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Objective: This study investigated to probe ferroptosis-related diagnostic
biomarkers and underlying molecular mechanisms in Diabetic nephropathy (DN).

Methods: GSE30122 and GSE1009 from GEO database were used as training and
verification sets, respectively, to screen differentially expressed ferroptosis-related
genes (FRGs). These genes were further analyzed using GO, KEGG, and GSEA
methods, and screened with PPI, LASSO, and SVM-RFE to identify ferroptosis-
related diagnostic biomarkers for DN. A diagnostic model was established using
the Glm function and verified with ROC curve. The relationship between these
biomarkers and immune cell was analyzed, and qRT-PCR and Western blot were
used to detect the expression of these biomarkers in kidney tissues and identify the
effect of TP53 on DN development.

Results: Fifty one differentially expressed FRGs were enriched in bioprocesses
such as p53 signaling pathway, oxidative stress and chemical stress response,
and mTOR signaling pathway. TP53, RB1, NF2, RRM2, PRDX1, and CDC25A were
identified as ferroptosis-related diagnostic biomarkers for DN. TP53 showed the
most differential expression. ROC analysis showed that AUC values of TP53, RB1,
NF2, RRM2, PRDX1, and CDC25A were 0.751, 0.705, 0.725, 0.882, 0.691, and
0.675, respectively. The AUC value of DN diagnosis model was 0.939 in training
set and 1.000 in verification set. qRT-PCR results confirmed significant
differences in these six biomarkers between DN and normal kidney tissue
(p < 0.05), and correlation analysis showed that five biomarkers were
significantly correlated with infiltrating immune cells (p < 0.05). Furthermore,
western blots showed that TP53 promotes apoptosis through PI3K-AKT
signaling in DN.

Conclusion: TP53, RB1, NF2, RRM2, PRDX1, and CDC25A have potential as
diagnostic biomarkers for DN. The diagnostic model containing the above six
biomarkers performs well in the diagnosis of DN. Five of the six biomarkers are
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strongly associated with several infiltrating immune cells. TP53 may play an
essential role in the development of DN.
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1 Introduction

Diabetic nephropathy (DN) is a severe complication
associated with diabetes and the primary contributor to
kidney failure (Sanajou et al., 2018; Sagoo and Gnudi, 2020).
It is characterized by progressive renal impairment,
deterioration of glomerular filtration rate (GFR), elevated
serum creatinine level (SCR), hypertension, and high
mortality (Giralt-López et al., 2020; Zhou et al., 2022).
However, the specificity and reliability of these two
indicators are limited (Ali et al., 2022). In recent years,
researchers have explored various biomarkers and molecular
pathways associated with the development and progression of
DN (Pentyala et al., 2015; Liang et al., 2022). One area of
interest in DN is the investigation of ferroptosis.

Ferroptosis is a form of cell death, has gained significant
attention in recent years due to its involvement in various
pathological conditions, including DN (Huang et al., 2022).
The initiation of ferroptosis involves the accumulation of lipid
peroxides and a decrease in the activity of glutathione
peroxidase 4 (GPX4). Overexpression of ferritin 1 and
transferrin receptor 1(TfR1) results in excessive buildup of
ferrous ions, which results in generation of excessive reactive
oxygen species (ROS) (Kajarabille and Latunde-Dada, 2019).
Another critical aspect of ferroptosis in DN is the disruption of
the cystine/glutamate amino acid transport system. Researches
have showed that the dysfunction of this transport system
impairs the antioxidant role of GPX4, rendering the cell
membrane vulnerable to ROS attack and subsequent lipid
peroxidation (Su et al., 2019; Wang et al., 2020b).
Characteristic ferroptosis changes in animal models of DN,
such as ROS accumulation, decreased antioxidant capacity, and
lipid peroxidation product accumulation (Dixon et al., 2012;
Dixon and Stockwell, 2014; Keller et al., 2016; Wang et al.,
2020a). Moreover, Li et al. (2021) validated that inhibition of
ferroptosis could delay DN progression in diabetic mice. In DN
patients, ferroptosis-related molecules, such as long-chain acyl-
CoA synthetase 4 (ACSL4) and GPX4, exhibit abnormal
changes (Wu et al., 2021). Wang et al. (2020c) also found
abnormal changes in ACSL4 through DN mouse model, and
found that inhibition of ACSL4 could block ferroptosis of renal
tubular cells and alleviate DN symptoms. Therefore, targeting
ferroptosis-related pathways and molecules holds promise for
the development of novel therapeutic strategies to mitigate DN
progression and preserve renal function. Bioinformatics
analysis has emerged as a powerful tool in disease research,
aiding in the identification of potential biomarkers and
therapeutic targets. In recent years, several studies have
utilized bioinformatics approaches to gain insights into
various diseases (Qiu et al., 2021; Wang et al., 2021; Xu and
Chen, 2021). In the context of DN, Geng et al. (2019) used

