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Background: Ferroptosis has been identified as a potent predictor of cancer
prognosis. Currently, cervical cancer ranks among the most prevalent malignant
tumors in women. Enhancing the prognosis for patients experiencing metastasis
or recurrence is of critical importance. Consequently, investigating the potential of
ferroptosis-related genes (FRGs) as prognostic biomarkers for cervical cancer
patients is essential.

Methods: In this study, 52 FRGs were obtained from the GSE9750, GSE7410,
GSE63514, and FerrDb databases. Six genes possessing prognostic characteristics
were identified: JUN, TSC22D3, SLC11A2, DDIT4, DUOX1, and HELLS. The
multivariate Cox regression analysis was employed to establish and validate the
prognostic model, while simultaneously performing a correlation analysis of the
immune microenvironment.

Results: The prediction model was validated using TCGA-CESC and
GSE44001 datasets. Furthermore, the prognostic model was validated in
endometrial cancer and ovarian serous cystadenocarcinoma cases. KM curves
revealed significant differences inOS between high-risk and low-risk groups. ROC
curves demonstrated the stability and accuracy of the prognostic model
established in this study. Concurrently, the research identified a higher
proportion of immune cells in patients within the low-risk group. Additionally,
the expression of immune checkpoints (TIGIT, CTLA4, BTLA, CD27, and CD28)
was elevated in the low-risk group. Ultimately, 4 FRGs in cervical cancer were
corroborated through qRT-PCR.

Conclusion: The FRGs prognostic model for cervical cancer not only exhibits
robust stability and accuracy in predicting the prognosis of cervical cancer patients
but also demonstrates considerable prognostic value in other gynecological
tumors.

KEYWORDS

cervical cancer, ferroptosis, prognosismodel, immune checkpoint, gynecological tumors

OPEN ACCESS

EDITED BY

Yanqing Liu,
Columbia University, United States

REVIEWED BY

Jianmin Ding,
University of Texas Health Science Center
at Houston, United States
Rongkang Yin,
Rice University, United States
Dan Yuan,
University of Washington, United States
Yichao Shen,
Baylor College of Medicine, United States
Senmiao Sun,
Harvard University, United States

*CORRESPONDENCE

Yangchun Feng,
fengyangchun@xjmu.edu.cn

†These authors have contributed equally
to this work

RECEIVED 16 March 2023
ACCEPTED 17 April 2023
PUBLISHED 28 April 2023

CITATION

Han S, Wang S, Lv X, Li D and Feng Y
(2023), Ferroptosis-related genes in
cervical cancer as biomarkers for
predicting the prognosis of
gynecological tumors.
Front. Mol. Biosci. 10:1188027.
doi: 10.3389/fmolb.2023.1188027

COPYRIGHT

©2023 Han, Wang, Lv, Li and Feng. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication
in this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Frontiers in Molecular Biosciences frontiersin.org01

TYPE Original Research
PUBLISHED 28 April 2023
DOI 10.3389/fmolb.2023.1188027

https://www.frontiersin.org/articles/10.3389/fmolb.2023.1188027/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1188027/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1188027/full
https://www.frontiersin.org/articles/10.3389/fmolb.2023.1188027/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fmolb.2023.1188027&domain=pdf&date_stamp=2023-04-28
mailto:fengyangchun@xjmu.edu.cn
mailto:fengyangchun@xjmu.edu.cn
https://doi.org/10.3389/fmolb.2023.1188027
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://www.frontiersin.org/journals/molecular-biosciences#editorial-board
https://doi.org/10.3389/fmolb.2023.1188027


Introduction

Cervical cancer (CC) ranks as the fourth most common
cancer among women worldwide (Sung et al., 2021). In 2020,
approximately 600,000 new cases of this disease were reported,
with around 340,000 deaths occurring globally (Sung et al., 2021).
Persistent infection with human papillomavirus (HPV) can lead
to precancerous cervical lesions, which may eventually progress
to cancer (CrosbieEinsteinFranceschi and Kitchener, 2013).
While the availability of HPV vaccines and cervical cancer
screening has dramatically altered mortality and morbidity
rates in high-income countries, coverage rates for these
policies remain low in many low- and middle-income regions
(only 10%) (Brüggmann et al., 2022; Bruni et al., 2022). The
primary treatment for cervical cancer involves surgery or
postoperative concurrent chemoradiotherapy. Metastasis or
recurrence of the cancer substantially decreases the overall
survival (OS) rate, which plummets to 5% at 4 years (Small
et al., 2017). CC is considered one of the most lethal and
threatening types of cancer among women globally,
necessitating the development of novel tumor markers for
accurate prognosis assessment.

