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The attachment of ubiquitin to a substrate (ubiquitination or ubiquitylation)
impacts its lifetime and regulates its function within the cell. Several classes of
enzymes oversee the attachment of ubiquitin to the substrate: an E1 activating
enzyme that makes ubiquitin chemically susceptible prior to the following stages
of conjugation and ligation, respectively mediated by E2 conjugating enzymes
(E2s) and E3 ligases (E3s). Around 40 E2s and more than 600 E3s are encoded in
the human genome, and their combinatorial and cooperative behaviour dictate
the tight specificity necessary for the regulation of thousands of substrates. The
removal of ubiquitin is orchestrated by a network of about 100 deubiquitylating
enzymes (DUBs). Many cellular processes are tightly controlled by ubiquitylation,
which is essential inmaintaining cellular homeostasis. Because of the fundamental
role(s) of ubiquitylation, there is an interest in better understanding the function
and specificity of the ubiquitin machinery. Since 2014, an expanding array of
Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) Mass
Spectrometry (MS) assays have been developed to systematically characterise
the activity of a variety of ubiquitin enzymes in vitro. Here we recapitulate how
MALDI-TOF MS aided the in vitro characterization of ubiquitin enzymes and the
discovery of new and unexpected of E2s and DUBs functions. Given the versatility
of the MALDI-TOFMS approach, we foreseen the use of this technology to further
expand our understanding of ubiquitin and ubiquitin-like enzymes.
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Introduction

Ubiquitin is a small, yet influential protein that regulates a variety of cellular processes
(Oh et al., 2018). Ubiquitylation starts with the attachment of a single ubiquitin molecule
to a lysine present on the substrate, via isopeptide bond formation (Hershko and
Ciechanover, 1998), also referred to as “canonical” ubiquitylation. Besides the
canonical addition, ubiquitin can also be connected to protein N-termini (through
formation of peptide bond) (Ciechanover and Ben-Saadon, 2004; Tatham et al., 2013;
Dittmar and Winklhofer, 2019) or to hydroxyl-containing amino acids and biomolecules,
such as serine and threonine (Pao et al., 2018), ADP-ribose (Zhu et al., 2022),
glucosaccharides (Kelsall et al., 2022) or the bacterial lipopolysaccharide (LPS) (Otten
et al., 2021) via ester bond formation. Recently, phospholipid phosphatidylethanolamine
(PE) was also found to be targeted by ubiquitin in eukaryotic cells and baculoviruses
(Sakamaki et al., 2022). Besides the attachment to a substrate, ubiquitin itself possesses
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seven lysine (K) residues (K6, K11, K27, K29, K33, K48, K63) and a
starting methionine which can be ubiquitinated, to initiate
isopeptide-and peptide-linked ubiquitin chains (Akutsu et al.,
2016). Polyubiquitin chains can be either linear or branched
and further modified by other ubiquitin post-translational
modifications, such as phosphorylation and acetylation (Ikeda
and Dikic, 2008; Ohtake et al., 2015; French et al., 2021). The
layering and interactions of ubiquitin structural topologies and
other post-translational modifications dictates a variety of signals
with separate cellular outcomes, referred to as the “ubiquitin code”
(Komander and Rape, 2012). The assembly of ubiquitin chains is
mediated by a cascade of highly linkage-specific ubiquitin
enzymes, E2s and E3s, also known as the “writers” of the
ubiquitin code (Zheng and Shabek, 2017). Ubiquitin chains of
diverse linkages are recognized and hydrolysed by a dedicated class
of enzymes, known as deubiquitylating enzymes (DUBs), which
play the role of the “erasers” (Lange et al., 2022). Because of the role
of ubiquitination in human health and diseases, there is an ever-
expanding interest in how to better characterize the activity of
ubiquitin enzymes and how to manipulate them for
pharmacological purposes. Both basic research and the drug
discovery process benefit of straight forward, easy-to-use, and
high-throughput tools to interrogate the activity of ubiquitin
enzymes in vitro. Here we discuss the use of MALDI-TOF MS-
based platforms that allow to gauge ubiquitin enzyme activities,
substrate preferences and cooperative behaviour. In perspective,
such technology is promising and well positioned to further stretch
and expand our understanding of ubiquitin and ubiquitin-like
enzymes.

