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Background: M2 macrophages perform an influential role in the progression of
pancreatic cancer. This study is dedicated to explore the value of
M2 macrophage-related genes in the treatment and prognosis of pancreatic
cancer.

Methods: RNA-Seq and clinical information were downloaded from TCGA, GEO
and ICGC databases. The pancreatic cancer tumour microenvironment was
revealed using the CIBERSORT algorithm. Weighted gene co-expression
network analysis (WGCNA) was used to detect M2 macrophage-associated
gene modules. Univariate Cox regression, Least absolute shrinkage and
selection operator (LASSO) regression analysis and multivariate Cox regression
were applied to develop the prognostic model. The modelling and validation
cohorts were divided into high-risk and low-risk groups according to the median
risk score. The nomogram predicting survival was constructed based on risk
scores. Correlations between risk scores and tumour mutational load, clinical
variables, immune checkpoint blockade, and immune cells were further explored.
Finally, potential associations between different risk models and
chemotherapeutic agent efficacy were predicted.

Results: The intersection of the WGCNA results from the TCGA and GEO data
screened for 317 M2 macrophage-associated genes. Nine genes were identified
by multivariate COX regression analysis and applied to the construction of risk
models. The results of GSEA analysis revealed that most of these genes were
related to signaling, cytokine receptor interaction and immunodeficiency
pathways. The high and low risk groups were closely associated with tumour
mutational burden, immune checkpoint blockade related genes, and immune
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cells. The maximum inhibitory concentrations of metformin, paclitaxel, and
rufatinib lapatinib were significantly differences on the two risk groups.

Conclusion: WGCNA-based analysis of M2 macrophage-associated genes can
help predict the prognosis of pancreatic cancer patients and may provide new
options for immunotherapy of pancreatic cancer.
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Background

Pancreatic cancer is one of the worst prognoses of all
malignant parenchymal tumours-the 5-year survival rate is
only around 9% (Bray et al., 2018; Christenson et al., 2020).
Age has been identified as a risk factor for pancreatic cancer.

With the global trend of ageing, the incidence of pancreatic
cancer is increasing every year (Siegel et al., 2018; Siegel et al.,
2020; Huang and Setiawan, 2022). In recent years, advances
have been made in the comprehensive treatment of pancreatic
cancer, such as immune checkpoint blockade therapy, which
has provided new treatment options for patients with

FIGURE 1
Analysis of immune infiltration in pancreatic cancer. (A) 22 immune cell subpopulation in TCGA pancreatic cancer samples. (B) Proportional heat
map of 22 immune cell in TCGA pancreatic cancer samples. (C) Correlation analysis of 22 immune cells.
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chemotherapy-resistant pancreatic cancer (Le et al., 2015;
Ullman et al., 2022). However, immunotherapy still requires
large randomised prospective studies to confirm its role in
improving the prognosis of patients with pancreatic cancer
(Fan et al., 2020; Ostios-Garcia et al., 2021; Ullman et al., 2022).

The tumour microenvironment is the internal environment
upon which tumour cell genesis, growth and metastasis depend
(Yang et al., 2021). The tumour microenvironment in pancreatic
cancer consists of a large number of tissue interstitial, immune cell

infiltrates and other components, of which tumour-associated
macrophages are the main component. M2-type macrophages are
the main type of tumour-associated macrophages, which play an
irreplaceable role in functions such as trophic competition,
inflammatory response, metabolic changes, tumour metastasis
and immunosuppression (Feig et al., 2012; Noy and Pollard,
2014; Cohen et al., 2015; Davies and Taylor, 2015).

However, few existing studies have investigated the
potential role of tumour-associated macrophages in the

FIGURE 2
WGCNA Analysis. (A, C, E) TCGA database aggregation of gene modules with similar expression models based on the WGNCA algorithm and
correlation analysis of modules with immune infiltrating cells. (B, D, F)GEO database aggregation of gene modules with similar expression models based
on the WGNCA algorithm and correlation analysis of modules with immune infiltrating cells.
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tumour microenvironment of pancreatic cancer as a mechanism
for chemoresistance and immunotherapy in pancreatic cancer
(Ip et al., 2017). Consequently, this study was based on the
construction of co-expression networks through The Cancer
Genome Atlas (TCGA) and Gene Expression Omnibus (GEO)
and International Cancer Genome Consortium (ICGC)
databases employing a WGCNA analysis approach to identify
prognostic models of macrophage-associated genes in the
pancreatic cancer microenvironment. This study
systematically investigated the potential mechanisms of the
genes in the model and the response of patients in different
risk groups to chemotherapy and immunotherapy to provide a
practical reference model for individualised clinical treatment
of pancreatic cancer.