Ferroptosis is an iron-dependent programmed cell death
triggered by the accumulation of lipid-based reactive oxygen
species (Dixon, 2017). Research has shown that the induction of
ferroptosis can play various roles in signal transduction and
bioregulation pathways, leading to tumor growth (Stockwell
et al., 2017; Shen et al., 2018). Jiang et al. Xiaofei et al. (2021)
discovered that the reduction in tumor size and decreased activity of
Hela cells could be attributed to ACSL4-induced ferroptosis.
Furthermore, FBXW7 (Zhang et al., 2020), G6PD (Dixon et al.,
2012), and TP53 (Jiang et al., 2015a) promote ferroptosis in tumor
cells, while CSD2 (Kim et al., 2018), GPX4 (Friedmann Angeli et al.,
2014), and SLC7A11 (Jiang et al., 2015b) function as inhibitory
factors to prevent ferroptosis. Wang et al. (2019) demonstrated that
CD8+ T cells’ ability to enhance lipid peroxidation specific to
ferroptosis could be harnessed for effective immunotherapies.
The relationship between ferroptosis and immune cell infiltration
holds potential for providing new insights into immunotherapeutic
effectiveness.

Most current studies focus on bioinformatically analyzing the
expression of ferroptosis-related genes or associated long non-
coding RNAs (lncRNAs) in different cancer types to predict
prognosis. Although ferroptosis-related genes (FRGs) have
been identified as potential prognostic biomarkers for various
cancer types, their evaluation in cervical cancer has not been
conducted. The clinical information and expression data of
patients were analyzed using the TCGA and GEO databases,
with data from the FerrDb database also employed in the study.
The aim of this study was to develop a prognostic model capable
of evaluating the prognosis of women with cervical cancer and to
test the model’s applicability to other gynecological tumors.
Furthermore, the correlation between the prognostic model of
FRGs and the immune microenvironment was analyzed, with
FRGs validated by quantitative real-time PCR (qRT-PCR). This
study’s objective was to establish a new strategy that could assist
clinicians in predicting the prognosis of patients with cervical
cancer.

Materials and methods

Sample and data collection

The research plan is illustrated in Figure 1A. RNA
transcriptome data and clinical information were acquired
from the GEO and TCGA databases (http://www.ncbi.nlm.nih.
gov/projects/geo/, https://portal.gdc.cancer.gov/). All data were
transformed using log2 to ensure normalization. Four databases,
FerrDb (http://www.zhounan.org/ferrdb/), NCBI-gene (https://
www.ncbi.nlm.nih.gov/gene), MSigDB (http://www.gsea-msigdb.
org/gsea/msigdb/), and Genecard (https://www.genecards.org/),
provided a total of 416 ferroptosis genes (Supplementary Tables
S1, S2).

Differential expression and functional
enrichment analysis

For the TCGA-CESC and GEO data, the R package edgeR
conducted differential analysis on normal and cancer samples.
The threshold was set at |Log (FC)|>1, p adj<0.05, and the
intersection of differentially expressed genes and ferroptosis genes
was determined (The criteria for selecting overlapping genes
required their presence in at least two datasets, with one dataset
being a ferroptosis gene set). The R package clusterProfiler (version
3.14.3) performed GO/KEGG enrichment analysis of differentially
expressed FRGs.

Prognostic model Establishment and
prognostic analysis

The R package (glmnet version 4.1.1) executed LASSO
regression on the differentially expressed FRGs to filter out
redundant factors. Subsequently, univariate/multivariate Cox
regression analysis determined the prognostic genes and
constructed a Risk score prognostic model (The majority of
literature calculates Risk score based on the weighting of the
product of gene expression and its coefficients. This study
employed multivariate Cox regression to develop a model in
which Risk score was determined as the weighting of the
product of gene expression and its coefficients.). High-risk
groups (n = 153) and low-risk groups (n = 153) were
categorized according to the median of the Risk score. The R
packages survival ROC (version 1.0.3) and rms (version 6.2.0)
analyzed 1-year, 3-year, 5-year survival prognoses and prognostic
risk performance.

riskscore � ∑
n

i�1
βi × Exp i( )

