriendt,
2006). This work may promote a better understanding of the
genetic causes underlying L-R asymmetry disorders and assist in
genetic counseling and management of diagnosed individuals.
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