Data downloading and processing

RNA sequencing (RNA-seq) data, clinical profiles and tumour
mutation burden data for pancreatic cancer patients were obtained
from the Cancer Genome Atlas data (https://portal.gdc.cancer.gov/
repository). Meanwhile, clinical profiles and RNA expression data
for pancreatic cancer patients from the GSE71729 database were
downloaded from the Gene Expression Omnibus (GEO) repository
(nlm.nih.gov/gds/). Gene expression data and prognostic data from
the International Cancer Genome Consortium (ICGC) database of
pancreatic cancer patients were utilized for model validation
(https://dcc.icgc.org/projects/LIRI-JP). Inclusion criteria (Bray
et al., 2018): survival time >0 and (Christenson et al., 2020)
complete clinical information.

Evaluation of immune cell infiltration

Immune cells in the tumour microenvironment affect tumour
progression and treatment efficacy. CIBERSORT predicts the
proportion of 22 immune cells in tumour sample expression
data based on linear support vector regression principles. Based
on results at p < 0.05, the proportion of immune cells in patients
with pancreatic cancer samples from the TCGA and GEO
databases was calculated and the results presented by the
ggplot2 R package.

WGCNA

Genes associated with M2 macrophages in pancreatic cancer are
identified by an algorithm using weighted gene co-expression
network analysis (WGCNA), which is a common analytical
method for exploring the relationship between gene sets and the
phenotype of interest. The R-based “WGCNA” package was built for
co-expression networks of genes in TCGA and GEO, respectively. A
proximity matrix was constructed based on the best soft threshold β
from 1–20 to match the gene distribution to a connection-based
scale-free network. Neighbourhood relationships were then
converted into a topological overlap matrix (TOM) and clustered
in a chain hierarchy based on the mean of different TOM-based
metrics. Similar genes are introduced into the same candidate

modules using a “dynamic tree cutting” algorithm. Correlations
between the module signature genes and the phenotypes of interest
were analysed using Pearson’s correlation test (p < 0.05). Finally, the
expression of genes in the co-expression modules of WGCNA was
performed to correlate the proportion of immune cell infiltration in
patients.

Building the model

The results of the WGCNA analysis of the TCGA and GEO
databases were used to select the set of genes most relevant to
M2 macrophages in the module and to take the intersecting
genes of both. The intersecting genes were first integrated with
patient survival data from TCGA; then univariate COX
regression was used to identify the genes that affected patient
survival. Next a penalty function was generated using lasso
regression to compress the coefficients of the variables to
prevent overfitting of the model. Finally, the results of the
multifactorial COX regression analysis were confirmed for
M2 macrophage-related genes affecting survival in pancreatic
cancer patients.

Risk score = βgene A × expr gene A + βgene B × expr gene
B+. . .+ βgene N × expr gene N, expr is the mRNA expression of
the pivotal gene and β is the corresponding regression
coefficient in multivariate genetic Cox regression analysis.

Model validation

Results based on TCGA multifactorial COX regression
analysis were screened from the ICGC database for the
appropriate genes and combined with survival times to
validate the data from the modelling group. Time-dependent
ROC curves were employed to validate the accuracy of risk scores
in predicting patient prognosis.

Nomogram

The nomogram provided a visual representation of a patient’s
prognosis. Based on the risk score and the patient’s clinical data a
nomogram was constructed to predict the patient’s prognosis at
1 year, 2 years and 3 years. Calibration curves (by bootstrap method
with 500 resamples) and receiver operating characteristic (ROC)
curves were applied to evaluate the nomogram.