Clinicopathological features and immune
infiltration analysis

The correlation between the Risk score, constructed by FRGs,
and clinicopathological characteristics was assessed. Immune
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infiltration analysis was performed by ssGSEA algorithm to
obtain enrichment scores for each class of immune cells in
each sample of TCGA-CESC and GSE44001. The Risk score
was then divided into high and low risk groups based on the
median of the Risk score among all samples. Differences in
the enrichment scores of 24 immune cells (Gabriela et al.,
2013) in high and low risk groups were assessed to infer the
composition of immune cells in patients with cervical cancer
under Risk score.

qRT-PCR detection

A total of 25 cervical cancer tissue samples were collected from
surgical patients at the Tumor hospital affiliated with Xinjiang
Medical University between 2015 and 2020, with signed informed
consent forms. The study was approved by the Ethics Committee of
the Tumor hospital affiliated with Xinjiang Medical University and
conformed to the Helsinki Declaration and Clinical Practice
Guidelines. Total RNA extraction from tissues was performed

FIGURE 1
Research plan and Overview of FRGs signatures. (A) Research plan. (B) Venn diagram of differential genes and ferroptosis genes. (C)GO enrichment
analysis of ferroptosis-related genes in BP, CC, and MF. (D) KEGG pathway enrichment analysis of ferroptosis-related genes.
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using TRIzol reagent (Invitrogen, United States), and cDNA
synthesis occurred by reverse transcription using the PrimeScript
real-time kit (Takara, Japan). qRT-PCRs were conducted using an
ABI 7500 PRISM 7500 Platform (Applied Biosystems,
United States). GAPDH served as a reference, and relative
expression levels of target genes were calculated employing the
2−ΔΔCt method. Primers for correlation analysis can be found in
Supplementary Tables S3.

Statistical analysis

Differential analysis of normal and cancer samples was
conducted using the R package edgeR, with a threshold of |Log
(FC)|>1 and p adj<0.05. The R package implemented LASSO
regression and univariate/multivariate Cox regression analysis on
differentially expressed FRGs. The R packages survminer (version
0.4.9) and survival ROC (version 1.0.3) performed KM(Cox
regression was used for analysis) and ROC curve analysis to
predict the survival prognosis of patients with cervical cancer.
Correlation analysis of survival Risk scores constructed from
FRGs and clinicopathological characteristics utilized univariate
and multivariate Cox regression analysis. Differences in genes
were analyzed by independent samples t-test and visualized using
GraphPad Prism 8. The test level was α = 0.05, and a difference was
considered statistically significant with p < 0.05.

Results

Screening and functional analysis of FRGs

Differential gene analysis yielded 1,969, 2,142, and
1,209 differential genes for GSE9750, GSE7410, and GSE63514,
respectively (Supplementary Figure S1; Supplementary Table S2).
In three distinct datasets, the DEGs were combined with ferroptosis
genes to generate differentially expressed FRGs. A total of 52 FRGs
were obtained (Figure 1B; Supplementary Tables S4). Ultimately,
52 FRGs underwent GO/KEGG enrichment analysis
(Supplementary Tables S5). Enrichment analysis in biological

process (BP), cellular component (CC), and molecular function
(MF) domains indicated that the gene set was involved in various
activities, including the apical part of the cell, iron ion binding, and
response to oxidative stress (Figure 1C). KEGG pathway enrichment
analysis revealed significant enrichment of the gene set in both
ferroptosis and cancer-related pathways (Figure 1D).

Establishment and prognostic analysis of
FRGs prognostic model in cervical cancer

TCGA-CESC data served as the training set. Initially, 15 FRGs
were derived from LASSO analysis of the 52 FRGs (Supplementary
Figure S2). Subsequently, Cox regression analysis results
demonstrated that among eight FRGs, six exhibited independent
effects on predicted outcomes, including JUN, TSC22D3, SLC11A2,
DDIT4, DUOX1, and HELLS (Table 1). A prognostic model was
developed based on these six genes and classified into two groups
according to Risk score. Scatter plots of survival outcomes and
survival time indicated that the high-risk group had more fatalities
than the low-risk group (Figure 2A). The training set’s KM curve
showed that the OS of the low-risk group was longer than that of the
high-risk group (p < 0.001, Figure 2B). ROC curves were employed
to analyze the OS at 1, 3, and 5 years, with AUC values of 0.763,
0.782, and 0.827, respectively (Figure 2C). In conclusion, the model
provided a stable and accurate prediction of patients’ prognosis.

