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Proliferative forms of glomerulonephritis are characterized by the influx of
leukocytes, albuminuria, and loss of kidney function. The glomerular
endothelial glycocalyx is a thick carbohydrate layer that covers the
endothelium and is comprised of heparan sulfate (HS), which plays a pivotal
role in glomerular inflammation by facilitating endothelial-leukocyte trafficking.
We hypothesize that the exogenous glomerular glycocalyx may reduce the
glomerular influx of inflammatory cells during glomerulonephritis. Indeed,
administration of mouse glomerular endothelial cell (mGEnC)-derived
glycocalyx constituents, or the low-molecular-weight heparin enoxaparin,
reduced proteinuria in mice with experimental glomerulonephritis. Glomerular
influx of granulocytes and macrophages, as well as glomerular fibrin deposition,
was reduced by the administration of mGEnC-derived glycocalyx constituents,
thereby explaining the improved clinical outcome. HSglx also inhibited granulocyte
adhesion to human glomerular endothelial cells in vitro. Notably, a specific HSglx
fraction inhibited both CD11b and L-selectin binding to activated mGEnCs. Mass
spectrometry analysis of this specific fraction revealed six HS oligosaccharides,
ranging from tetra- to hexasaccharides with 2–7 sulfates. In summary, we
demonstrate that exogenous HSglx reduces albuminuria during
glomerulonephritis, which is possibly mediated via multiple mechanisms. Our
results justify the further development of structurally defined HS-based
therapeutics for patients with (acute) inflammatory glomerular diseases, which
may be applicable to non-renal inflammatory diseases as well.
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1 Introduction

Glomerulonephritis and other inflammatory glomerular
diseases are characterized by renal injury and loss of kidney
function. Glomerular inflammation involves the interaction of
cytokines, chemokines, complement proteins, leukocytes, and the
glomerular endothelial glycocalyx (Butcher, 1991; Elhadj et al., 2002;
Rops et al., 2004a; Parish, 2006; Taylor and Gallo, 2006; Rops et al.,
2008). The endothelial glycocalyx is a thick carbohydrate layer rich
in glycosaminoglycans (GAGs), including chondroitin sulfate (CS)
and heparan sulfate (HS) (Esko and Selleck, 2002; Reitsma et al.,
2007; Gao and Lipowsky, 2010). In particular, HS mediates several
inflammatory processes. HS is synthesized as a proteoglycan side
chain and consists of repeating β1-4- and α1-4-linked
N-acetylglucosamine (GlcNAc) and glucuronic acid (GlcA)
disaccharides. During its synthesis, the backbone of HS is
extensively modified by various sulfotransferases and an
epimerase, which leads to C-5 epimerization and N-, 2-O, 3-O,
and 6-O sulfation, thereby creating structural heterogeneity within
the glycan and a distinct domain structure (Esko and Selleck, 2002;
Morimoto-Tomita et al., 2002; Xia et al., 2002). The expression of
HS-modifying enzymes in response to certain (proinflammatory)
stimuli is differentially regulated in different tissues and cell types
(Bennett et al., 1995; Marr et al., 1997;Wong et al., 2000; Iozzo, 2001;
Saphire et al., 2001; Rops et al., 2004a; Iozzo, 2005), resulting in
tissue- and cell-dependent expression of specific HS domains
(Jenniskens et al., 2000; Dennissen et al., 2002). Due to its
immense structural diversity, HS is the key GAG involved in
multiple inflammatory processes through binding of cytokines,
chemokines, and leukocyte adhesion molecules, such as L-selectin
and CD11b/macrophage-1 antigen 4 (Diamond et al., 1995; Wang
et al., 2005). Various studies have described the importance of HS for
the interaction of leukocytes with endothelium (Diamond et al.,
1995; Wang et al., 2002; Celie et al., 2005; Parish, 2005; Wang et al.,
2005; Rops et al., 2008; Rops et al., 2014). Leukocyte trafficking is
characterized by several stages: tethering, rolling, firm adhesion, and
extravasation of the leukocyte through the endothelium into the
tissue (Butcher, 1991; Schlondorff et al., 1997), with HS playing a
prominent role in each of these steps (Handel et al., 2005; Parish,
2006). By using different in vitro and in vivo approaches, we
previously showed that specific HS domains in the glomerular
endothelial glycocalyx are involved in binding of leukocytes and
chemokines (Rops et al., 2004b; Rops et al., 2007a; Rops et al., 2008;
Rops et al., 2014; van Gemst et al., 2018). Both healthy and activated
cultured glomerular endothelial cells (mGEnCs), as well as in vivo on
glomerular endothelium in experimental and human glomerular
diseases, express these specific HS domains involved in glomerular
inflammation, with increased expression prominent during
inflammation (Rops et al., 2008; van Gemst et al., 2018).
Therefore, we hypothesized that isolated glycocalyx and HS
isolated from the glycocalyx of glomerular endothelial cells have
the potential to inhibit glomerular leukocyte influx and/or adhesion
to glomerular endothelium, thus dampening the inflammatory
response and improving disease outcome. Our collective results
reveal that specific glomerular endothelial glycocalyx-derived HS
fractions affect the interaction between inflammatory cells and the
glomerular endothelium, thereby leading to a better outcome in
experimental glomerulonephritis.