Sample tumour mutation burden analysis

The TCGA database provides the raw tumour mutation burden
data for the samples. The study first downloaded the original tumour
mutation burden for each sample of pancreatic cancer samples and
calculated the value of the tumour mutation burden for each sample.
Waterfall plots for the high-risk and low-risk groups were plotted by
“maftools”. In addition, survival curves were plotted between the
four subgroups based on the median mutational load of pancreatic
cancer patients.
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GSEA enrichment analysis

To explore the ranking of genes in the model that lie in the
correlation of different phenotypes, functional annotations were
explored utilising the c2. cp.kegg.v7.4. symbol and c5. go.v7.4.
symbol collections against the Gene Set Enrichment Analysis
(GSEA) software. The first six of the annotated results were
selected for display and defined as statistically significant with a
two-sided p-value of <0.05.

GSVA enrichment analysis

To explore the pathways by which genes in the M2macrophage-
associated model may influence the pancreatic cancer tumour
microenvironment. The MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb) was used for pathway analysis of
M2 macrophage-associated genes.

The relationship between risk models and
the tumour microenvironment

To further explore the relationship between the role of
M2 macrophage-associated risk models in the immune
microenvironment, XCELL, timer, quantitative, MCPcer, EPIC,
Sibe sorting and Sibe sort-abs were employed to explore the
relationship between risk scores and patient immune function.

Scores for each sample were first assessed based on gene
expression using the ESTIMATE algorithm. Secondly, Spearman
correlation analysis was applied to evaluate the relationship between
risk scores and tumour immune function.

Immunological target prediction
Immunotherapeutic targets play a decisive role in

immunotherapy and immune tolerance. Expression of
M2 macrophage-associated genes and 47 and
immunotherapeutic targets between high and low risk groups
were systematically analysed. The immune round of cancer cells
determines the efficacy of immunotherapy. The immune panel
score (IPS) is an important measure of the immune prototype.
The immune score of a sample was integrated by calculating the
scores for antigen presentation, effector, suppressor and
checkpoint separately.

Drug sensitivity prediction

M2 macrophage-associated models may influence the
effectiveness of chemotherapy in patients. Differences in drug
sensitivity between high- and low-risk groups were explored
based on the “pRRophetic” “ggplot2”. Differences in half-
maximal inhibitory concentrations (half-inhibitory
concentrations) of various chemotherapeutic agents were
evaluated between high- and low-risk groups of patients with
pancreatic cancer using the Wilcoxon signed-rank test.

FIGURE 3
Building a risk model (A) Venn diagram. (B) Log (λ) change curves of regression coefficients. (C) Tenfold cross-validation of adjusted parameter
choices in lasso regression. Vertical lines are plotted from the best data according to theminimumcriterion and 1 standard error criterion. (D, E) Results of
univariate and multivariate COX regression analyses.
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Real-time PCR

20 Total RNA from pancreatic cancer tissue and paired
paracancer tissue samples was treated with an RNA separator
total RNA extraction reagent (Vazyme). The cDNA was
synthesized from total RNA using NovoScript® plus an all-in-
one first strand cDNA synthesis kit (Novo protein). GAPDH was
appllied as an internal control. Primers used for RT-PCR assay
are shown in Additional File 1: Table 1.

Statistical analysis

The Wilcoxon rank sum test was used as a backup to compare
differences between two groups. kruskalWallis test was used to
compare differences between three groups and more. Kaplan-
Meier method and log-rank test were used for prognostic
analysis. All data analysis was done by R (4.1.2, https://www.r-
project.org/) software. Bilateral p < 0.05 was considered statistically
significant.

Results

Patient data

After collating and screening the clinical and expression data
of the patients, 172 samples from the TCGA database, 79 from
the GEO database GSE71729 and 80 from the ICGC database
were included in the study. The median follow-up time for
patients with pancreatic cancer in the TCGA, GEO and ICGC
databases were 15.61 [interquartile range (IQR): 8.98–22.49]
months, 13 (IQR: 6.00–22.00) months, 15.20 (IQR: 8.66–26.46)
months respectively.