Prognostic analysis of clinicopathological
features by FRGs prognostic model in
cervical cancer

Clinicopathological features of the study were examined using
univariate/multivariate Cox regression analyses. According to
univariate analysis, clinical stage, TNM stage, and Risk score
were significant factors predicting patient prognosis. In contrast,
multivariate analysis revealed that Risk score was the sole
independent factor predicting patient prognosis (Table 2). To
ensure accurate patient prognosis, a nomogram incorporating
various clinicopathologic parameters was generated (Figure 2D).

TABLE 1 Univariate/multivariate Cox regression analysis of FRGs.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

JUN 306 1.873 (1.167–3.005) 0.009 1.879 (1.154–3.059) 0.011

DNAJB6 306 1.710 (1.070–2.735) 0.025 1.581 (0.973–2.569) 0.064

TSC22D3 306 0.605 (0.380–0.965) 0.035 0.457 (0.277–0.754) 0.002

SLC11A2 306 1.611 (1.004–2.585) 0.048 1.855 (1.129–3.048) 0.015

DDIT4 306 2.097 (1.294–3.398) 0.003 2.416 (1.413–4.130) 0.001

DUOX1 306 0.439 (0.270–0.712) <0.001 0.454 (0.274–0.754) 0.002

CA9 306 1.644 (1.029–2.628) 0.038 1.128 (0.685–1.856) 0.635

HELLS 306 0.529 (0.329–0.851) 0.009 0.488 (0.288–0.828) 0.008
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Additionally, DCA and calibration curves (Figures 2E, F)
demonstrated the model’s role in assessing patient outcomes. In
summary, the model could be employed as a novel and powerful tool
for predicting patient prognosis.

Validation and prognostic efficacy analysis
of prognostic model of FRGs in cervical
cancer

To validate the model’s applicability, the GSE44001 dataset was
used as the validation set. A prognostic model was developed based
on the six aforementioned genes, which were divided into high and
low groups according to median Risk score. Scatter plots of survival

outcomes and survival time indicated that the high-risk group had
more fatalities than the low-risk group (Figure 3A). The validation
set’s KM curve showed that the OS of the low-risk group was longer
than that of the high-risk group (p < 0.001, Figure 3B). ROC curves
were employed to analyze the OS at 1, 3, and 5 years, with AUC
values of 0.667, 0.713, and 0.741, respectively (Figure 3C). The study
results also indicated that the model was stable and accurate in the
validation set. Univariate/multivariate Cox regression analyses were
then employed with the dataset to further validate the model’s
clinicopathologic characteristics. According to univariate analysis
results, Risk score and IB2 were the primary prognostic factors. In
multivariate regression analysis, Risk score was considered an
independent predictor of the study’s outcome (Table 3). A
nomogram was also used to evaluate the model’s value in

FIGURE 2
Establishment and prognostic analysis of FRGs prognostic model in cervical cancer. (A) Curve scatter plot of training set survival model efficacy
assessment and cumulative scatter plot of survival mortality event risk. (B) KM curves show a significant difference in OS between high-risk and low-risk
groups in the training set. (C) Time-dependent ROC curves were used to predict 1, 3 and 5 years survival. (D) 1, 3, and 5 years nomograms for predicting
OS in cervical cancer. (E)Calibration curves showing the agreement between predicted and observed 3 and 5 years OS. (F)Decision curve analysis of
the prognostic model in the training set at 3 and 5 years.
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assessing patient prognosis in the GSE44001 dataset (Figure 3D).
DCA and calibration curves (Figures 3E, F) also demonstrated that
the model had a consistent effect on patient prognosis assessment. In
conclusion, the model’s practicality and suitability for various
datasets render it an ideal choice for determining cervical cancer
patients’ prognosis.

