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Editorial on the Research Topic
A focus on chaperone clients

Protein misfolding and aggregation are detrimental to cells owing to i) the absence (or
decrease in number) of functional protein molecules that may have essential roles; ii) the
energetic costs involved in the synthesis and degradation of non-functional proteins; and iii)
the toxic effects of misfolded proteins or their aggregates (Stefani and Dobson, 2003).
Consequently, the sequences of many proteins have evolved so that their energy landscapes
are funneled in accordance with the principle of minimal frustration, thereby enabling them
to fold rapidly to their native biologically functional conformations (Onuchic et al., 1997).
Nevertheless, aggregation can still occur because of i) functional constraints on protein
sequences and topologies that result in frustration and ii) conditions in the cell, such as
crowding, which can favor aggregation. Various machineries for preventing or reversing
protein aggregation and removal of aggregates have, therefore, evolved that include different
types of molecular chaperones, disaggregases and proteases. The focus of this Research Topic
is on the molecular and evolutionary mechanisms that govern the interactions of substrate
(client) proteins with such machineries.

Many chaperone families have multiple clients but still display either broad or narrow
specificity in their interactions with clients. A key question that arises, therefore, concerns the
features that distinguish clients from non-clients. DapA and YagE, for example, are two
Escherichia coli proteins with high sequence similarity and almost identical structures but the
former is a GroE chaperonin client whereas the latter is not (Kerner et al., 2005). Likewise,
protein homologs often differ in their interaction with GroE. For example, E.coli and mouse
dihydrofolate reductases are weak and strong interactors with GroE, respectively (Clark and
Frieden, 1997). The GroE system comprises GroEL and its co-factor GroES and assists
protein folding in an ATP-dependent manner (Weiss et al., 2016; Balchin et al., 2020;
Horovitz et al., 2022). The structural and biological basis of client specificity in this system
are discussed in this Research Topic by Taguchi and Koike-Takeshita and Stan et al.

Molecular chaperones also impact client evolution in a variety of ways. It was suggested,
for example, that chaperones such as hsp90 (Queitsch et al., 2002) and GroEL (Tokuriki and
Tawfik, 2009) can buffer deleterious mutations, thereby promoting genetic variation and
evolution. Molecular chaperones can also impact horizontal gene transfer and virus (or
phage)-host interactions. Some phage proteins, for example, rely on host chaperonins for
their folding (Hildenbrand and Bernal, 2012). Other infectious organisms, however, contain
their own chaperonin systems. In this Research Topic, Wilkinson et al. describe the
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identification and analysis of the interactome of the eukaryotic
chaperonin containing TCP-1 (CCT/TRiC) from the human
malarial parasite, P. falciparum.

Another major and ubiquitous chaperone family is hsp70,
members of which function in cooperation with co-chaperones of
the J-domain protein (JDP) family (also referred to as DnaJ, hsp40)
and nucleotide exchange factors (Mayer and Gierasch, 2019;
Rosenzweig et al., 2019; Balchin et al., 2020). Both prokaryotic
and eukaryotic genomes contain multiple variants of hsp70 and
J-domain proteins. Humans, for example, contain
13 hsp70 homologues, which are expressed in distinct cellular
compartments. One important question concerns identifying the
different client specificities of the various hsp70 and J-domain
proteins. An example for a very specific J-domain protein is
hsc20, which is involved in FeS cluster biogenesis in both
prokaryotes and eukaryotes. Its only known client is the Isu/IscU
scaffold on which the FeS clusters are built before being transferred
to other proteins. Hsc20 can function with either a specialized or
multi-functional hsp70. This Research Topic contains a review by
Marszalek and Craig of this specialized hsp70 system.

Proteolytic machineries provide a back-up solution for
eliminating protein aggregates when their formation was not
prevented or reversed with the aid of chaperones (Sauer and
Baker, 2011). One such machinery found in prokaryotes is
ClpXP, which consists of an ATP-dependent protein unfoldase
and translocase (ClpX) and a protease (ClpP). ClpP consists of
two heptameric rings that form a proteolytic chamber. Given that
aggregates impair fitness, inhibiting ClpXP provides a potential

strategy for fighting bacterial infections as discussed in this
Research Topic by Aljghami et al.

In summary, this Research Topic highlights that to understand
the functions of molecular chaperones it is not enough to determine
their structures and reaction cycles. It is also essential to know how
clients are selected and recognized and establish the mechanisms by
which clients and chaperones co-evolve.
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