Tumour microenvironment analysis

The proportions of 22 immune cells were calculated for each
sample of pancreatic cancer patients in the TCGA and GEO
databases were calculated based on the CIBERSORT algorithm,
respectively (Additional File 1: Supplementary Tables S2, S3). As
shown in Figure 1A, the row names represent each sample and
the different colours of the cylindrical plot represent the
proportion of different immune cells. The heat map
(Figure 1B) demonstrates the difference in immune infiltration
between normal and tumour tissue. The correlation heat map
suggests a potential relationship between the 22 immune cells
(Figure 1C).

WGCNA

A WGCNA co-expression network was built based on gene
expression files (TCGA: 19,819 genes, GEO: 19,014 genes) and
immune cell infiltration results. The optimal soft threshold
power (TCGA: b = 8,GEO: b = 11) when the scale-free
topology index first reached 0.9 was set as the first set of

power values to build the scale-free network (Figures 2A, B).
Genes with similar expression patterns were grouped into the
same gene module to form a hierarchical clustering tree based
on a “dynamic tree cutting” algorithm (module size = 60).
Finally, a weighted hierarchical clustering analysis was
performed to obtain the clustered gene modules (Figures 2C,
D). The highest correlations with M2 macrophages in the TCGA
and GEO databases were green and turquoise respectively. The
intersecting genes of the two modules were finally identified as
the set of M2 macrophage-associated genes for the next
analysis(Figures 2E, F).

Building the model

The 317 genes in the TCGA and GEO databases were finally
recognised as M2 macrophage-associated genes (Figure 3A).
Clinical data and follow-up information of patients were
extracted from the TCGA database and merged with the
expression of the 317 genes. Sixty genes were screened for
association with patient prognosis after univariate COX
regression analysis. The results of the Lasso regression were
used in the multifactorial COX regression analysis (Figures 3B,
C), and the final 9 genes (ABCB4, APOBEC3C, ENPP6,
FGFBP2, LIPE, MT2A, OXER1, PLD4, ZNF589) were
selected for model construction (Additional File 1:
Supplementary Tables S4, S5). Risk scores were calculated for
each sample using the risk score formula and the samples were
divided into low and high risk groups depending on the median
score. Risk score is an independent prognostic element for
patients (Figures 3D, E). Protein expression levels in
pancreatic cancer patients were explored based on the HPA
database. The results suggested that the protein of the target
gene is differentially expressed in normal tissues and pancreatic
cancer tissues. Meanwhile, model genes were differentially
expressed in both tumor tissues and normal tissues
(Additional File 2).

Validation of the model

Survival curves classifying each of the nine genes into high
and low risk groups based on median expression levels indicated
that the expression levels of all nine genes correlated with patient
prognosis (Figure 4). The heat map clearly demonstrated the
difference in expression of the model genes between the high-
and low-risk groups. Scatterplot of risk scores and patient
survival revealed a higher proportion of patients with higher
risk scores. The results were validated in the validation group
(Figure 5).

Correlation of clinical variables

High and low risk groups were correlated with clinical variables.
The correlation between high and low risk groups and age, gender,
pathological grade and tumour stage, respectively, is shown in
Figure 6.
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Predicted prognosis nomogram

The risk score was combined with clinical information to
construct the nomogram predicting the prognosis of patients at
1, 2 and 3 years to enhance the functionality of the risk score in
clinical practice. For example, if the total patient score for the
example in the nomogram is 274, the overall probability of
patient survival at 1, 2 and 3 years is 0.875,0.606 and
0.539 respectively (Figure 7A). Calibration curves showed
stable predictive power of the nomogram (Figure 7B). Time
dependent ROC curves indicated 1, 2 and 3 years AUC values of
0.760, 0.781 and 0.802 for the modelling group and 0.759,
0.673 and 0.767 for the validation group (Figures 7C, E),
indicating that the model has high predictive ability of the
model. Simultaneously, the AUC values for risk scores were
higher than for other clinical variables (Figures 7D, F).