Validation and prognostic efficacy analysis
of FRGs prognostic model for cervical
cancer in other gynecological tumors

To confirm the model’s universal applicability across different
gynecological tumors, TCGA-UCEC and TCGA-OV datasets were
employed as validation sets. Scatter plots of survival outcomes and
survival time indicated that the high-risk group had more fatalities
than the low-risk group (Figure 4A). The validation set’s KM curve
revealed that the OS of the low-risk group was longer than that of
the high-risk group in TCGA-UCEC (p < 0.001, Figure 4B). ROC
curves were utilized to analyze the OS at 1, 3, and 5 years, with
AUC values of 0.758, 0.776, and 0.788, respectively (Figure 4C).
The results demonstrated that the model exhibited excellent
stability and accuracy in TCGA-UCEC. Clinicopathological
features of the model were further verified using univariate/
multivariate Cox regression analysis on the TCGA-UCEC
dataset. Univariate/multivariate regression analysis revealed that
Age, Clinical stage, Histologic grade, and risk score were
prognostic factors for TCGA-UCEC (Table 4). Ultimately, a
nomogram was established to predict the OS of cervical cancer
patients in the TCGA-UCEC dataset at 1, 3, and 5 years
(Figure 4D). The DCA diagram and calibration curve (Figures
4E, F) also confirmed that the nomogram combined with clinical
features held significant clinical application value. Additionally,
the same analysis was performed on the TCGA-OV dataset, which
indicated that the cervical cancer prognostic model of iron death-
related genes also possessed robust prognostic value in ovarian
serous cystadenocarcinoma (Supplementary Figure S2;
Supplementary Table S6). In conclusion, the cervical cancer
prognostic model of iron death-related genes exhibits strong
applicability and can serve as biomarkers to predict patient
prognosis across different gynecological tumor datasets.

Correlation analysis between prognostic
model of FRGs and immune
microenvironment

We found that the low-risk group had significantly higher
enrichment scores for B cells, DC, iDC, pDC, T cells, and TReg
than the high-risk group (p < 0.001, Figure 5A). The enrichment
scores in Cytotoxic cells, Mast cells, and T helper cells were slightly
higher than the high-risk group (p < 0.01, Figure 5A). The
enrichment scores for aDC, CD8+T cells, Neutrophils, and TFH
were not significantly higher than the high-risk group (p < 0.05,
Figure 5A). It can be seen that the immune microenvironment of
cervical cancer patients under Risk score consists of immune cells
such as B cells, T cells, DC and mast cells. Lastly, the correlations
between 24 immune cells were assessed, and the correlations
between different tumor-infiltrating immune cell subsets ranged
from weak to moderate correlations (Figure 5B). The same analysis
was conducted for GSE44001, with statistically significant
enrichment scores for Macrophages, Mast cells, and Neutrophils,
which also resembled the TCGA cohort (Supplementary Figure S4).
The expression of various immune checkpoint inhibitors, such as
CTLA4, BTLA, CD27, CD28, and CD40, in high and low-risk
groups was also analyzed. The results demonstrated that the
expression of TIGIT, CTLA4, BTLA, CD27, and CD28 were
higher in the low-risk group than in the high-risk group,
indicating improved immune efficacy for patients in the low-risk
group. The level of expression of other checkpoint inhibitors was not
significantly different between the two groups (Figure 5C). In
conclusion, the model correlates with the prognosis of patients
with cervical cancer from an immune infiltration perspective.
Simultaneously, the high expression of immune checkpoint
inhibitors in the low-risk group enhances the effectiveness of
immunotherapy in patients.

Validation of FRGs expression levels

The expression levels of the model’s six genes were validated
using the TCGA database. The expression levels of DDIT4 and
SLC11A2 were not significantly different when comparing
noncancerous and cancerous tissues (Supplementary Figure S5).

TABLE 2 Univariate/multivariate Cox regression analysis of clinicopathological characteristics of TCGA-CESC.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age(>50 vs. ≤ 50) 306 1.289 (0.810–2.050) 0.284 0.577 (0.157–2.122) 0.408

T stage (T3&T4 vs. T1&T2) 243 3.863 (2.072–7.201) <0.001 2.148 (0.325–14.219) 0.428

N stage(N1 vs. N0) 195 2.844 (1.446–5.593) 0.002 1.223 (0.352–4.248) 0.751

M stage(M1 vs. M0) 127 3.555 (1.187–10.641) 0.023 0.000 (0.000-Inf) 0.998

Clinical stage (Stage III&Stage IV vs. Stage I&Stage II) 299 2.369 (1.457–3.854) <0.001 1.282 (0.133–12.361) 0.830

Histologic grade (G3&G4 vs. G1&G2) 274 0.866 (0.514–1.459) 0.589 2.396 (0.663–8.654) 0.182

RiskScore (High vs. Low) 294 8.191 (1.081–62.076) 0.042 14.075 (1.147–172.783) 0.039