bioinformatics analysis to identify eight core genes in DN,
among which Itgb2 contributed to DN by promoting the
transcription of EST1. Wu et al. (2022) revealed the
ferroptosis-related gene (FRG) HMOX1 as a potential
diagnostic biomarker of atherosclerosis using bioinformatics
analysis. However, few people have explored the ferroptosis-
related diagnostic biomarkers of DN through bioinformatics
analysis.

This study has focused on the identification of diagnostic
biomarkers associated with ferroptosis and the elucidation of
molecular mechanisms that drive the progression of DN.
These investigations have enhanced our comprehension of
the role played by ferroptosis in DN development, thus
establishing a novel theoretical foundation for the treatment
of DN.

2 Objects and methods

2.1 Data download and pre-processing

The Gene Expression Omnibus (GEO) database (https://
www.ncbi.nlm.nih.gov/geo) served as the primary resource for
obtaining microarray datasets pertaining to diabetic
nephropathy. This comprehensive database offers a vast
collection of freely accessible microarray, RNA-seq, and
other pertinent data, making it an invaluable tool in the
domains of genetics and bioinformatics. By employing the
advanced search functionality, we identified microarray
profiles that included the keywords “diabetic nephropathy”
and “Homo sapiens” within their titles or abstracts. Among
them, the GSE30122 dataset consisted of 50 normal kidney
tissue samples (control group) and 19 DN kidney tissue samples

TABLE 1 All antibodies in this study.

Gene Brand Provenance

PI3K Abcam Rabbit

AKT3 Abcam Rabbit

p-AKT Abcam Rabbit

mTOR Abcam Rabbit

p-mTOR Abcam Rabbit

PARP Abcam Rabbit

c-PARP Abcam Rabbit

Casepase-3 Abcam Rabbit

C-Casepase-3 Abcam Rabbit

GADPH Sigma Mouse
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(DN group), while the GSE1009 dataset consisted of 3 normal
kidney tissue samples (control group) and 3 DN kidney tissue
samples (DN group). Subsequently, we downloaded the
GSE30122 and GSE1009 datasets from the GEO database
utilizing the “GEOquery” package. The GSE30122 dataset
serves as the training set, while the GSE1009 dataset
functions as the validation set. The FRGs were obtained from
FerrDb (http://www.zhounan.org/ferrdb) database.

2.2 Differential expression analysis

We used the “limma” package to perform differential
expression analysis on the batch-corrected CHD datasets. The
threshold for identifying differentially expressed genes (DEGs)
was set at |log2FC| > 1 and p < 0.05.

2.3 GO and KEGG pathway enrichment
analysis

GO and KEGG pathway enrichment analyses were performed
on the differentially expressed FRGs using the clusterProfiler
package. Enrichment analyses with p < 0.05 were considered
statistically significant.

2.4 PPI analysis

To identify the key significant FRGs with differential expression,
we constructed a PPI network based on the STRING database
(http://string-db.org). We used Cytoscape (v 3.9.1) to visualize
the resulting network, and identified hub genes through plugins
in Cytoscape.