MALDI TOF MS for interrogating
E2 conjugating enzymes and E3 ligases

The ubiquitin enzymatic cascade resembles a pyramid with
increasing specificity for the substrate from the top to the
bottom. The E1 activating enzyme renders ubiquitin chemically
susceptible for conjugation before passing it to an E2 conjugating
enzyme (E2) which in turn will collaborate with a specific E3 ligase
(E3) to achieve the final task of attaching ubiquitin to a specific
substrate (Scheffner et al., 1995; Morreale and Walden, 2016; Zheng
and Shabek, 2017). E3 are ultimately responsible for substrate
specificity and their sheer number is indicative of the extent of
ubiquination that might occur within the cell and alter metabolic
processes. Ubiquitin ligases are divided into three families according
to the presence of specific domains: Really Interesting New Gene
(RING), homologous with E6-associated protein C-terminus,
(HECT), and RING-Between-RING (RBR) (Zheng and Shabek,
2017; Harper and Schulman, 2021). RING-type ligases work as
scaffolds between the E2 and the target protein substrate, thus
allowing the ubiquitylation of the substrate (Metzger et al., 2014).
HECT-type ligases possess an active cysteine that forms a covalent
thioester bond with ubiquitin before its final transfer to the substrate
(Metzger et al., 2012; Scheffner and Kumar, 2014). RBR-type ligases
retain both the RING and HECT domains a hybrid RING/HECT-
like mechanism of action (Smit and Sixma, 2014; Spratt et al., 2014).
A distinct “RING–Cys–relay” (RCR) catalytic mechanism was
recently identified in the human E3 ligase MYCBP2, which

present a RING domain and two catalytic cysteines that mediate
the ultimate attachment of ubiquitin to threonine (Pao et al., 2018;
Mabbitt et al., 2020). Finally, a new RING-independent, NFX1-type
zinc finger—mediated mechanism was identify in the E3 ligase
RNF213 (Otten et al., 2021).

E2s and E3s act cooperatively to connect ubiquitin molecules
either as attached or free polyubiquitin chains. The majority of E2s
and E3s link ubiquitin to a lysine residue present on the substrate.
E2s that work in tandem with RING E3 ligases have the intrinsic
ability to directly discharge ubiquitin onto free lysine provided in
excess in the reaction solution, also known as nucleophile reactivity
assay (Wenzel et al., 2011). Ubiquitin-lysine adducts formed as
result of E2 discharge activity can be easily detected via MALDI-
TOF MS (see Figure 1A), thus allowing high-throughput screening
aimed to identify and characterize E2 inhibitors and/or activators
(Traynor et al., 2022). The ability of MALDI-TOF MS to clearly
visualize and quantify a variety of ubiquitin adducts also paved the
way for the identification of E2s with non-canonical activities (see
Figure 1A) (Abdul Rehman et al., 2023). In particular, it allowed for
the discovery of the non-canonical activities of UBE2Q1 and
UBE2Q2, recently identified as E2s able to discharge on serine
and threonine residues, as well as on other hydroxyl-containing
molecules (Abdul Rehman et al., 2023). Similarly, UBE2J2, an
E2 conjugating enzyme previously known as able to ubiquitylate
residues other than lysine (Wang et al., 2009), was further
characterized as a serine and cysteine specific E2. The MALDI-
TOF-MS-based discharge assay further allowed for the identification
of key catalytic determinants that permit the interaction between
ubiquitin and the E2s non-canonical substrates (Abdul Rehman
et al., 2023).