Frontiers in Molecular Biosciences frontiersin.org06

Han et al. 10.3389/fmolb.2023.1188027

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1188027


FIGURE 3
Validation of a prognostic model of FRGs in cervical cancer. (A) Curve scatter plot of validation set survival model efficacy assessment and
cumulative scatter plot of survival mortality event risk. (B) KM curve shows that there is a significant difference in OS between high-risk and low-risk
groups in GSE44001. (C) Time-dependent ROC curves were used to predict 1, 3, and 5 years survival. (D) 1, 3, and 5 years nomograms for predicting OS in
cervical cancer. (E) Calibration curves showing the agreement between predicted and observed 3 and 5 years OS. (F) Decision curve analysis of the
prognostic model in the validation set at 3 and 5 years.

TABLE 3 Univariate/multivariate Cox regression analysis of clinicopathological characteristics of GSE44001.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Stage 300

IB1 217 Reference

IA2 13 0.000 (0.000-Inf) 0.996 0.000 (0.000-Inf) 0.996

IB2 28 3.953 (1.807–8.651) <0.001 3.038 (1.334–6.920) 0.008

IIA 42 2.106 (0.932–4.758) 0.073 1.920 (0.844–4.369) 0.120

RiskScore (High vs. Low) 300 2.718 (1.810–4.081) <0.001 2.270 (1.539–3.349) <0.001
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qRT-PCR analysis was performed to assess the levels of the
remaining genes in both cervical and non-cancerous tissues.
Consequently, the expression levels of JUN and TSC22D3 in
cervical cancer tissues displayed an overall downward trend
compared with non-tumor tissues (Figures 6A, B). DUOX1 and

HELLS exhibited an overall upward trend (Figures 6C, D).
Furthermore, the relationship between four genes and B cells,
CD8 T cells, DC, NK cells, and T cells was examined, revealing
that TSC22D3 was positively correlated with the aforementioned
cells; aside from NK cells, HELLS was negatively correlated with the

FIGURE 4
Cervical cancer FRGs prognosis model validation in the TCGA-UCEC. (A) Curve scatter plot of validation set survival model efficacy assessment and
cumulative scatter plot of survival mortality event risk. (B) KM curve shows that there is a significant difference in OS between high-risk and low-risk
groups in TCGA-UCEC. (C) Time-dependent ROC curves were used to predict 1, 3, and 5 years survival. (D) 1, 3 and 5 years nomograms for predicting OS
in TCGA-UCEC. (E) Calibration curves showing the agreement between predicted and observed 3 and 5 years OS. (F) Decision curve analysis of the
prognostic model in the validation set at 3 and 5 years.
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other 4 cells; DUOX1 was negatively correlated with CD8+T cells
and NK cells but positively correlated with DC; JUN was negatively
correlated with B cells and showed no correlation with other cells
(Supplementary Figure S6). In summary, the four genes exhibit
specific expression in cervical cancer tissue, and there is a discernible
correlation with immune infiltration.

Discussion

Despite the progress made in the prevention, screening, and
treatment of cervical cancer, the outcomes of the disease have not
significantly improved (Zeng et al., 2018). For cervical cancer
patients with metastasis or recurrence, the 5-year OS is only 17%
(Ouyang et al., 2020). Currently, the main research focus in
ferroptosis is on the occurrence, development, and treatment of
tumors. Several studies have demonstrated that ferroptosis-related
biomarkers are strong predictors of cancer prognosis and treatment
efficacy (Shi et al., 2019; Liang et al., 2020; Tang et al., 2020). Based
on these findings, it is essential to systematically and
comprehensively evaluate the prognostic role of FRGs in cervical
cancer.

In this study, the impact of FRGs prognostic models on
prognosis was investigated, while also examining the relationship
between FRGs prognostic models and the immune
microenvironment to determine if this model could be a
potential biomarker for prognosis. Initially, the DEGs of the
GSE9750, GSE7410, and GSE63514 datasets were analyzed. The
intersection of the ferroptosis gene sets was obtained from the
FerrDb, NCBI-gene, MSigDB, and Genecard databases. Notably,
as the intersection of the four datasets yielded fewer genes, the
intersection of each dataset was analyzed, resulting in a total of
52 FRGs. Then, functional analysis of these 52 FRGs showed that
they were related to ferroptosis and oxidative stress processes.
Univariate/multivariate Cox regression analysis was employed to
identify FRGs with prognostic features and to establish a prognostic
model for FRGs. Subsequently, the ssGSEA was used to study the
differences between various immune cells. Statistically significant
differences were found for B cells, DC, iDC, pDC, T cells, and TReg.