2 Materials and methods

2.1 Cell culture

Conditionally immortalized mouse glomerular endothelial cells
(mGEnCs) with all features of primary mouse glomerular
endothelial cells were cultured as previously described (Rops
et al., 2004b). Briefly, for experiments, cells were cultured in
differentiation media (DMEM:HAM-F12 3:1, Invitrogen Life
Technologies) supplemented with 5% FBS (Biochrom SO113/
115 batch 0667B) and 1% penicillin/streptomycin (Gibco) at
37°C/5% CO2 for 7°days prior to treatment. Murine leukocyte
32Dcl3 cells were cultured in Roswell Park Memorial Institute
(RPMI) 1640 medium (Dutch modification, Gibco) containing
10% FBS (Bodinco), 1% penicillin/streptomycin, 1% glutamate
(Gibco), 1% pyruvate (Gibco), and 1 ng/mL IL-3 (PeproTech).
The culture was maintained in 5% CO2 at 37°C with
concentration readjustment to 5×105 cells/mL. Human renal
glomerular endothelial cells (HRGECs, ScienCell) were cultured
in fibronectin (PromoCell) pre-coated tissue culture plasticware
(COSTAR) between passages 2–5 with endothelial cell medium
(ScienCell, #1001) supplemented with 5% FBS (ScienCell, #0025),
1% endothelial cell growth supplement (ScienCell, #1052), and 1%
penicillin/streptomycin (ScienCell, #0503) in 5% CO2 at 37°C. Cells
were passaged using 0.05% trypsin/0.5 mM EDTA solution
(ScienCell, #0183) and trypsin neutralization solution (ScienCell,
#0113). Cells were seeded onto new fibronectin pre-coated tissue
culture plasticware at a density of 5,000 cells/cm2, and the medium
was replaced every 48 h until 95% confluency. Where indicated,
glomerular endothelial cells were treated with 10 ng/mL mouse
recombinant TNFα (PeproTech) or 1 μg/mL LPS O111:B4 from
E. coli (Sigma) for 18 h.

2.2 Extraction, isolation, and fractionation of
glycocalyx constituents

Glycocalyx was extracted from unstimulated cell layers by
overnight digestion with 125 μg/mL proteinase K (Merck
Chemicals B.V., Amsterdam, Netherlands) in 50 mM Tris-HCl
(pH: 7.9), 10 mM NaCl, 3 mM MgCl2, and 1% triton X-100
buffer, followed by overnight DNAse-I (QIAGEN) and RNAse
(GE Healthcare) treatment at 37°C. NaCl was added to digested
extracts (final concentration of 2 M), followed by chloroform (1:1),
vortexing, and centrifugation for 20 min at ×4,636 g to separate the
phases. The upper layer (aqueous phase) was dialyzed against 5 × 5 L
baths of Milli-Q H2O using SnakeSkin dialysis membranes (MWCO
3500 Da, Thermo Scientific) and dried using a Savant SC210A
SpeedVac concentrator (Thermo Scientific). To isolate the
individual GAG constituents, mGEnC glycocalyx was separated
on 1% agarose gel in barium acetate (van de Lest et al., 1994;
van Gemst et al., 2016), followed by excision and phenol extraction
of the separated HS and CS. Individual fractions were ethanol-
extracted several times to remove phenolic contamination. Isolated
GAGs were analyzed by barium acetate agarose gel electrophoresis
for determination of GAG concentration and purity, as described
previously (van de Lest et al., 1994; van Gemst et al., 2016). Size
fractionation of purified mGEnC HSglx was performed in 0.25 M
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ammonium bicarbonate at 0.22 mL/min using a BioGel P10 resin
column (75 × 16 mm, 90–180 µm beads, Bio-Rad). Then, 1 mL
fractions were collected and pooled into corresponding peaks
(Supplementary Figure S7). Pooled fractions were dialyzed against
Milli-Q water and dried. To further reduce the size, F1 was digested
with heparinase III (1 IU/mL, Iduron) in 0.1 M sodium acetate and
0.1 mM calcium acetate pH 7.0 buffer at 37°C for 18 h, heated to 95°C
for 10 min to inactivate the enzyme, and then buffer-exchanged with
Milli-Q water and dried. Isolation of unstimulated HRGEC HSglx
from extracted glycocalyx was performed as described previously
(Guimond et al., 2009; Maciej-Hulme et al., 2023). In brief, dialyzed
and concentrated HRGEC glycocalyx extracts were digested with
125 mU of chondroitinase ABC (Sigma) in 25 mM Tris and 2 mM
Mg(Ac)2 pH 8 for 18 h before fractionation by anion exchange
chromatography using DEAE-Sepharose CL-6B beads (Sigma)
equilibrated in PBS. Bound HSglx was washed with 0.25M NaCl in
PBS, pH 7.4 and then eluted with 2 M NaCl in PBS, pH 7.4. Isolated
HSglx was desalted via PD10 desalting columns (GE Healthcare,
Sephadex G25) using Milli-Q H2O. Resultant HSglx was dried
before resuspension in sterile Milli-Q H2O (1 μL/cm2 of original
cell culture).