2.5 Identification and evaluation of
diagnostic biomarkers for DN

To further refine the list of hub genes, we used LASSO
regression model from the glmnet package (Bălăşescu et al.,
2015). We determined the optimal parameter (λ) using 10-fold
cross-validation and plotted the partial likelihood deviation
curves relative to log(λ). We also used the SVM-RFE method
from the e1071 package to narrow down the hub genes (Pandey
et al., 2019). The intersection of the results from both methods
yielded ferroptosis-related diagnostic biomarkers for DN. We
evaluated the diagnostic performance of these biomarkers using
ROC curves.

2.6 Expression and validation of diagnostic
biomarkers for DN

The ggpubr package was utilized to create visualizations of
the expression levels of six identified biomarkers in the training
set. We collected 10 DN tissue samples and 10 normal kidney
tissue samples from diagnostic kidney biopsies at our hospital.

The study was approved by our hospital’s ethics committee,
and all participants provided informed consent. The
expressions of TP53, RB1, NF2, RRM2, PRDX1, and CDC25A
were quantified using qRT-PCR according to the
manufacturer’s instructions. We used the 2−ΔΔCt method,
with GAPDH as an internal control.

2.7 Analysis of immune cell infiltration

We used CIBERSORT package to obtain an immune cell
infiltration matrix for 22 types of immune cells in control and
DN samples. The violin diagramwas used to visualize the differences
between the two groups.

2.8 Cell culture

Dr. Moin Saleem provided us with an immortalized human
podocyte cell line. These cells were cultured in RPMI-1640 (Thermo
Fisher, Waltham, MA, United States) supplemented with 10% fetal
bovine serum (T Gibco, Rockville, MD, United States) and 100 U/
mL penicillin mixture (Thermo Fisher, Waltham, MA,
United States) at 37°C and 5% CO2.

2.9 Cell transfection

Plasmid directly against TP53-silenced small interfering RNA
(siRNA) and corresponding negative control were purchased from
Guangzhou Ruibo Biotechnology (Guangzhou, Guangdong, China).
Lipofectamine™ 2000 was used to transfect the corresponding
plasmid or siRNA into human podocyte cell line.

2.10 Western blotting

Protein extraction was performed using RIPA buffer (Shanghai Life
Mode Engineering, Shanghai, China) supplemented with PMSF
(Shanghai Life Mode Engineering, Shanghai, China). The primary
antibody (Table 1) was incubated with a PVDF membrane
(0.22 μm, Millipore ISEQ00010, United States) at 4°C overnight,
followed by incubation with a secondary antibody (1:2000, Abcam,
Waltham, MA, United States) conjugated to HRP. Protein bands were
visualized using Prime Western blotting detection reagent (Cytiva,
United Kingdom), and the chemiluminescence was detected using a
ChemiDoc MP imaging system (Tanon 4800, Shanghai, China). The
gray value of the bands was analyzed using ImageJ software.

2.11 Statistical analysis

Data were statistically analyzed by R 4.2.1 or GraphPad Prism
9.0. Unpaired t-test was used for comparison between the two
groups. ROC analysis was applied to evaluate the diagnostic
ability of a single biomarker or model. Correlation analysis was
performed by spearman correlation. p < 0.05 was considered
statistically significant.
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3 Results

3.1 Data normalization and differential
expression genes (DEGs) analysis

The GSE30122 dataset was downloaded from the GEO database,
and its normalization was shown in Figures 1A, B. Preprocessing of
the dataset resulted in the identification of 392 DEGs, with 188 genes
upregulated and 204 genes downregulated (Figure 1C). FRGs were
obtained from the GeneCards database. According to GeneCards
database, 51 FRGs were identified as DEGs (Figure 1D).

3.2 GO and KEGG analysis of differentially
expressed FRGs

The GO enrichment results revealed that these genes were
mainly involved in regulation of apoptotic signaling pathway,
cellular response to oxidative stress, and chemical stress (Figures
2A, B). KEGG analysis showed these genes were mainly associations
with lipids and atherosclerosis, p53 signaling pathway, and mTOR
signaling pathway (Figures 2C, D).