GSEA enrichment analysis

GSEA enrichment analysis was performed to explore the
possible pathways through which M2 macrophage-associated

genes affect the immune microenvironment. The genes were
divided into high and low expression groups according to their
median expression and the differences in signalling pathways
between the two groups were investigated. The KEGG
enrichment project indicated that ABCB4 was involved in
signalling, cytokine receptor interaction, and cellular value-
added signalling pathways, APOBEC3C was linked to
immune rejection, cytokine receptor interaction, and
gastrointestinal immune signalling pathways, ENPP6 mainly
affected cell adhesion, cytokine receptor interaction
signalling pathways, FGFBP2 was related to academic
signalling, drug metabolism, haematopoietic cell pathways,
LIPE affected signaling pathways of calcium signaling,
biosynthesis, leucine isoleucine synthesis, MT2A was
concerned with signaling pathways of chemical signaling,
hematopoietic cell lineage, gastrointestinal immunity,
OXER1 was associated with chemical signaling, steroid
synthesis signaling pathways, PLD4 was engaged in cell
adhesion, chemical signaling, cytokine receptor interaction
signaling pathways, ZNF58 impacted signaling pathways of
chemical signaling, immunodeficiency, and taste perception
(Figure 8).

FIGURE 4
Prognostic analysis of the model gene. (A) APOBEC3C. (B) ABCB4. (C) ENPP6. (D) FGFBP2. (E) LIPE. (F) MT2A. (G) OXER1. (H) PLD4. (I) ZNF589.
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Tumour mutation burden analysis

The tumour mutation burden was first calculated for all
samples. Statistically significant differences in tumour
mutation burden levels between the two groups (Figure 9A).
Correlation analysis between risk score and tumour mutation
burden indicated that a higher risk score implied a higher tumour
mutation burden (Figure 9B). The sample was immediately
divided into a high and low tumour mutation group by
median tumour mutation value. There was a significant
difference in survival between the two groups (p < 0.05).
Figures 9E, F showed that this finding was validated in the
high-risk and low-risk groups.

The relationship between risk models and
the tumour microenvironment

The potential relationship between model genes and the
tumour microenvironment was investigated based on
Spearman correlation analysis (Figure 10A). Figure 10B
indicated that immune scores, stromal score, and ESTIMATE
scores were different between the high-risk and low-risk groups
(p < 0.05). The results of the correlation between risk scores and
tumour microenvironment analysed by the four methods
CIBERSORT-ABS (Figure 10C), CIBERSORT (Figure 10D),
QUANTISEQ (Figure 10E), and XCELL (Figure 10F)
immediately afterwards demonstrated the potential of

FIGURE 5
Prognostic analysis. (A, B) Risk signature survival analysis in TCGA and ICGC databases. (C, E, G) Heat plot, risk score plot and scatter plot based on
TCGA dataset. (D, F, H) Heat plot, risk score plot and scatter plot based on ICGC dataset.

Frontiers in Molecular Biosciences frontiersin.org08

Yang et al. 10.3389/fmolb.2023.1184708

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1184708


FIGURE 6
Correlation analysis of risk models and clinical variables. (A) Heat map showing clinical characteristics and risk scores for each sample. (B) Age. (C)
Gender. (D) Grade. (E) Stage. (*p < 0.05; **p < 0.01; ***p < 0.001).

FIGURE 7
Nomogram and its verification. (A)Nomogramof patients’ prognosis at 1–3 years. (B)Calibration curves. (C, D) ROC analysis based on TCGA dataset.
(E, F) ROC analysis based on ICGC dataset.
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M2 macrophage-related model genes to influence the pancreatic
cancer tumour microenvironment.

GSVA enrichment analysis

GSVA enrichment analysis revealed a negative correlation
between ABCB4, ENPP6, FGFBP2, LIPE, OXER1, PLD4,
ZNF589 and the p53 signaling pathway. ABCB4, APOBEC3C,
ENPP6, FGFBP2, MT2A, PLD4 and the MAPK signaling
pathway were positively correlated. ABCB4, ENPP6, PLD4 and
the calcium signaling pathway were positively correlated.
FGFBP2, PLD4 and calcium signaling pathway were positively
correlated (Figure 11A).