2.3 Animals

Male wild-type (WT) C57BL/6-J JAX mice from Charles River
(Leiden, Netherlands) were housed and handled according to the
guidelines of the local ethics committee. Animal experiments were
approved by the Animal Ethical Committee of the Radboud UMC
Medical Center.

2.4 Induction of anti-GBM nephritis in mice,
with/without administration of glycocalyx
constituents or enoxaparin, and
determination of kidney function

WT C57BL/6-J mice were injected i.v. in the tail vein with 8 mg
rabbit anti-mouse GBM(36), alone or in combination with 50 µg of
mGEnC glycocalyx, 50 µ g HSglx or CSglx fraction isolated from the
mGEnC glycocalyx, and 50 µg enoxaparin or with sterile PBS. Mice
were sacrificed after 2 h, 1, or 4 days, and each group comprised
4–5 mice. Urine was collected directly through bladder puncture or
after 18 h metabolic cages. Harvested kidneys were fixed in 10%
buffered formalin or snap-frozen in liquid nitrogen. Albumin
concentration was measured by radial immunodiffusion
(Mancini). Urinary creatinine and blood urea nitrogen (BUN)
concentrations were determined enzymatically (Roche) in the
Radboud UMC diagnostics facility.

2.5 Immunofluorescence staining

Frozen sections (2 µm) were fixed in ice-cold acetone for 10 min
and stained essentially as described previously (Rops et al., 2007b).
Directly labeled antibodies included goat anti-mouse C3c and
fibrinogen-fluorescein isothiocyanate (FITC) (Nordic, Tilburg,
Netherlands), goat anti-rabbit IgG Alexa-488 (Life Technologies,

Breda, Netherlands), rat anti-mouse GR-1 (RB6.8C5)-FITC (BD
Biosciences, Alphen aan de Rijn, Netherlands), and goat anti-
Armenian hamster-Cy3 (Jackson ImmunoResearch Laboratories,
West Grove, PA). Unlabeled primary antibodies included rat
anti-mouse-CD68 (MCA 1957; Serotec, Oxford,
United Kingdom) and hamster anti-agrin (MI91) (Raats et al.,
1998). Sections were fixed with 1% paraformaldehyde–PBS and
embedded in VectaShield mounting medium H-1000
(Brunschwig Chemie, Amsterdam, Netherlands). Goat anti-rabbit
IgG, goat anti-mouse C3c, fibrinogen, and anti-HS scFv staining
intensities were evaluated semi-qualitatively from 0 (no staining) to
10 (100% staining intensity inside the glomeruli) and averaged over
50 glomeruli. All quantitative observations were made by two
independent observers on blinded sections. Glomerular influx of
granulocytes was determined by counting the number of cells per
50 glomeruli.

2.6 Renal histology

Histological assessment of the kidneys was performed on 4-µm-
thick paraffin sections that were stained using periodic acid–Schiff
(PAS) reagent. Slide digitization was performed using a
PANNORAMIC 1000 digital slide scanner (3DHistech, Budapest,
Hungary) with a ×20 objective. The whole slide images (WSIs) were
analyzed using CaseViewer 2.4 software (3DHistech, Budapest,
Hungary). The histology of all glomeruli in a single kidney cross
section (minimal 63 glomeruli) was evaluated in a blinded manner.
The percentage of affected glomeruli, showing thrombosis and/or
hyalinosis within the glomerular capillaries, was scored, and hereby,
the percentage of the affected glomerular tuft area was measured.