3.3 GSEA analysis of differentially expressed
FRGs

As shown in Figures 3A, B We found that multiple biological
pathways were significantly altered in DN kidney tissues
compared with the control kidneys by GSEA. Using R
package “UpSetR,” we investigated modules related to KEGG
pathways (Figure 3C). “Epidermis development,”
“keratinization,” and “skin development” were Top3 enriched
pathway (Figure 3D).

3.4 PPI analysis of differentially expressed
FRGs

To better clarify interactions between differentially
expressed, we performed PPI network analysis using the
STRING database (Figure 4A). We then applied two plugins
from Cytoscape, MCODE, and CytoHubba, to screen the genes
(Figures 4B, C). After the intersection of the two results,
10 differentially expressed FRGs were identified as hub genes
(Figure 4D).

FIGURE 1
Data preprocessing and DEGs screening. (A) DN datasets before standardization. (B) DN datasets after standardization. (C) Volcano plot analysis of
DEGs. (D) The heatmap of 51 differentially expressed FRGs.
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3.5 Identification and evaluation of DN
diagnostic biomarkers

LASSO regression and SVM-RFE were utilized to screen hub
genes to identify diagnostic biomarkers for DN. Six important
variables were obtained by LASSO regression (Figures 5A, B).
Eight features were obtained using SVM-RFE algorithm
(Figure 5C). After taking the intersection of the results obtained
by these two methods, six overlapping hub genes were obtained
(Figure 5D). The six hub genes were TP53, RB1, NF2, RRM2,
PRDX1, and CDC25A. Figure 5E shows the evaluation results of
the six hub genes, and the AUC values of TP53, RB1, NF2, RRM2,
PRDX1, and CDC25A were 0.751, 0.705, 0.725, 0.882, 0.691, and
0.675, respectively. Finally, we identified these six genes as the
ferroptosis-related diagnostic biomarkers of DN. TP53, RB1, NF2,

RRM2, PRDX1, and CDC25A were established as a diagnostic model
for DN. The diagnostic model was evaluated using ROC curves, with
an AUC value of 0.939 (95% CI: 0.863–0.993) in the training set, and
an AUC of 1.000 (95% CI: 1.000–1.000) in the validation set
(Figures 5F, G).

3.6 Association of DN diagnostic biomarkers
with infiltrating immune cells

The study examined infiltrating immune cells in control and DN
samples and found significant differences in immune cells (Figures
6A, B). Next, we investigated the relationship between immune cell
infiltration and TP53, RB1, NF2, RRM2, PRDX1, and CDC25A in
DN samples (Figure 6C).

FIGURE 2
GO and KEGG enrichment analysis of differentially expressed FRGs. (A) Barplot of GO enrichment analysis. (B) Barplot of KEGG pathway analysis. (C)
Dotplot of GO enrichment analysis; (D) Dotplot of KEGG pathway analysis.

Frontiers in Molecular Biosciences frontiersin.org05

Guo et al. 10.3389/fmolb.2023.1183530

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1183530


3.7 Expression and validation of these six
biomarkers

Box plots were used to visualize the expression levels of
these six biomarkers in the training set. Figures 7A–F illustrates
that TP53, RB1, NF2, RRM2, and PRDX1 expression levels were
significantly increased in the DN group compared to the control
group. Conversely, CDC25A expression level was significantly
decreased in the DN group. To validate the results, we detected
their expression levels in human normal kidney tissues and DN
tissues by qRT-PCR. The results shown in Figure 7G were
consistent with those in the training set.