The combined action of an E2/E3 active pair ultimately results in
a reduction of the initial free ubiquitin pool that can be quantified
using MALDI-TOF MS (See Figure 1B): such an approach has been
previously employed to identify optimal E2/E3 combinations and to
perform high throughput screening for HECT, RBR and RING
E3 ligases (De Cesare et al., 2018). HECT and RBR E3 ligases receive
ubiquitin from the E2 conjugating enzymes UBE2L3, an HECT-
RBR-specific E2 that lacks intrinsic, E3-independent reactivity
toward lysine residues (Wenzel et al., 2011). The ability to
discharge on lysine—and the consequent formation of ubiquitin-
lysine adducts (Ub-K)—relies exclusively on the activity of a cognate
HECT or RBR E3 ligase. In this instance, a lysine discharge method
can also be used for testing the activity of RBR and HECT E3 ligases
of interest (See Figure 1C). For example, MALDI-TOF MS has been
employed for the characterization of activators of Parkin (Traynor
et al., 2022), an RBR E3 ligase whose loss of function is linked to the
development of sporadic Parkinson’s Disease (Kitada et al., 1998).
Identification of small molecules able to reinstate Parkin activity
represents a potential drug treatment strategy (Miller and Muqit,
2019). Parkin is normally localized in the cytoplasm and maintained
in an inactive state. Upon mitochondrial damage, Parkin activity is
released by PINK1-mediated phosphorylation (p-Parkin) on serine
65 (S65) or by interaction with phosphorylated ubiquitin (p-Ub)
(Narendra et al., 2008; Matsuda et al., 2010; Koyano et al., 2014),
which functions as an allosteric Parkin modulator. MALDI-TOFMS
has been successfully applied to fully characterise and quantify the
extent of Parkin activation in presence of different amounts of
p-Parkin (Traynor et al., 2022), to perform primary High
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throughput screening (HTS) aimed at the identification of new
Parkin activators and to the validation of small molecules previously
patented as potential Parkin activators. Notably, these assays do not
require the development of specific antibodies and/or fluorescent
probes. Several structural studies have identified point mutations
that release Parkin from in its autoinhibitory conformation and
rescue defects in p-Ub binding as well as S65 phosphorylation
(Trempe et al., 2013; Wauer and Komander, 2013; Kumar et al.,
2015). MALDI-TOF MS also allowed for the highly accurate
quantification of the effects of point mutations on Parkin activity,
thus providing a precious tool for validating protein structures and/
or in silico models.

A recent stream of literature identified several E3 ligases that
discharge ubiquitin onto non-canonical residues such as serine and
threonine as well as onto other biomolecules, including but not
limited to sugars and lipids (non-canonical ubiquitylation) (Dikic
and Schulman, 2022; Squair and Virdee, 2022). Notably, MALDI-

TOF MS can be easily adapted to identify E3 ligases with non-
canonical activity in in vitro conditions (Kelsall et al., 2022; Wang
et al., 2023) (as for discharge on threonine residues) or upon affinity
purification steps thanks to a rather high level of tolerance to
contaminants (See Figure 1C).

MALDI-TOF MS for deciphering DUBs
activity

Deubiquitinating enzymes (DUBs) oversee the removal
ubiquitin from their substrate and recycle ubiquitin. The human
genome encodes for approximately 100 DUBs, divided into
7 families (Clague et al., 2019): Ub C-terminal hydrolases
(UCHs), Ub-specific proteases (USPs), Machado-Josephin
domain proteases (MJDs), ovarian tumour proteases (OTUs),
motif interacting with Ub-containing novel DUB family