2.7 Leukocyte binding assay

Confluent mGEnC/HRGECs in 96-well plates were stimulated
as described previously. Primary human neutrophils were isolated
from EDTA-whole blood by Ficoll density gradient centrifugation as
described previously (Pieterse et al., 2016). Then, 6 x 105 cells/mL
(32Dcl3, primary neutrophils) were labeled with calcein-AM (25 μg/
mL, Invitrogen) in PBS for 30 min at 37°C, washed in PBS, and
resuspended in serum-free medium, as previously described (Rops
et al., 2008). A total of 30,000–60,000 labeled cells were added to
each well and incubated at 37°C for 30 min. Where indicated, cells
were pre-incubated with 15–25 µg purified mGEnC HSglx or 1 cm

2

purified HRGEC HSglx (3.125:1 ratio with the cultured cell layer) for
5 min. After binding, plates were filled with PBS and centrifuged
twice upside down at ×300 g for 5 min. Cells were lysed with 100 µL
of 50 mM Tris pH 8.3/0.1% SDS and transferred to a flat black-
walled, clear-bottomed 96-well plate (Invitrogen), and fluorescence
was measured (λex 495 nm, λem 515 nm).

2.8 Recombinant protein binding in
competition ELISAs

For protein binding to cells, confluent mGEnCs in 96-well plates
were stimulated as described previously. Cells were washed with PBS
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and incubated for 1 h at 37°C and 5% CO2 with recombinant mouse
(rm) protein: rmL-selectin (2 μg/mL, R&D Systems) and rmCD11b
(10 μg/mL, R&D Systems), alone or protein pre-incubated with
15 µg mGEnC HSglx, or equivalent fractionated material F1
(16.7%, ~2.5 µg) or F2 (28%, ~4.25 µg) (Supplementary Figure
S7) for 5 min. Cells were washed twice with PBS before protein
binding was probed with antibodies: anti-mouse L-selectin-biotin
(1:1,000, R&D Systems) and anti-mouse CD11b-biotin (1:4,000,
eBioscience), on ice for 30 min, followed by streptavidin-HRP
(1 μg/mL, Thermo Scientific) for further 30 min on ice. Plates
were washed twice with PBS between each step. Cells were
incubated with 100 µL of ×1 TMB substrate solution
(Invitrogen), and the reaction was terminated with 100 µL of 1 N
H2SO4. Plates were analyzed for absorbance at 450 nm using an
ELISA reader (Bio-Rad Benchmark Plus). For cell-free direct protein
binding, recombinant human (rh) protein: L-selectin/CD62L Fc
Chimera (4 μg/mL, R&D Systems) and integrin alpha M beta
2 protein (CD11b) (3 μg/mL, R&D Systems) were immobilized
overnight at room temperature onto Protein G (Thermo
Scientific) and MaxiSorp NUNC-Immuno (Thermo Scientific),
respectively. Plates were blocked with 2% BSA/10 μg/mL mouse
IgG protein (Sigma) and 2% BSA, respectively, for 1 h at room
temperature before incubation with 1 cm2 purified HRGEC HSglx.
Plates were washed twice with PBS and probed for HS binding with
antibodies diluted in 1% BSA: anti-HS ScFv HS4C3 (1:100) (van
Kuppevelt et al., 1998), followed by anti-VSV-peroxidase (1:2,000,
Sigma). Plates were analyzed using TMB and 1 N H2SO4, as
described previously.

2.9 Capillary electrophoresis-mass
spectrometry

Capillary electrophoresis-mass spectrometry and HS
oligosaccharide structural prediction were performed as
previously described (Sanderson et al., 2018).

2.10 Statistical analysis

Values are expressed as means ± S.E.M., and significance
between two groups was evaluated by Student’s t-tests.
Significance between more than two groups was evaluated by
one-way ANOVA with Dunnett’s post hoc test using GraphPad
Prism, version 8 software (GraphPad Software, Inc., San Diego, CA).

3 Results

3.1 Isolated glomerular endothelial
glycocalyx or enoxaparin does not affect the
induction of anti-GBM-induced
glomerulonephritis in mice

Since we hypothesized that exogenous application of mGEnC-
derived glycocalyx could have beneficial effects on the outcome of
experimental glomerulonephritis, we first isolated total glycocalyx
from cultured unstimulated mGEnC glycocalyx and subsequently

separated HS and CS (termed HSglx and CSglx, respectively). All
glycocalyx preparations, and the low-molecular-weight heparin,
enoxaparin, as a proxy control, were tested for their efficacy in
the anti-mouse GBM rabbit Ig-induced experimental
glomerulonephritis model, which is primarily driven by the rapid
(peaking at 2 h) glomerular influx of granulocytes (Assmann et al.,
1985; Schrijver et al., 1990).