3.8 TP53 promoted cell apoptosis in DN
through PI3K-AKT signaling pathway

TP53 was the greatest fold change difference gene in diagnostic
markers of DN. Thus, we next explored the effect of TP53 in DN.
Western blot analysis to determine the expression of signal proteins

in the PI3K-AKT signaling pathway, including PI3K, AKT, p-AKT,
mTOR, and p-mTOR. The results indicated that PI3K-AKT signaling
was activated in the si-TP53 group and DN + si-TP53 group
compared to the control and DN groups, respectively
(Figure 8A). Additionally, si-TP53 significantly increased the
expression of c-PARP and c-Case-3 compared to the DN group
(Figure 8B). We further inhibited the PI3K-AKT signaling pathway
using LY294002 and observed significant inhibition of cell apoptosis
in contrast to the DN group. However, si-TP53 reversed the process
of cell apoptosis in the DN-si-TP53 + LY294002 group (Figure 8C).
The intact original pictures of Western blot were shown in
Supplementary Figure S1.

4 Discussion

Multiple studies have found that ferroptosis plays a crucial role
in various diseases (Li et al., 2020; Jiang et al., 2021). Recently,
bioinformatics analysis has been playing a crucial role in disease
studies and facilitates the understanding of cellular and molecular

FIGURE 3
GSEA enrichment analysis of differentially expressed FRGs. (A) Enrichment plot of KEGG entries of differentially expressed FRGs. (B) Enrichment plot
of GO entries. (C) UpSetR plot of the GO annotations in KEGG. (D) Top3 enrichment of GSEA analysis for differentially expressed FRGs.
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mechanisms behind the progression of disease (Deng et al., 2021;
Kazeminasab et al., 2021). The present study performed
bioinformatics to analyze the diabetes data sets from GEO
database to confirm the key diabetes-causing genes and
determine their significance in diabetes prognosis.

We conducted a DEGs analysis of GSE30122, which included
50 control samples and 19 DN samples. Among the 191 DEGs we
identified, 51 were FRGs. The GO enrichment analysis revealed that
these 51 FRGs were mainly enriched in cell apoptosis, cell response
to oxidative and chemical stress, lipids and atherosclerosis.
Persistent metabolic abnormalities caused by diabetes will lead to
cell signal transduction imbalance and cell turnover disorder
through the pro-apoptotic pathway, thereby accelerating the
progression of DN (Ryan et al., 2009; Bălăşescu et al., 2015;
Pandey et al., 2019). Prolonged state of Hyperglycemia is a
condition that lead to oxidative stress, produce too much ROS,
severely damage the body function of antioxidant, lead to imbalance
between oxidation and antioxidant systems, and ultimately results in
kidney impairment (Negi et al., 2011; Ganesh Yerra et al., 2013; Areti
et al., 2016). As is well known, p53 signaling pathway is apoptotic

signaling pathway, p53 positively regulates Bax (pro-apoptotic
protein) and negatively regulates the transcription of Bcl-2 (anti-
apoptotic protein) (Zhu et al., 2020). Ren et al. (2017) found that p53
pathway regulated cell apoptosis and played a vital role in Type
2 Diabetes Mellitus (T2DM). In the kidney of DN patients, the
mTOR signaling pathway was inhibited and subsequently
suppressed the autophagy, caused mesangial expansion and
proliferation, eventually led to glomerular hypertrophy and
kidney damage (Lu et al., 2019).

PPI network was conducted on 51 FRGs and screened 10 hub genes.
Next, we identified six diagnostic biomarkers for DN by lasso regression
and support vector machine analysis, including P53, RB1, NF2, RRM2,
PRDX1, andCDC25A. In order to validate the accuracy of the diagnostic
models, we applied GSE1009 and used ROC curve analysis. The AUC
value of the diagnostic model in the training set was 0.939 in the
GSE30122, and the AUC of 1.000 in the GSE1009, indicating a
promising predictive performance of the DN diagnostic model.