FIGURE 1
Schematic view of MALDI-TOF MS-based assay for E2s and E3s enzymes. MALDI-TOF MS can be used for determining the specificity of E2s toward
specific nucleophiles. Ubiquitin (substrate), ATP/MgCl2, E1 and E2 are incubated in presence of excess amount of a specific nucleophile (lysine, threonine
or any other nucleophile). Ubiquitin–lysine (ubiquitin-K) and/or ubiquitin-threonine (ubiquitin-T) products are subsequently detected via MALDI-TOFMS
(E2 Discharge Assay). Quantification is achieved using heavy-labelled ubiquitin as internal standard (15N ubiquitin) (A). E2s paired with compatible E3s
will promote the formation of ubiquitin chains, therefore reducing the initial pool of free ubiquitin (E3 Autoubiquitylation Assay). The reduction of free
ubiquitin is detected via MALDI-TOF MS and allows for the identification of E2/E3 active pairs (B). HECT and RBR discharge activity is detected via the
formation of Ubiquitin-K products or other non-canonical derivatives, for example, Ub-T(C) (E3 Discharge Assay).
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(MINDY), and zinc-finger-containing Ub peptidase (ZUP1) and the
Jab1/Mov34/MPN+ protease (JAMM) family (Lange et al., 2022).
Despite sharing the same catalytic activity, DUBs vary in molecular
size, structure, and domain architecture, which can also confer
specificity toward ubiquitin chain architecture and linkage type.
In fact, ubiquitin chains linked via different lysine residues, despite
being chemically identical, are considerably different from a
structural point of view. MALDI-TOF MS has been extensively
used for the characterization of DUB activity toward a variety of
ubiquitin substrates, including different chains architecture (linear
and branched) (Lange et al., 2023), length (dimer, trimers, tetramer,

etc.) (De Cesare et al., 2020; Armstrong et al., 2021), substrates
mimicking lysine and threonine ubiquitylation (De Cesare et al.,
2021) and ubiquitin substrates further post-translationally modified
by phosphorylation (Huguenin-Dezot et al., 2016). MALDI-TOF
MS-based assays for determining the activity and specificity of DUBs
rely on the detection of free ubiquitin (Ritorto et al., 2014; De Cesare
and Davies, 2023). Specifically, the cleavage of ubiquitin dimers
results in two mono-ubiquitin molecules: the ubiquitin signal is
normalized and quantified based on the internal standard signal,
commonly represented by 15N ubiquitin (See Figure 2A). While
most DUBs are sufficiently active toward ubiquitin dimers, some

FIGURE 2
Schematic view of MALDI-TOF MS-based assay for deubiquitylating enzymes (DUBs). The MALDI-TOF MS DUBs assay (A) requires the use of
ubiquitin dimers (or trimers, tetramers, etc.) as substrates. The formation of ubiquitin as product of the reaction indicates DUBs activity. Quantification and
normalization of data points is achieved using 15N ubiquitin as internal standard. The activity of DUBs against phosphorylated and or acetylated ubiquitin
substrates can also be tested via MALDI-TOFMS by adopting the use of specific internal standards (for example, phosphorylated 15N ubiquitin) (B). To
determine the ability of DUBs to remove either canonical or non-canonical ubiquitylation, chemoenzymatically synthesized ubiquitinated lysine and
threonine are used as model substrates (ubiquitin-K and ubiquitin-T) (aa profiling). The contemporaneous formation of free ubiquitin (product) and
reduction of the substrate signal indicated DUBs activity (C). The DUBs mediated cleavage of ubiquitin chains with branching points can be investigated
with the use of Ubiquitin Linkage Target Identification by Mass-Tagging (ULTIMAT DUBs Assay) technology. Each ubiquitin moiety of the ULTIMAT
substrate is characterized by a slightly different molecular weight that can be detected via MALDI-TOF MS (D) thus enabling identification and
quantification of the exact linkage cleaved relative to the internal standard (15N ubiquitin).
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DUBs cleave poly-ubiquitin chains at accelerated rates compared to
ubiquitin dimers, suggestive of an avidity effect or the presence of
additional ubiquitin-binding pockets. The cleavage of longer
ubiquitin chains will produce the contemporaneous presence of
mono-ubiquitin and other ubiquitin chains (i.e., dimer, trimers).
The contemporaneous presence of different substrate only
marginally complicates the MALDI-TOF MS readout and can be
model by following the cleavage reaction in vitro over time. For
example, PLpro, the SARS-CoV-2 protein with deubiquitylating and
deISGylating activities, has proven to be remarkedly more active
toward K63 ubiquitin trimers compared to K63 ubiquitin dimers
(Armstrong et al., 2021). MALDI-TOF MS allowed for the use of
K63 ubiquitin dimers as PLpro physiological substrate in high-
throughput screening of 1971 approved clinical compounds and to
identify five compounds that inhibited PLpro with IC50s in the low
micromolar range (Armstrong et al., 2021).