First, we evaluated whether the administration of mGEnC-
derived total glycocalyx, HSglx, CSglx, or enoxaparin could affect
the induction of the rabbit anti-mouse GBM glomerulonephritis
model. Rabbit anti-mouse GBM IgG binding was comparable in all
groups at every time point assessed (2 h, 1, and 4 days) for rabbit
anti-mouse GBM IgG-injected mice (Supplementary Figure S1A).
Similarly, complement activation was not affected by the
administration of mGEnC-derived total glycocalyx, HSglx, CSglx,
or enoxaparin (Supplementary Figure S1B). Thus, the induction of
anti-GBM glomerulonephritis was not affected by any of the GAG
preparations administered.

3.2 Administration of mGEnC-derived
glycocalyx reduces glomerular fibrin
deposition and albuminuria in experimental
anti-GBM glomerulonephritis

Next, we measured albuminuria, blood urea nitrogen (BUN), as a
measure for renal function, and glomerular fibrin deposition to assess
whether administration of mGEnC glycocalyx, HSglx, CSglx, or
enoxaparin influenced the outcome of the anti-GBM
glomerulonephritis model. Albuminuria was significantly lower (~3-
fold) in mice treated with mGEnC total glycocalyx, HSglx, CSglx, or
enoxaparin than control mice after 4 days of anti-GBM
glomerulonephritis (Figure 1A). As expected, induction of anti-mouse
GBM glomerulonephritis had not yet increased BUN values at indicated
time points, since this only increases at day 8 (Rops et al., 2007b).
Nevertheless, there seems to be a trend that GAG administration lowers
BUN (Figure 1B). Furthermore, glomerular fibrin deposition was lower
in mice treated with mGEnC total glycocalyx (p = 0.07) or HSglx (p <
0.05), whereas CSglx or enoxaparin had no effect (Figure 1C;
Supplementary Figure S2). Notably, none of the administered GAG
preparations influenced the kidney damage in our models, as measured
by the percentage of affected glomeruli characterized mainly by
thrombosis and hyalinosis within the glomerular capillaries
(Supplementary Figure S3). Notably, we did not observe the
formation of glomerular crescents or glomerulosclerosis, which is
consistent with our model (Rops et al., 2007b). Hence, administration
of mGEnC-derived total glycocalyx or mGEnC HSglx is beneficial for
renal outcome in anti-GBM-induced glomerulonephritis.

3.3 mGEnC-derived total glycocalyx and
mGEnC HSglx reduce glomerular
granulocyte and macrophage influx in
experimental anti-GBM glomerulonephritis

Our experimental anti-GBM-induced glomerulonephritis
model is granulocyte-driven (Assmann et al., 1985; Schrijver
et al., 1990) and characterized by the heterologous phase during
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which glomerular granulocyte influx peaks 2 h as a response to
rabbit anti-mouse GBM IgG injection (Schrijver et al., 1990). The
heterologous phase is followed by an autologous phase, starting
approximately 4 days after induction of the model, during which
self-antibodies against the injected rabbit IgG start to contribute to
the disease progression. However, the level of initial glomerular
PMN influx remains the key determinant for the severity of the
disease with regard to renal outcome. Administration of mGEnC
total glycocalyx or HSglx, respectively, reduced, or tended to reduce,
glomerular granulocyte influx by approximately 52% ± 19% and
24% ± 6%, 2 h after anti-GBM IgG administration (Figure 2A;
Supplementary Figure S4), while CSglx (9% ± 13%) and
enoxaparin CSglx (8% ± 16%) did not affect glomerular
granulocyte influx at 2 h (Figure 2A). After 1 day, glomerular
granulocyte influx decreased more than 10-fold in all groups
compared to the levels at 2 h, and there were no significant
differences between the groups (Figure 2B; Supplementary Figure
S4). In addition, we also evaluated glomerular macrophage influx
after 2 h and 1 day (Figures 2C, D; Supplementary Figure S5).

Similar to granulocytes, administration of mGEnC glycocalyx or
mGEnC HSglx reduced the glomerular influx of macrophages after
2 h by 62% ± 5% and 51% ± 4%, respectively, but CSglx (47% ± 7%)
and enoxaparin (36% ± 5%) also reduced macrophage presence,
although this effect was not significant for enoxaparin (Figure 2C;
Supplementary Figure S5). After 1 day, all treatments resulted in a
lower glomerular presence of macrophages than the untreated anti-
GBM glomerulonephritis group (Figure 2D), although this effect
was not significant for mGEnC glycocalyx-treated mice. Therefore,
administration of mGEnC-derived total glycocalyx or mGEnCHSglx
reduced glomerular influx of granulocytes and macrophages in anti-
GBM-induced glomerulonephritis.