TP53 is a tumor suppressor gene and participates in a variety of
biological processes. Prior research has indicated that activating the
TP53 pathway can heighten vulnerability to apoptosis, particularly

FIGURE 4
PPI network establishment and hub gene identification. (A) PPI network. (B) Hub genes obtained by MCODE plug-in analysis. (C) Top 20 genes
obtained by MCC algorithm. (D) Venn diagram of MCODE and CytoHubba results.
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in the context of Type 1 Diabetes Mellitus (T1DM) (Bernard et al.,
2020; Lacroix et al., 2020; Punja et al., 2021). Our qPCR results
showed a significant increase in TP53 expression levels in DN
tissues. RB1 has also been implicated in inflammatory diseases
(Dyson, 2016; Muñoz-Fontela et al., 2016), and our study showed
that its expression was upregulated in DN tissues. Furthermore, our
study found that peroxiredoxin 1 (PRDX1) was significantly
overexpressed in DN samples, which is consistent with previous
studies reporting higher plasma PRDX1 levels in T2DM patients

(Tang et al., 2015). We also identified NF2 and RRM2 as highly
expressed genes in DN samples, while CDC25A was found to be
lowly expressed. Our results showed that both RRM2 and CDC25A
were associated with T cells, although no previous studies have
implicated NF2, RRM2, and CDC25A in the process of DN.

Among all DEGs, TP53 is the gene with the greatest expression
differences. Thus, we next explored its potential regulatory pathway in
DN. The PI3K/AKT signaling pathway is one of the critical pathways
involved in regulating cell growth and apoptosis. Phosphatidylinositol

FIGURE 5
Identification and evaluation of biomarkers for DN. (A) LASSO regression of 10 hub genes. (B) Cross validation of parameter selection in LASSO
regression. (C) The important feature selection graph obtained by SVM-RFE algorithm. (D) Venn diagram of LASSO regression and SVM-RFE results. (E)
ROC curves of 6 diagnostic biomarkers for DN. (F) The ROC curve for this diagnostic model in the training set. (G) The ROC curve for this model in the
validation set.
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FIGURE 6
Evaluation of immune cell infiltration. (A) Differences in immune cell infiltration between the two groups. (B) Waterfall plot for the percentage of
immune cell. (C) Relationship between six biomarkers and immune cell infiltration in the sameDN samples. *p < 0.05, **p < 0.01, ***p < 0.001, compared
with Control group.
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3-kinase (PI3K) is the important cytokine of this pathway, which has
phosphatidylinositol kinase. With the dual activity of serine/threonine
protein kinase, PI3K will be converted into the second messenger PIP3

after activation, and PIP3 will then activate AKT to p-AKT. p-AKT can
block the combination of Bad and Bcl-2, and inhibits the occurrence
and development of apoptosis (LoPiccolo et al., 2008;Wang et al., 2015).

FIGURE 7
Expression and validation of these six diagnostic markers. (A–F) expression of these 6 biomarkers in the training set. (G) Expression of these
6 biomarkers obtained by qRT-PCR. *p < 0.05, **p < 0.01, ***p < 0.001, compared with Control group.

Frontiers in Molecular Biosciences frontiersin.org10

Guo et al. 10.3389/fmolb.2023.1183530

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1183530


Western blot analysis of the DN+ si-TP53 group showed that the PI3K-
AKT signaling pathway was activated and that hallmark apoptosis
markers, PARP and caspase-3, were also activated compared to the DN
group. LY294002 is a commonly used PI3K/AKT pathway inhibitor
(Nie et al., 2019). Our results demonstrated that treatment with
LY294002 could significantly rescued si-TP53-mediated cell apoptosis.

In summary, our analysis of DN data from the GEO database
using bioinformatic tools led to the identification of potential
molecular targets related to ferroptosis in DN. Furthermore, we
developed a 6-gene model related to ferroptosis, which
demonstrated excellent predictive performance for DN. Finally,
qPCR and western blot analyses confirmed that TP53 promotes
cell apoptosis through the PI3K-Akt pathway, ultimately leading
to DN.
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FIGURE 8
TP53 promoted DN through PI3K-AKT signaling pathway. (A) Western blot analysis of signal proteins in the PI3K-AKT signaling pathway. (B,C)
Western blot analysis of cell apoptosis-related genes. *p < 0.05, **p < 0.01, compared with the Control group; #p < 0.05, ##p < 0.01, compared with the si-
TP53 group; ++p < 0.01, compared with the DN group; ^p < 0.05, ^̂p < 0.01, compared with the DN + si-TP53 group.
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