Immunotherapy predictions

The prognostic model for M2 macrophage-associated genes
was negatively correlated with most immune checkpoint
blockage-associated genes (CD40, IDO2, TNFRSF8, CD48,

CD28, PDCD1) and a few immune checkpoint blockage
genes (TNFSF9, TNFSF4, CD44, CD276) were positively
correlated with the risk score model (Figure 11B). Higher IPS
scores in the low-risk group (pd1-negative and ctla4-negative)
indicated that the low-risk group was better treated with the
new immune checkpoint inhibitors (ICI) (Figures 11C–F).
These results demonstrated the potential role of
M2 macrophage-related risk groups in predicting the
outcome of immunotherapy in patients.

Predicting chemotherapy drug efficacy

Analysis of the chemotherapeutic drugs’ semi-inhibitory
concentrations identified that paclitaxel, rafatinib and
lapatinib had a higher drug sensitivity in the low-risk group
than in the high-risk group, while metformin had a higher drug
sensitivity in the high-risk group. The results of the study showed
a correlation between the effect of chemotherapeutic drugs and
the prognostic model of M2 macrophage-associated genes
(Figures 11G, H).

FIGURE 8
GSEA enrichment analysis. (A) ABCB4. (B) APOBEC3C. (C) ENPP6. (D) FGFBP2. (E) LIPE. (F) MT2A. (G) OXER1. (H) PLD4. (I) ZNF589.
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Independent sample validation

The gene expression difference was verified by RT-PCR
detection of 20 samples of pancreatic cancer patients from
Renmin Hospital of Wuhan University. The results showed that
APOBEC3C and LIPE were highly expressed in pancreatic cancer
tissues. However, ABCB4, ENPP6, FGFBP2, MT2A, OXER1,
PLD4 and ZNF589 were low expressed in pancreatic cancer
tissues (Figure 12).

Discussion

Pancreatic cancer is highly aggressive and most patients are
diagnosed at an advanced stage and are deprived of effective
treatment options (Hidalgo et al., 2015; Karamitopoulou, 2019).
The immune system of the body is the last barrier to kill tumour
cells. The low immunogenicity and immune escape characteristics of
pancreatic cancer reduce the therapeutic efficacy of patients with
pancreatic cancer (Liu et al., 2022). Tumour-associated
macrophages account for a substantial proportion of the
pancreatic cancer tumour microenvironment, and the major part
of pancreatic cancer-associated macrophages differentiate into M2-
type tumour-associated macrophages (Velasco et al., 2023). Recent
studies have demonstrated that M2-type macrophages are involved
in immune escape from pancreatic cancer (Campbell et al., 2010;
Evan et al., 2022). Therefore, further study to uncover M2-related

genes in the tumour microenvironment macrophage-associated
genes and the mechanisms of action between the tumour
microenvironment may increase new horizons for immune
tolerance in pancreatic cancer therapy.

In recent years, there have been some advances in the treatment
of solid tumours. For example, immunotherapy has been applied in
the treatment protocols for solid tumours such as breast cancer, lung
cancer and liver cancer (Link et al., 2018; Locati et al., 2020).
However, only a few tumours have achieved favourable clinical
outcomes. There is an urgent clinical need for new treatment options
to stimulate the patient’s immune system to kill tumour cells. The
tumour microenvironment provides a supportive ecological
environment for cancer cell development and metastasis. It has
been found that in solid tumours macrophages occupy a
predominant component of the tumour microenvironment.
However, macrophages have a dual role in cancer (Hinshaw and
Shevde, 2019; Pittet et al., 2022). In different settings macrophages
exhibit different forms of activation. In the classical pathway
macrophages differentiate into M1 macrophages in response to
stimulation by bacterial products and interferons (Cao et al.,
2022). M2 macrophages are produced in the type 2 immune
response by factors such as IL-4 and IL-13 via the alternative
pathway (Biswas and Mantovani, 2010). The M1 type of
macrophage possesses the function of killing tumour cells
(Schlundt et al., 2021). In contrast, M2 is involved in the entire
process of tumourigenesis and metastasis. It has been shown that
m2 macrophages can be recruited by individual tumour initiating