Ubiquitin can also be targeted by other post-translational
modifications such as phosphorylation and acetylation.
Phosphorylated ubiquitin is known to activate the E3 ligase Parkin,
raising the question of whether phosphorylation could also affect the
removal of ubiquitin by impacting the activity of DUBs. Using MALDI-
TOF MS, DUBs activity was profiled against different ubiquitin dimers
(M1, K6, K11, K48, K63 phosphorylated at three serine (S) residues (S20,
S57, and S65) via genetic code expansion (Huguenin-Dezot et al., 2016).
The use of phosphorylated 15N ubiquitin as internal standard allowed to
identify DUBs that were either activated or repressed by the presence of
phosphate groups on ubiquitin dimers (See Figure 2B). For many DUBs
tested, phosphorylation was found to inhibit the cleavage of all the
ubiquitin linkage isomers tested, with S65 phosphorylation leading to the
greatest inhibition of DUB activity in most cases. Interestingly, ubiquitin
phosphorylation was not found to have a strong effect on ubiquitin chain
formation when a comprehensive subset of E2s was tested via SDS-page,
therefore suggesting that phosphorylation may regulate the levels of
ubiquitin chains primarily through modulating DUBs activity
(Huguenin-Dezot et al., 2016).

Ubiquitylation is mostly considered as a lysine-specific post-
translational modification, however ubiquitylation of other amino
acids, like serine, threonine and other hydroxyl containing
biomolecules is an emerging area of interest in the ubiquitin field
(Squair and Virdee, 2022). Ubiquitylation mediated by hydroxyl
groups is based on the formation of ester bonds, a chemically distinct
andmore labile bond compared to the isopeptide one. To study the ability
of DUBs to remove either canonical or non-canonical ubiquitylation,
chemoenzymatically synthesized ubiquitinated lysine and threonine were
produced as model substrates (De Cesare et al., 2021) (see Figure 2C),
approach also known as amino-acid profiling (aa profiling). A panel of
53 recombinant DUBs, belonging to all seven knownDUB families, were
tested by MALDI-TOF MS for their ability to cleave the ester bond
between the ubiquitin C-terminus and threonine hydroxyl group
(esterase activity) or to hydrolyse the canonical isopeptide bond
(isopeptidase activity.) Interestingly, most DUBs demonstrated dual
selectivity, with one relevant exception, represented by JOSD1, a
member of the Machado-Joseph disease (MJD) class. JOSD1 was
found to possess highly specific ubiquitin esterase activity rivalling the
efficiency of the most active isopeptidases. Interestingly JOSD1, was
recently identified as potential novel therapy targeted for a specific subset
of leukaemias (Yang et al., 2022) and lung adenocarcinoma (Ma et al.,
2022). The identification of JOSD1 esterase activity could both support

the understanding of JOSD1 biological function, by facilitating the
identification of JOSD1 substrates, and to allow for primary HTS
aimed to identify new potent and specific JOSD1 inhibitors.