Ferroptosis is currently recognized as an immunogenic cell
death characterized by the release of damage-associated

molecular patterns (DAMPs) from deceased tumor cells (Tang
et al., 2019; Wen et al., 2019; Wan et al., 2020). The analysis
discovered that B cells, DC, T cells, and TReg exhibited higher
abundances in the low-risk group compared to the high-risk group,
which displayed a higher immune score. These correlation results
demonstrate, to some extent, the relevance of FRGs prognostic
models to the immune infiltration of cervical cancer. This can be
combined with the finding by Wang et al. (2019) that the antitumor
efficacy of immunotherapy can be achieved through enhanced
ferroptosis-specific lipid peroxidation by CD8+ T cells.
Additionally, the analysis of immune checkpoint inhibitors
revealed higher expression of TIGIT, CTLA4, BTLA, CD27, and
CD28 in the low-risk group, suggesting that the efficacy of
immunotherapy is better in the low-risk group than in the high-
risk group. TIGIT, an emerging immune checkpoint, is widely
expressed on lymphocytes (Harjunpää and Guillerey, 2020). It is
capable of inhibiting every step of the cancer immune cycle (Manieri
et al., 2017). TIGIT may prevent NK cells from releasing tumor
antigens, impair DC-primed T cell priming, or inhibit CD8+T cell-
mediated cancer cell killing (Harjunpää and Guillerey, 2020).
Combined with the results of this study, it is plausible that
TIGIT kills cancer cells in the low-risk group by reducing DC-
triggered T-cell initiation, leading to immunotherapeutic benefits
for patients in the low-risk group. However, further research is
needed to elucidate the specific mechanism.

In this study, four FRGs, including JUN, TSC22D3, DUOX1,
and HELLS, were experimentally validated and analyzed for
correlation with immune cells. TSC22D3 is a transcriptional
regulator that mediates immunosuppressive effects through NF-
κB, RAS, and other pathway proteins, as well as heterodimerization
ability (Ronchetti et al., 2015). It has been shown that elevated
glucocorticoids due to stress induce the expression of TSC22D3,
which blocks type I interferon (IFN) responses and IFN-γ+ T cell
activation in dendritic cells (DCs), thereby disrupting immune
surveillance (Yang et al., 2019a). Based on previous findings, and
considering the positive correlation of TSC22D3 with immune cells
in this study, it is reasonable to suspect that in cervical cancer,
TSC22D3 expression may enhance the immunity of patients by
stimulating the activation of immune cells, thereby prolonging their
prognosis. DUOX1 is expressed at low levels in HCC and can be
used as an important indicator for evaluating the therapeutic effect

TABLE 4 Univariate and multivariate Cox regression analysis of clinicopathological characteristics of TCGA-UCEC.

Characteristics Total (N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

Age(>60 vs. <=60) 549 0.541 (0.340–0.862) 0.010 0.484 (0.293–0.799) 0.005

Weight(>80 vs. <=80) 527 0.944 (0.622–1.431) 0.784 0.519 (0.228–1.185) 0.119

Height(>160 vs. <=160) 522 0.868 (0.571–1.319) 0.507 0.907 (0.567–1.450) 0.682

BMI(>30 vs. <=30) 518 1.034 (0.680–1.572) 0.876 1.479 (0.674–3.243) 0.329

Clinical stage (Stage III&Stage IV vs. Stage I&Stage II) 551 0.282 (0.188–0.425) <0.001 0.269 (0.171–0.424) <0.001

Histologic grade (G3 vs. G1&G2) 540 0.305 (0.177–0.524) <0.001 0.409 (0.232–0.719) 0.002

RiskScore (High vs. Low) 506 2.718 (2.124–3.479) <0.001 2.060 (1.196–3.548) 0.009
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of HCC after surgery (Lu et al., 2011). However, DUOX1 is
overexpressed in patients with cervical cancers (Cho et al., 2019).
DUOX1 was strongly correlated with the ratios of CD8+ T cells, DCs,
and NK cells, indicating that its expression was highly associated
with the innate immune cell response in cervical cancer.
Furthermore, DUOX1 expression in innate lymphocytes suggests
that DUOX1 has a broad host defense function (Habibovic et al.,
2016; Cho et al., 2019), resulting in prolonged survival prognosis for
patients with cervical cancer. HELLS is overexpressed in colorectal,
HCC, nasopharyngeal, and lung cancers, leading to poorer
prognosis, and therefore, HELLS can be useful as a prognostic
marker in various cancers (He et al., 2016; Yang et al., 2019b;
Law et al., 2019; Liu et al., 2019; Zhu et al., 2020; Xing et al., 2021).
Zocchi et al. (2020) found that low expression of HELLS in