3.4 HSglx reduces granulocyte binding to
activated glomerular endothelial cells

In light of the inhibitory effect of HSglx on glomerular influx of
inflammatory cells in the anti-GBM glomerulonephritis model, we

FIGURE 1
mGEnC-derived glycocalyx components and enoxaparin reduce albuminuria and glomerular fibrin deposition in anti-GBM-induced
glomerulonephritis. (A) Albuminuria after 4 days of anti-GBM-induced glomerulonephritis in untreated mice and mice treated with 50 µg mGEnC
glycocalyx, mGEnC HSglx, mGEnC CSglx, or enoxaparin. (B) Blood urea nitrogen (BUN) concentration after 4 days of anti-GBM nephritis. (C) Glomerular
fibrin deposition, analyzed by immunofluorescence staining, after 4 days of anti-GBM nephritis. Fibrin deposition was scored semi-quantitatively
between 0 and 10 based on the percentage of the glomerulus positive for fibrin. Per mouse, at least 25 glomeruli scored by two individual observers on
blinded sections. Results are expressed as means ± S.E.M. from 3–5 mice per group in arbitrary units (a.u.). One-way ANOVA with Dunnett’s multiple
comparison tests. *p ≤ 0.05 vs. anti-GBM IgG-injected mice, ****p < 0.0001 vs. anti-GBM IgG-injected mice.
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hypothesized that the granulocyte–glomerular endothelium
interaction may have been inhibited by the administration of
mGEnC HSglx. To investigate this, we performed binding studies
of granulocytes to cultured TNFα- or LPS-activated mouse
(mGEnC) or primary human (HRGEC) glomerular endothelial
cells, using mGEnC HSglx and HRGEC HSglx, respectively.
Indeed, granulocyte binding was reduced in both culture models
by application of purified HSglx (Figures 3A–C). In short, the
granulocyte–glomerular endothelium interaction is competitively
inhibited by the addition of exogenous HSglx, and this mechanism
seems to be conserved between mice and humans.

3.5 HS oligosaccharides derived from HSglx
inhibit L-selectin and CD11b binding to
activated glomerular endothelial cells

Both L-selectin and CD11b are expressed by granulocytes and
macrophages and are well known to interact with HS (Diamond
et al., 1995; Celie et al., 2005; Wang et al., 2005; Zen et al., 2009).
We showed that purified HRGEC HSglx binds to both recombinant
human L-selectin and CD11b proteins in vitro (Supplementary

Figure S6). Therefore, we investigated recombinant mouse
L-selectin binding to activated mGEnC, either in the absence or
presence of mGEnC HSglx. These experiments revealed that
mGEnC HSglx decreased L-selectin binding to activated mGEnC
(Figures 4A, B). Next, we fractionated mGEnC HSglx via size-
exclusion chromatography (Supplementary Figure S7). To reduce
the size of mGEnC F1 further, F1 was digested with heparinase III
(Nader et al., 1999). It appears that both mGEnC-1 HSglx F1 and
mGEnC-1 HSglx F2 inhibited L-selectin binding to activated
mGEnC-1 (Figures 4A, B). Notably, mGEnC HSglx
F2 significantly inhibited adhesion of both binding of L-selectin
and CD11b to activated mGEnCs, whereas mGEnC HSglx F1 only
inhibited L-selectin (Figures 4A–D).

To gather more information about HS oligosaccharide size and
number of sulfates, we analyzed mGEnC HSglx F2 by capillary
electrophoresis-mass spectrometry (Sanderson et al., 2018)
(Supplementary Figure S8 and Supplementary File 1). Six HS
oligosaccharides were detected based on mass, ranging from
tetra- to hexasaccharides with 2–7 sulfate groups (Table 1). In
summary, short HSglx-derived oligosaccharides prevented binding
of L-selectin or CD11b to glomerular endothelium, showing
therapeutic potential for glomerulonephritis.