Endogenous ubiquitin chains have been reported as having
complex topology, including branching point that can arise from
different ubiquitin lysine residues (Swatek et al., 2019). However
conventional SDS-page approaches and the canonical MALDI-TOF
DUB assay do not provide information on which specific linkage within
a ubiquitin chain is being cleaved. To investigate whether some DUBs
have specific selectivity toward branched ubiquitin chains, ubiquitin
moieties characterized by slightly different molecular weights have been
assembled into branched and un-branched ubiquitin substrates (See
Figure 2D). This approach, known as Ubiquitin Linkage Target
Identification by Mass-Tagging (ULTIMAT DUBs Assay) relies on
the detection, via MALDI-TOF MS, of a specific but slightly different
mass for each specific component of the branched poly-ubiquitin chains
enabling identification and quantification of the exact linkage cleaved
relative to the internal standard (15N ubiquitin) (Lange et al., 2023). The
screening of 53 human DUBs against K48 and K63 branched and un-
branched ubiquitin chains led to the identification of DUBs such as
MINDYs and ATXN3 as having remarkable specificity toward
branched ubiquitin chains. The development of the ULTIMAT
DUB assay provides a new, quantitative, and high-throughput
method to monitor cleavage of complex ubiquitin substrates and
represents an important improvement compared to existing
methods that either provide only qualitative dataset or require the
prior development of fluorescent tags, which introduce the potential of
both steric inhibition and/or fluorescent artefacts.

Discussion and future perspectives

Ubiquitylation is a key and highly complex post-translational
modification that plays a substantial role in the maintenance of cell
homeostasis. The relevance of ubiquitylation in cellular context is
recapitulated by the large number of enzymes that articulate the
primary attachment as well as the building and the removal of
ubiquitin moieties from the substrate. In the last decades, the
function of many ubiquitin enzymes and their connection to human
health and disease has been explored.However, the understanding of this
complex post-translational modification is still only marginal and the
function of many E2s, E3s and DUBs remain still largely obscure. The
in vitro reconstitution of the enzymatic activities and regulation of
ubiquitin enzymes often paves the way for a better understanding of
their cellular function. In this context the MALDI-TOFMS represents a
gold standard for the quantification of E2s, E3s and DUBs activities.
Among the advantages ofMALDI-TOFMS is that it allows for the use of
physiological substrates such as ubiquitin dimers, trimers, tetramers and
branched ubiquitin chains. The sensitivity of theMS read out permits the
straightforward identification of a variety of ubiquitin adducts and
therefore facilitates the discovery of unexpected enzymatic activities,
i.e., the non-canonical activities of E2 conjugating enzymes. MALDI-
TOF-based strategies can also be applied to the quantification of RBR
and HECT E3 ligases activities, including non-canonical ones, such as
HOIL-1 and MYCBP2. It can also expedite the in vitro detection and
quantification of ubiquitination activity toward other non-proteinaceous
ubiquitin substrates, such as eukaryotic phospholipids, the bacterial
lipopolysaccharide (LPS) ubiquitylation and ADP-ribose.
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Of the around 100 DUBs identified in the human genome,
approximately two-thirds are currently available for in vitro
curiosity-driven activity-based assays. Current applications of
MALDI-TOF MS have focused on ubiquitin-specific enzymes,
however the versatility of this technology allows for the detection of
ubiquitin-like modifiers such as SUMO, URM1, UFM1 and FAT10. In
fact, most ubiquitin-like conjugating enzymes and pathways resemble
those involved in ubiquitylation allowing for similar MALDI-TOFMS-
based detection strategies. A further niche of investigation is the
identification of DUBs able to process ubiquitin-like domains that
are integrated within longer substrates, such as in ribosome biogenesis
and function (van den Heuvel et al., 2021).

Overall, we anticipate MALDI-TOF MS-based technologies to
substantially increase our understanding of the functioning of E2s,
E3s ligases and DUBs by providing researchers in the ubiquitin field
with highly accurate, quantitative and high-throughput datasets.
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