retinoblastoma inhibited ectopic division of differentiated cells in
the retina, leading to tumor development inhibition and,
consequently, prolonging OS in patients (Zocchi et al., 2020;
Xing et al., 2021). In conjunction with previous studies, HELLS
displayed a negative correlation with B cells, CD8 T cells, DC, and
T cells in this investigation, with high HELLS expression signifying
reduced expression of immune cells and promotion of tumor
progression. As a critical prognostic gene in this study, it is
valuable to delve deeper into how patients’ prognosis can be
enhanced through the mechanism of HELLS.

In addition to this study, it is noteworthy that Du et al. (2022),
Qin et al. (2022), Qi et al. (2021), and Xing et al. (2021) all
investigated FRGs in cervical cancer. Du et al. (2022) constructed
a prognostic model with excellent predictive performance based on

FIGURE 5
Analysis of the immune microenvironment. (A) Differences of 24 immune cells in different expression levels of Risk score. (B) Correlation between
24 immune cells. (C) Differences of immune checkpoint inhibitors in different expression levels of Risk score. Note: ns: no significant difference, *: p <
0.05, **: p < 0.01, ***: p < 0.001.
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FRGs. CA9/ULBP2 was also identified as a potential regulator of
cervical carcinogenesis and progression. Qin et al. (2022)
constructed a prognostic model with four iron death-associated
genes and examined the immunemicroenvironment. Qi et al. (2021)
developed a novel prognostic model with FRGs and validated the
genes within the model. Xing et al. (2021) constructed a model with
immune-associated genes and iron death genes related to OS in
CESC patients, effectively predicting the outcome.

It is worth mentioning that most of the above studies selected
1-2 datasets for analysis and model construction. In this study,
FRGs were obtained from multiple datasets, and a model was
built. The model demonstrates good stability and accuracy in
TCGA-CESC and GSE44001 datasets. Furthermore, it has
significant predictive value and general applicability in other
gynecological tumors. In addition, the expression of four
genes, including JUN, TSC22D3, DUOX1, and HELLS, in
cervical cancer tissues was verified by qRT-PCR. However,
considering the limitations of previous related research,
further study is necessary to explore the immune molecular
mechanism between ferroptosis and cervical cancer and how
this mechanism affects the prognosis of patients with cervical
cancer.

Of course, this study had two limitations. First, one of the
cohorts included relatively few indicators in clinical information,
leading to insufficient validation of some results. Second, the study
used retrospective data from public databases to construct and

validate a prognostic model for FRGs. It would be more
convincing to use prospective data to assess its clinical utility.
Based on these two points, combined with the current lack of
understanding of the mechanism of genes in cervical cancer, it is
essential to further explore and study the biological functions of
genes in cervical cancer in future research.

In conclusion, this study fills the gap in the FRGs prognostic
model for cervical cancer prognosis. The constructed prognostic
model possesses a strong ability to predict the survival outcome of
patients with cervical cancer and has certain applicability to other
gynecological tumors. Ultimately, the model demonstrates a
correlation with the prognosis of cervical cancer patients in
terms of immune infiltration, and the high expression of
immune checkpoint inhibitors in the low-risk group is more
conducive to immunotherapy efficacy. It is hoped that these
findings will provide new insights for future research and
clinical practice.

Conclusion

In this research, FRGs were derived from multiple datasets, and
a cervical cancer prognostic model was developed. This model was
validated not only in external cervical cancer datasets but also in
datasets of other gynecological tumors. Simultaneously, 4 FRGs were
confirmed using qRT-PCR. The association between immune

FIGURE 6
Expression levels of FRGs. Expression levels of 4 ferroptosis-related genes in 25 non-tumor tissues and 25 cervical cancer tissues.

Frontiers in Molecular Biosciences frontiersin.org11

Han et al. 10.3389/fmolb.2023.1188027

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1188027


infiltration and patient prognosis, as well as the differences in the
expression of immune checkpoint inhibitors under varying risk
scores, were also determined in this study.
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