FIGURE 2
Administration of mGEnC glycocalyx and mGEnC HSglx reduce glomerular granulocyte and macrophage influx in anti-GBM glomerulonephritis.
Glomerular granulocyte influxwas analyzed by immunofluorescence staining at (A) 2 h and (B) 1 day after rabbit anti-GBM IgG administration in untreated
mice and mice treated with 50 µg mGEnC glycocalyx, mGEnC HSglx, mGEnC CSglx, or enoxaparin. Glomerular macrophage influx, analyzed by
immunofluorescence staining, (C) 2 h and (D) 1 day after rabbit anti-GBM IgG injection. Results are expressed as means ± S.E.M. from 4–5 mice per
group. One-way ANOVA with Dunnett’s multiple comparison tests. *p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001 vs. anti-GBM-injected mice.
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4 Discussion

Glomerulonephritis may lead to chronic kidney disease,
characterized by glomerular injury, proteinuria, and loss of
kidney function. One of the major events during
glomerulonephritis is the glomerular influx of leukocytes into the
glomerulus, where leukocytes release effector molecules that cause
tissue injury, leading to loss of kidney function. Previously, we and
other research groups have described the importance of HS for the
interaction of leukocytes with the glomerular endothelium
(Diamond et al., 1995; Wang et al., 2002; Celie et al., 2005;
Parish, 2005; Wang et al., 2005; Rops et al., 2008; Rops et al.,
2014). Therefore, in this study, we hypothesized that the
administration of purified glomerular endothelial glycocalyx, and
in particular HSglx, may interfere with the glomerular
endothelium–leukocyte interaction, thereby providing therapeutic
potential for patients with inflammatory kidney diseases. Our data
showed that the administration of all GAG preparations reduced
albuminuria, demonstrating that a GAG-based treatment can
ameliorate glomerulonephritis in vivo.

Notably, the low-molecular-weight heparin, enoxaparin, which
we used as a proxy control, was less protective than mGEnC HSglx

during anti-GBM-induced glomerulonephritis, despite the fact that
enoxaparin has been shown to reduce leukocyte adhesion and
chemokine binding to glomerular endothelium in vitro (Rops
et al., 2008; van Gemst et al., 2018), and others have shown the
protective effect of enoxaparin in lupus nephritis (Hedberg et al.,
2013). However, none of these studies evaluated glomerular
endothelial glycocalyx or HSglx, which, in our opinion, may have
been even more effective than enoxaparin as shown in the current
study. Our results strongly suggest that sequences within glomerular
endothelial HSglx are optimally suited for the therapeutic treatment
of inflammatory glomerular diseases. HS and its domains provide a
more heterogeneous source of structures than enoxaparin and other
heparinoids (Esko and Selleck, 2002; Wang et al., 2002; Rops et al.,
2007c). Additionally, HS contains the natural complementary motifs
for HS–ligand interactions, as we observe in vivo (Koenig et al.,
1998), and we hypothesized that the purified HSglx competes for
ligands involved in key steps for leukocyte extravasation, like
L-selectin and CD11b. The specific HS–protein interaction is
largely determined by HS fine structure, namely, the sulfation
pattern in a given HS chain (Esko and Selleck, 2002). We have
demonstrated previously that mGEnC HSglx contains multiple
domain structures (Rops et al., 2007c), thereby potentiating that

FIGURE 3
Purified glomerular endothelial cell-derived HS reduces granulocyte binding to activated mouse and human glomerular endothelial cells. PMN
(32Dcl3) binding to (A) LPS- (N = 3–5) and (B) TNFα-stimulated mGEnCs (N = 10) in the absence or presence of 15–25 µg mGEnC HSglx. Unpaired t-test.
*p ≤ 0.05, ****p ≤ 0.0001 vs. control. (C) Human primary neutrophil binding to LPS-stimulated primary human glomerular endothelial cells (HRGECs) in
the absence or presence of 1 cm2 culture purified HRGEC HSglx. N = 2–3. Unpaired t-test. **p ≤ 0.01 vs. control.

Frontiers in Molecular Biosciences frontiersin.org07

Maciej-Hulme et al. 10.3389/fmolb.2023.1177560

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2023.1177560


mGEnC HSglx could contain a range of HS oligosaccharide
structures for interaction with multiple ligands. In this study, we
focused on two well-known endothelial HS ligands, L-selectin and
CD11b, both playing pivotal roles in the leukocyte adhesion cascade.
Purified mGEnC HSglx significantly inhibited both L-selectin and
CD11b binding to TNFα- and LPS-stimulated mGEnCs, thereby
suggesting that disruption of more than one HS–ligand interaction
may have contributed to the therapeutic effects of total HSglx
observed in vivo. In addition to leukocyte–endothelium
interaction, CD11b also plays roles in granulocyte phagocytosis,
superoxide release, degranulation, and apoptosis, which may
additionally be hampered upon HSglx binding, thereby further
contributing to the beneficial outcome of HSglx injection observed
in vivo. Notably, our in vitro experiments reveal that the mechanism
of HSglx-mediated inhibition is conserved between mice and
humans. Markedly, we identified one specific fraction of mGEnC
HSglx that prevented the binding of both L-selectin and CD11b
in vitro. Mass spectrometry analysis of this fraction revealed six HS
species (based on mass) that must contain the sequence motifs for
binding to L-selectin and CD11b. Although we were able to partially

decode these sequences, the number of possible sequences remains
in the hundreds. Notably, deciphering the full sequence of an HS
chain is an area of avid interest in the field of glycobiology but is a
challenging task, not only largely due to the inherent heterogeneity
of HS, but also because of the lack of chemically synthesized
standards and isomeric separation methods for HS mass
spectrometry analysis.