FIGURE 9
Tumour mutation load analysis, (A) Differential counting of tumour mutation burden between high and low risk groups. (B) Correlation analysis of
risk score and mutation burden. (C, D) OncoPrint between high and low risk groups. (E) Prognostic analysis of tumour mutation load, (F) Prognostic
analysis of tumour mutation load in high and low risk groups.
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cells and thus provided a culture ecology for early tumourigenesis
(Gordon and Plüddemann, 2019). Meanwhile, the pro-angiogenic
and remodelling matrix of m2 cells can promote tumour growth and
metastasis (Raghavan et al., 2021). The immune tolerance that
occurs during tumour immunotherapy may be related to the
overexpression of suppressive counter-receptors (e.g., PDL1 and
PDL2) by m2 macrophages that suppress the body’s immune
function (Pushalkar et al., 2018). Therefore, blocking
macrophage-associated immunosuppressive targets may be a way
to suppress adaptive immune responses. Blocking macrophage-
associated immunosuppressive targets may therefore be a
potential therapeutic option to suppress adaptive immune
responses and enhance the efficacy of immunotherapy
(Stakheyeva et al., 2017; Riquelme et al., 2018).

The M2 macrophage-associated genes identified in this study
have been reported in the existing pancreatic cancer tumour
microenvironment (Mazarico et al., 2016; Saito et al., 2022).
Mazarico et al. (2016) discovered that ABCB4 was overexpressed
in pancreatic cancer-resistant patients treated with gemcitabine,
indicating that ABCB4 may enhance immune escape of tumour
cells by affecting macrophage function, leading to resistance to
chemotherapeutic agents. Qian (Qian et al., 2020; Qian et al.,
2022) revealed that overexpression of APOBEC3C induces
genomic instability in pancreatic cancer, increases tumour cell
heterogeneity and participates in the remodelling of the tumour
immune microenvironment by influencing the function of immune
cells. In the tumor microenvironment, ENPP can inhibit the
aggregation of immune cells by reducing cGAMP, resulting in

FIGURE 10
Estimated abundance of tumor-infiltrating cells. Patients in the (A) high-risk group had a stronger correlationwith tumor-infiltrating immune cells, as
shown by the Spearman correlation analysis. (B) Association between prognostic risk signatures and central immune checkpoint genes. The asterisks
represented the statistical p-value. The correlations predicted by the four methods CIBERSORT−ABS (C), CIBERSORT (D), QUANTISEQ (E), and XCELL (F)
were validated. (*p < 0.05; **p < 0.01; ***p < 0.001).
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FIGURE 11
(A) GSVA enrichment analysis. (B) Correlation analysis of immune checkpoint blockade gene expression levels and risk scores. (C–F) IPS score
distribution map. Estimates of chemotherapy effect risk scores. (G) Metformin. (H) Rafatinib. (I) Paclitaxel. (J) Lapatinib.

FIGURE 12
Analysis of expression differences. Verifying the expression of genes that constitute the risk model through RT qPCR.
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enhanced immune escape of tumor cells (Matas-Rico et al., 2021;
Borza et al., 2022). Böker (Böker et al., 2022) showed a large number
of single nucleotide variants in FGFBP2 in pancreatic tumour cells,
and these changes affect the growth and migration of tumour cells.
Masi revealed that OXER1may be involved in the remodelling of the
tumour immune microenvironment through multiple pathways and
could be a potential target for immunotherapy (Masi et al., 2021).
Although LIPE, MT2A, PLD4 and ZNF589 have been studied in
other tumours, their relationship with tumour-associated
macrophages in pancreatic cancer remains to be investigated.
These findings not only provide new insights into the
pathogenesis and immune tolerance mechanisms of pancreatic
cancer in the future, but also may be potential new therapeutic
targets for pancreatic cancer.

Undoubtedly, there are still some limitations in the present
study. Firstly, the difference in mRNA expression was verified in
tumor and normal tissues. However, further validation in cells and
animals should proceed. Secondly, the results of the study needmore
work before they can be applied clinically.

Conclusion

TheM2macrophage-associated prognostic model for pancreatic
cancer performed excellently in patient prognosis, tumour mutation
load analysis, immune checkpoint prediction, and chemotherapy
drug sensitivity prediction. Meanwhile, M2 macrophage-related
genes may be involved in the targeting of immunotherapy in
pancreatic cancer patients.
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