GAG-based therapeutics are a newly emerging class of drugs for
the treatment of a wide range of diseases (Lindahl and Kjellen, 2013;
Maciej-Hulme et al., 2018; Muralidar et al., 2021). The GAGs,
heparin, HS, and their derivatives are one of the oldest and most
widely used class of drugs in medicine owing to their valuable anti-
coagulant properties. Recent advances in separation, detection, and
mass spectrometry methods have facilitated reinvigoration in the
development of HS-based drugs (van Gemst et al., 2016; Sanderson
et al., 2018; Maciej-Hulme et al., 2023; Jain et al., 2021). In our proof-
of-concept study, by systematic purification, fractionation, and
identification, we considerably reduced the heterogeneity of
glomerular glycocalyx HS species to only six species (based on
mass) in a biologically active preparation. Moreover, the HS

FIGURE 4
Binding of L-selectin and CD11b to activated glomerular endothelial cells is affected by specificmGEnCglx fractions. Recombinantmouse L-selectin
binding to (A) TNFα- and (B) LPS-stimulatedmGEnCs in the absence or presence of 15 µg of mGEnC HSglx and size-exclusion fractions F1 (~2.5 µg) or F2
(~4.25 µg) from equivalent HSglx starting material. Recombinant mouse CD11b binding to (C) TNFα- and (D) LPS-stimulated mGEnCs in the absence or
presence of 15 µg mGEnC HSglx and size-exclusion fractions F1 (~2.5 µg) or F2 (~4.25 µg) from equivalent HSglx starting material. N = 3 for all
experiments. One-way ANOVA with Dunnett’s multiple comparison tests. *p ≤ 0.05, **p ≤ 0.01 vs. control.
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TABLE 1 Putative HS oligosaccharide structures in mGEnC HSglx fraction 2 (F2).a

Neutral
mass

Number of Theoretical
mass

Mass
error (ppm)

dp Possible structure

Uronic Amino N-Acetyl SO3

936.14125 2 2 2 2 936.1471 −6.28 4

1,012.03405 2 2 0 4 1,012.04 −5.51 4

1,253.0585 2 3 0 5 1,253.065 −5.39 5

1,333.0149 2 3 0 6 1,333.022 −5.38 5

1,412.970675 2 3 0 7 1,412.979 −5.81 5

1,551.054675 3 3 1 6 1,551.065 −6.48 6

aMass spectrometry analysis of HS oligosaccharide species. Sulfated positionally assigned in black. The putative position of sulfate groups is in gray and in brackets. Number of unassigned sulfate

groups in addition to assigned sulfate groups noted before the structure, i.e., 4S (pictorial structure). Uronic, uronic acid sugar; Amino, amino sugar, N-Acetyl, N-acetyl sugar; SO3, sulfate group;

mass error, calculated mass balance error; ppm, parts per million; dp, degrees of polymerization; (S), potential sulfation site; NS, N-sulfate group.
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chains we identified were between tetra- and hexasaccharides in
length, which are similar sizes to the FDA-approved
pentasaccharide, fondaparinux (Petitou et al., 1997), thereby
demonstrating that our approach yields bioactive oligosaccharides
of synthesizable size. Notably, fondaparinux is the only heparin-
derived sequence that has been linked to a single activity,
i.e., antithrombin III binding, and is clinically applied as an
anticoagulant. Together, our data demonstrate the potential of
HS-based drugs to treat glomerulonephritis. The next step in the
drug development pipeline is to structurally identify bioactive
compounds in our active preparation, followed by
chemoenzymatic synthesis of corresponding sequences.

In conclusion, HSglx was identified as the GAG preparation from
glomerular endothelial cells with the most promising therapeutic
activity to attenuate experimental glomerulonephritis, in which HS
oligosaccharides contained significant inhibitory activity for
leukocyte binding to endothelium. Our data strongly support the
application of HS-based therapeutics inspired by native glomerular
endothelial HSglx for glomerulonephritis and justify their further
development for patients with (acute) inflammatory glomerular
diseases.
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